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Vortex motion in a superconducting film has been observed to become unstable at a critical
vortex velocity v∗. At substrate temperatures substantially below Tc , the observed behavior can
be accounted for by a model in which the electrons reach an elevated temperature relative to the
phonons and the substrate. Here we examine the underlying assumptions concerning energy flow
and relaxation times in this model. A calculation of the rate of energy transfer from the electron
gas to the lattice finds that at the instability, the electronic temperature reaches a very high value
close to the critical temperature. Our calculated energy relaxation times are consistent with those
deduced from the experiments. We also estimate the phonon mean free path and its effect on the flow
of energy, and show that the electronic thermal conductivity is sufficient to make the assumption of
uniform electron temperature plausible.
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I. INTRODUCTION

When a film of a type II superconductor is placed in
a magnetic field large enough to permit penetration of
vortices, a transport current in the film acts on the vor-
tices through a Lorentz force that is opposed by a pin-
ning force and, eventually, by a drag force. When the
Lorentz force exceeds the pinning force, the vortices are
set into motion and the drag force comes into play. When
the Lorentz force is substantially larger than the pinning
forces but the transport current is still small compared
to the depairing current, previous experiments1–3 showed
that the resulting dissipation is reasonably well described
by the Bardeen-Stephen (BS) model4. In this region it is
Ohmic, but as the current is increased, it becomes non-
linear and eventually reaches an instability manifested
by a discontinuous increase in voltage. At temperatures
not far below the critical temperature, the instability has
been studied in a classic paper5 by Larkin and Ovchin-
nikov (LO). They showed that the electron distribution
departs from a thermal distribution at high vortex veloc-
ities, changing the superconducting order parameter and
altering the drag force on the vortices. They predicted a
non-linearity in the current-voltage characteristic and an
instability in the vortex motion when the vortices reach
a critical velocity v∗. The LO instability is due to a de-
crease in the drag force with increasing vortex velocity,
accompanied by a decrease in vortex size. LO showed
that the critical velocity is independent of the magnetic
field. Early experiments on low-Tc systems6 confirmed
Larkin and Ovchinnikov’s results and predictions. Subse-
quent experiments on Y1Ba2Cu3O7−δ (YBCO) by Doet-
tinger, Huebener, Gerdemann, Kühle, Anders, Träuble,
and Villègier7 and by Xiao and Ziemann8, also confirmed
LO behavior.

However, experiments carried out at lower
temperatures9,10 on YBCO, showed a non-linearity
and instability with a very different dependence of v∗ on
the magnetic field B. Analysis9,10 showed that the new
behavior could be accounted for by a simple model in

which the electron gas has a thermal-like distribution
function characterized by a higher temperature than
the lattice and bath. Larkin and Ovchinnikov did, in
fact, suggest this possibility in their original paper11

without exploring its consequences. As the electron
temperature rises, the resulting increase in resistivity
causes a decrease in current above a certain electric
field and hence a non-monotonic response. This model
yields a critical vortex velocity v∗ at instability that is
proportional to 1/

√
B, as seen in the low-T experiments.

Some of the essential consequences of such a hot-electron
instability were calculated in our earlier papers and
shown to be consistent with experimental observations.

In the present work some of the simplifying assump-
tions and restrictions in the previous calculations have
been removed and more complete calculations have been
carried out:

(1) Previously we only considered vortex dissipation
due to the BS mechanism; here we also include the Tin-
kham mechanism12.

