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Superposition of decaying flux distributions: A memory effect from flux creep
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A model is presented that considers the magnetic relaxation from thermally activated flux creep
in a superconductor, after the application of two consecutive field steps separated by a waiting time
t,. The time evolution of the resulting superposition of flux distributions is_expected to show a
characteristic inflection point at a time f/. The behavior is reminiscent of, but fundamentally
different. from, the memory effect of the superconducting-glass model. Measurements on
Bi;Sr,CaCu, Oy, 4 single crystals show the predicted temperature and field dependence of ¢;.

Recently there has been considerable interest in the
magnetic properties of high-T, superconductors, Early