(2) The rate τ−1
ε of transfer of energy from the elec-

tron gas to the lattice—which plays a crucial role in de-
termining the electron temperature—was taken as a con-
stant in previous discussions of the model. In this paper
we show that it can be expected to have a strong tem-
perature dependence. This temperature dependence of
τε is now included in our numerical calculations of the
current-voltage curves. We find that the general shape
of the current-voltage relation is not very sensitive to
the temperature variation of τε because the electron gas
passes rapidly from the bath temperature to a tempera-
ture not far below Tc before any significant non-linearity
is manifested. This is a consequence of the very small
low-temperature specific heat of a superconducting elec-
tron gas. However, the strong temperature variation of
the relaxation time gives a sensitive measure of the elec-
tron temperature. Evaluation of τε from the data near
the instability point indicates an electron temperature
much higher than the bath temperature, supporting the
heated electron picture of the instability. The calculation
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of this electron-lattice energy relaxation time is presented
in Section III below.

(3) Finally, if the film thickness is not negligible com-
pared to the phonon mean free path—as was assumed in
our previous work9,10—the phonons will not have a ther-
mal distribution characterized by the bath temperature.
In the present paper we take into account the effect of a
finite phonon mean free path on the hot-electron vortex
instability and consider the general situation where the
phonons are not thermalized by the bath. Phonon life-
time effects can be taken into account following work by
Bezuglij and Shklovsky13, who solved the phonon kinetic
equation for a thin film. The non-thermal phonon dis-
tribution found in this solution can be incorporated into
our calculation of the energy transfer rate, and provides
a correction to our earlier results. This result is derived
in Section IV below.

We begin in Section II by giving a description of the
model presenting some new numerical results on the
current-voltage curves under various conditions and crit-
ical parameters at the instability.

II. MODEL FOR INSTABILITY

The macroscopic fields in a type II superconductor car-
rying a transport current are related to the velocity of the
vortices by the fundamental relation

v =
E

B
c, (1)

which follows from the law of induction. This equation
can be used to find the electric field once the vortex ve-
locity is determined by considering the fundamental dis-
sipative processes in the medium. Elastic forces can be
shown to be negligible. One of the dissipative processes is
the scattering of normal electrons in the vortex core and
quasiparticles outside the core first treated by Bardeen
and Stephen. They found that the transport current den-
sity j is expressed in terms of the upper critical field Hc2

and the normal resistivity ρn by

j1 =
Hc2

ρn

v

c
=

Hc2

ρn

E

B
. (2)

More elaborate treatments14 give results that agree with
Eq.(2) to within a numerical factor of order 1. An-
other contribution to the dissipation arises from the non-
equilibrium conditions that exist on the leading and trail-
ing side of the moving vortex because of the finite relax-
ation time of the order parameter. This mechanism was
first treated by Tinkham, who gave an expression equiv-
alent to the following for the transport current density in
terms of the order parameter relaxation time τ∆ and the
zero-field zero-temperature gap ∆00:

j2 =
gHc2

ρnB
E, (3)

where

g =
a~

∆00τ∆
(1− t4), (4)

and t = (T/Tc), and a is a numerical coefficient of order
unity. This has the same order of magnitude as Eq.(2)
but a somewhat different temperature dependence. The
resistivities implied by these two contributions to the dis-
sipation are additive, yielding the total current

j =
g

g + 1

Hc2

ρnB
E. (5)

These energy dissipation mechanisms raise the energy
of the electrons, and this energy subsequently relaxes to
the lattice. The assumption of the model is that the
electron-electron scattering time is small enough com-
pared to the electron-phonon inelastic scattering time
that the electron gas remains in internal thermal equilib-
rium at a temperature higher than the lattice tempera-
ture. While a full justification is beyond the scope of this
paper the plausibility of the assumption can be checked
by estimating the cross-over temperature below which
electron-electron scattering is dominant. The standard
estimates15 of the scattering rates τ−1

ee = ηεF /T 2 and of
τ−1
ep = η3ω2

D/T 3 then give a cross-over temperature of
the order of 100 K for parameters appropriate to YBCO.
This temperature is indeed higher than the range of in-
terest in the experiments.

Changes in the energy density of the electron gas can
be described by a rate equation that includes the work
done by the electric field and the exchange of energy with
the lattice. If we assume that the exchange can be de-
scribed approximately by an energy relaxation time τε ,
then the equation is

du

dt
= jE − u(T ′)− u(Tp)

τε(T ′, Tp)
, (6)

where τε can depend on the temperature Tp of the
phonons as well as the electron temperature T ′. We argue
below that the dependence of τε on Tp is weak enough to
be ignored in the relevant range of temperatures and the
relevant energy transfer rates between the lattice and the
bath. The quasiparticles transfer the energy they receive
from the transport current to the lattice at a rate much
higher than it is radiated back, and the energy then flows
from the lattice to the bath. Thus τε can be assumed to
depend only on T ′, and we can write the steady-state
equation

jEτε =

∫ T ′

Tp

c(T )dT, (7)

where the energy difference in Eq.(6) has been expressed
in terms of the electronic specific heat per unit volume.

Equations (2) - (7) determine the relationship between
the electric field, the current density and the tempera-
ture. The temperature dependence of the specific heat
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FIG. 1: Current density vs electric field for B = 8 Tesla. Up-
per curve: Bardeen Stephen model with a constant τε . Mid-
dle curve: Bardeen Stephen model with a τε varying with T
according the calculation in the text. Lower curve: Bardeen
Stephen model with Tinkham mechanism added and with a
variable τε . The value of τε used in the fixed τε curve cor-
responds to the calculated value near Tc.

FIG. 2: Experimental curves of current density vs electric field
in YBCO for flux density (beginning with the upper curve)
B = 3, 5, 8, 11, 14, and 16 Tesla.

and the upper critical field are taken from standard BCS
theory16. In calculating the specific heat, the tempera-
ture dependence of the gap was taken from BCS theory
and its magnitude was multiplied by a factor to give the
observed zero-temperature gap17 and critical tempera-
ture. The temperature dependence of the order parame-
ter relaxation time is determined empirically as suggested
by Tinkham12. The energy relaxation time and its tem-
perature dependence used in this section is calculated in
the next section.

Typical results of the model are presented in the fol-

lowing figures. Fig. 1 shows the effects of the tempera-
ture variation of τε and of inclusion of the Tinkham dis-
sipation mechanism in addition to the Bardeen-Stephen
mechanism. These are to be compared to the experimen-
tal data shown in Fig. 2. There is general qualitative
agreement in the rising portion of the curve showing de-
creasing differential conductivity. While the value of the
peak current reached is in general agreement with the
model, the value E∗ of E at which the peak in j is reached
is an order of magnitude greater than the predicted value.
This value is in somewhat better agreement when Tin-
kham dissipation is included, although the peak current
is then a factor of five below the observed value. In assess-
ing the comparison of experimental data with the model,
it should be noted that there are no adjustable parame-
ters in the calculation of τε , which was done with simple
assumptions about the strength of the electron-phonon
interaction (Section below). We therefore conclude that
the agreement is within acceptable bounds.

FIG. 3: Effect of increasing flux density on the current density
vs electric field curve calculated in the model with variable τε .
Values of B beginning at the upper curve are 3, 5, 8, 11, 14,
and 16 Tesla.

The onset of the unstable region in the current-voltage
response does not require explicitly invoking the forces
on the vortices in treatment of the model. Rather, the
instability appears in the result as a region of negative
differential conductivity, where j decreases as a function
of E. The region begins at the value E∗ of the field
that can be determined by calculating dj/dE from Eq.(7),
setting the result equal to zero, and solving for E:

E∗ =

√

CρnB

gHc2τ
′

ε + (gHc2)
′τε)

, (8)

where primes indicate differentiation with respect to
temperature.28 The experimentally well-verified

√
B de-

pendence of the electric field at instability follows pro-
vided the temperature T ∗ at this point is independent
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or weakly dependent on B so that the temperature-
dependent factors C, τε , g, and Hc2 in Eq.(8) remain
independent of B. This result is a consequence of our
model, since we have explicitly excluded a field depen-
dence for these quantities and taken ρn to be temperature
and field independent. Although Volovik18 has shown
that the specific heat has a B-dependence in type II ma-
terials above the lower critical field, we have checked that
his scaling prediction at low temperatures gives only a
weak dependence in the range of fields B << Hc2 rele-
vant to our experiment. Fig. 3 shows the calculated mag-
netic field dependence of the current vs voltage curve.

Fig. 4 shows the change in the electron temperature
as a function of the applied electric field. The rise in
temperature and corresponding decrease in Hc2 result
in decreasing differential conductivity which leads to the

FIG. 4: Calculated electron temperature T ′ vs electric field
E for B = 3, 8, and16 Tesla.

FIG. 5: Calculated electron temperature T ∗ at the peak of
the current-voltage curve (solid circles) and at E = 35kV/m
(open circles) for different phonon temperatures Tp

instability. Fig. 5 shows the relatively small effect of
increasing bath temperature, up to about 50K, on the
final temperature reached by the electron gas. The circles
show the calculated T ′ at the instability peak (maxima
in the curves of Fig. 3) and the crosses show the T ′ at
one fixed value of applied electric field.

III. ENERGY TRANSFER RATE

The total rate at which energy is radiated by the
heated quasiparticle gas to the lattice can be calculated
by standard methods19,20. The two contributing pro-
cesses, phonon emission and quasiparticle recombination
with emission of a phonon, are illustrated schematically
in Fig. 6. Taking into account the isotropy of the rate

FIG. 6: Diagrams contributing to the energy transfer rate
from the quasiparticle gas to the lattice.

with respect to the initial electron momentum, the result
for phonon emission is:
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Pe =
16π2

~

(

V

(2π)3

)2 ∫ ∫ ∫

k2dkk
′2dk

′

dΩk′ |M
k−k

′ |2fe(E, E
′

)δ(E −E
′ − ~s|k− k

′ |)~s|k− k
′ | (9)

=
2V m2

π~3

∫ ∫ ∫

dωdεdε
′

vF α2(ω)F (ω)~ωfe(E, E
′

)δ(E −E
′ − ~ω). (10)

where the coherence factor and occupation factors have
been combined in the function

fe(E, E
′

) =
f(Ek)(1− f(E

′

k
)

1− f(Ek)

(

1− ∆k∆
k

′

EkE
k

′

)

. (11)

In the second form of Pe, we have changed from momen-
tum variables to bare electron energy variables and intro-
duced the dimensionless electron-phonon spectral func-
tion α2F , defined by:

α2(ω)F (ω) =
V

(2π)3~2

∫

d2k
′

v
′

F

|M
k−k

′ |2δ(ω − s|k− k
′ |).

(12)
In the deformation potential approximation21 where

|M
k−k

′ |2 =
~|k− k

′ |
2ρsV

(

2εF

3

)2

, (13)

α2(ω)F (ω) is of the form bω2, where

b =
m

8π2~2ρs4kF

(

2εF

3

)2

. (14)

Introducing this form of α2(ω)F (ω) and changing from
the bare electron energy ε to the quasiparticle energy E,
the rates for phonon emission and quasiparticle recombi-
nation can be brought into the simple form

Pe = V Σe(T )(T/Tc)
5, (15)

Pr = V Σr(T )(T/Tc)
5, (16)

where

Σe(T ) = A
∫∞

z
dx

∫ x−z

0
dyy3fe(x, x − y)N(x− y, z)N(x, z), (17)

Σr(T ) = A
∫∞

z
dx

∫∞

x+z
dyy3fr(x, y − x)N(y − x, z)N(x, z). (18)

Here z is ∆(T )/T , and N(x, z) is the dimensionless quasi-

particle density of states Re(x/
√

x2 − z2). The value of
the constant A is 8m2T 5

c vF b/(π~
6). The temperature

dependence of Σe and Σr comes from the temperature
dependence of the gap through the parameter z. This
modifies the simple T 5 dependence found in Wellstood,
Urbina, and Clarke20 for the transfer rate in normal met-
als and gives a much stronger dependence in the super-
conducting system.

The rates due to emission and recombination have been
calculated numerically from the above equations. The
net rate can be equated to (u(T ) − u(Tp))/τε according
to Eq.6 and the energy relaxation rate can be found as
a function of temperature. The results are given in Fig.
7. Fig. 8 shows the energy relaxation time τε found by
equating the total transfer rate from emission and recom-
bination to the last term in the rate equation 6.

Experimental values of τε can be extracted from the
data on the basis of the model and compared with the
calculated times from this section. In the comparison
shown in Fig. 9, τε was determined in the vicinity of the
peak in the current-field curve (at E∗) for various lattice

temperatures Tp. The value at the peak is appropriate
for a comparison because the shape of the curve is insen-
sitive to the value of τε at lower temperatures because of
the rapid heating of the electrons at these temperatures.
The agreement in order of magnitude of the measured
and calculated values can be taken as an indication that
the electron temperature is high, in view of the strong T
dependence of τε shown in Fig. 8. The rapid variation of
τε with temperature serves as a sensitive temperature in-
dicator, showing that the electron temperature is indeed
near Tc .

We note the following properties of the energy transfer
rate:

1.) The rate of energy transfer from the electrons
to the lattice at any given temperature is equal to the
rate of transfer from the lattice to the electrons at the
same temperature. Indeed, the rate from phonon emis-
sion balances the rate from absorption and the rate from
quasiparticle recombination balances the rate from pair
creation. These results can be demonstrated in the de-
formation potential approximation, where the matrix el-
ement for phonon emission and absorption depends only
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on the phonon energy ν. For example, the rates for emis-
sion and absorption and for quasiparticle recombination
and creation can be written

FIG. 7: Calculated energy transfer rate in meV/nm3-s of elec-
tron gas at temperature T to a zero temperature lattice. The
solid curve represents the phonon emission process and the
dashed curve represents the quasiparticle annihilation pro-
cess.

Pe = G

∫

(n(ν) + 1)fe(E, E − ν)N(E)N(ν −E)ν3dEdν

Pa = G

∫

n(ν)fa(E, E + ν)N(E)N(E + ν)ν3dEdν,

Pr = G

∫

(n(ν) + 1)fr(E, ν −E)N(E)N(ν −E)ν3dEdν

Pc = G

∫

n(ν)fc(E, ν −E)N(E)N(ν −E)ν3dEdν,

where n(ν) is the phonon occupation number at the given
temperature and N(E) is the quasiparticle density of
states, and G has the value 8V m3vF b/π~

6. The equal-
ity of the rates is evident upon substituting the explicit
forms of the Fermi and Bose distribution functions. In
the same manner, the emission and absorption rates are
identical after the same substitutions and the change of
variable E

′

= E + ν in Pa.

2.) The differences between the emission and absorp-
tion rates and the between the pair recombination and
creation rates have only a weak dependence on the lat-
tice temperature as long as the electron temperature is
near Tc and the lattice temperature is low, say Tp ≤ Tc/2.
This conclusion is based on values for Tc (7.8 meV) and ∆
(19 meV) for YBCO. Wellstood, Urbina, and Clarke,20,
assert that the difference between the emission rate and
the absorption rate for a normal metal is equal to the
difference between the rate electrons radiate to a zero
temperature lattice and rate phonons radiate to a zero

temperature electron gas. This result is only approxi-
mately valid in the gas of quasiparticles. The differences
can be calculated from the previous pairs of equations
by taking n(ν) to be the phonon distribution function
at Tp. The difference between emission and absorbtion
rates, for example, is:

Pe−Pa = G

∫ ∞

∆

dE

∫ E−∆

0

dνfe(E, E−ν)
eν/Tp − eν/T ′

eν/Tp − 1
.

The dependence on Tp is contained in the last factor.
For ν of the order of ∆, T ′ of the order Tc, and T0 in
the range zero to Tc/2, this factor only varies from 1.0 to
0.915, showing therefore a weak dependence of the differ-
ence on Tp. In fact, the differences have been calculated
explicitly for T = 0.8 Tc and Tp ranging from 0.1 Tc to
0.5 Tc. The difference varies less than 10% for emission
and absorbtion and less than 1% for the dominant cre-
ation and recombination. In view of these results, we
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FIG. 8: Energy relaxation time τε as a function of tempera-
ture.

FIG. 9: Values of τε extracted from the data on the basis
of our model compared to values calculated in this section.
General agreement in order of magnitude indicates an electron
temperature near Tc.

ignore the dependence on Tp and calculate τε on the ba-
sis of the radiation rate to a zero temperature lattice. A
very similar argument applies to the difference between
the pair recombination and pair creation rates.

3.) Quasiparticle emission and absorbtion can only sat-
isfy the energy and momentum conservation laws if the
the quasiparticle velocity vF ∂E/∂ε before emission or af-
ter absorbtion is greater than the sound velocity. This
Čerenkov condition should be taken into account in the
averaging near the Fermi surface that enters into calcula-
tion of the electron-phonon spectral function α2F . In the
integrals over quasiparticle energy above, the lower limit
should be the energy Ec at which quasiparticles reach the
sound velocity rather than ∆. The correction is of the
order of the square of the ratio of the sound velocity to
the Fermi velocity. Since s/vF << 1 for all superconduc-
tors (s/vF ≈ 1.5×10−2 in YBCO), the correction can be
safely ignored.

We should remark at this point that the calculations
assumed an s-wave symmetry of the order parameter
rather than the d-wave symmetry now well established
for YBCO. However, this is not expected to have a seri-
ous influence on the qualitative value of the results, since
the specific heats are qualitatively similar and the energy
transfer rates are expected to be similar. The results pre-
sented would apply to the low-temperature type II s-wave
superconductors, but these have not been explored to
date because of the novelty of the technique. The quan-
titative determination of τε in YBCO from the experi-
mental data would be improved by a treatment taking
account of the d-wave symmetry of the order parameter.

IV. PHONON LIFETIME EFFECTS

In the above discussion, we have not distinguished the
phonon temperature and the bath temperature. We now
consider corrections arising from a more general treat-
ment of the phonon distribution. The standard estimate
of phonon mean free path for normal metals ~vF /kT
gives 17 nm when the Fermi velocity is taken to be
2 × 105 m/s, which is considerably shorter than the
100 nm thickness of the experimental films. The esti-
mate of Kaplan, Chu, Langenberg, Chang, Jafarey, and
Scalapino19 of quasiparticle and phonon lifetimes in an s-
wave superconductor below the critical temperature gives
a frequency- and temperature-dependent numerical fac-
tor of order unity multiplied by the characteristic time

τph
0 =

~N〈α2〉av
4π2N(0)

∆(0), (19)

where N is the ion number density, 〈α2〉av is the average
electron-phonon coupling constant, N(0) is the single-
spin electronic density of states at the Fermi surface, and
∆(0) is the zero-temperature gap. Taking22 the values
N = 13 per unit cell, 〈α2〉av = 5 meV, N(0) calculated
from the free-electron theory with vF having the value
quoted above, and ∆(0) = 19 meV, and converting the
lifetime to a mean free path using the longitudinal sound
velocity 4.2 × 103 m/s yields a path of the order of 103

nm, an order of magnitude larger than the thickness of
the experimental film.

These estimates indicate that we are dealing with a
marginal case where the phonon mean free path could be
comparable to the thickness of the sample. To deal with
the general case, we follow Bezuglij and Shklovskij13,
writing the kinetic equation for the phonon distribution
function n(q, z) as

sz
∂n(q, z)

∂z
= −n(q, z)− n(T )

τph
, (20)

where sz is the component of the sound velocity perpen-
dicular to the plane of the film and n(T ) is the ther-
mal phonon distribution at the electron temperature. If
phonons are reflected at the free surface of the film and
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transmitted with average coefficient α at the substrate in-
terface, it is found that the phonon distribution function
is a linear combination of two thermal distributions, one
at the bath temperature and one at the electron temper-
ature. The coefficients in the linear combination depend
on the position within the film and on the direction of
propagation of the phonons:

n = A(z, θ)n(T ) + B(z, θ)n(T0). (21)

The integrand in the expression for the energy transfer
rate from quasiparticle gas to lattice contains the fac-
tor n + 1, while that for the reverse rate contains a fac-
tor n. If Eq.(21) is substituted into these rates and ac-
count is taken of the condition for equilibrium between
the lattice and the gas, the resulting rate contains a
term with the factor 1 − A and a term with the factor
Bn(T0). For purposes of estimating the correction for
finite phonon lifetime, we neglect the term proportional
to n(T0) compared to the 1−A term on the ground that
the phonon number is small at a temperature T0 which is
much smaller than the Debye temperature. An estimate
of the remaining term can be obtained by replacing 1−A
in the integral for the rate by its average value over the
thickness of the film and over the directions of propaga-
tion of the phonon. The remaining integral is the one we
evaluated in the previous section.

d/l α = 0.8 α = 0.5 α = 0.2
6.0 0.0333 0.0208 0.00833
1.0 0.190 0.121 0.0493
0.1 0.680 0.553 0.325

TABLE I: Calculated values of the phonon lifetime factor 1−A
for three values of the ratio of thickness d to phonon mean free
path l and three values of the average transmission coefficient
α.

The explicit expression for A

A = 1− α

1− (1− α)e−2d/lz

{

e−z/lz , qz > 0
e−(2d−z)/lz , qz < 0

}

(22)
reflects the gradual change of the distribution (21) from
a nearly thermal distribution at the bath temperature
at the substrate interface z = 0 to an electron tempera-
ture thermal distribution over the distance of a phonon
mean free path. The transmission probability α can be

determined in principle23 from the measured value of the
thermal resistance of the film-substrate interface, defined
as the ratio of ∆T at the interface to the product of
the power dissipated per unit volume and the thickness
of the film. The measured value for YBCO is given by
Nahum24,25 as 1× 10−3 Kcm2/W. The determination of
α is affected by uncertainties due to the averaging and
due to the sensitive temperature variation of the thermal
resistance. A literal application of Eq.[14] of reference23

produces the average value 0.184 when d is of the order of
or larger than l. When d � l, Shklovskii shows that the
effective α is 2d/l, which is 0.2 for the longest estimate of
phonon mean free path above. We therefore accept 0.2
as a reasonable value. Sensitivity of the value of 1 − A
to d/l and α are shown in Table I. The longest estimate
of phonon mean free path with the best estimate of the
transmission coefficient indicate that the energy transfer
rate will be multiplied by a factor of 0.325 due to phonon
lifetime effects.

V. CONCLUSION

The electromagnetic behavior of YBCO films at high
electric fields and current densities can be accounted for
by a simple heating model in which the elevated tempera-
ture due to dissipation and the consequent changes in the
properties of the electron gas result in an instability in
the motion of vortices at which the differential conduc-
tivity vanishes. The work presented here justifies such
a model by showing that the temperature variation of
the energy transfer rate between the lattice and the elec-
trons is consistent with the observed behavior, and that if
the phonon mean free path is not too small compared to
the film thickness, the necessary temperature difference
between electrons and lattice can be maintained. The
observed instability is a consequence.
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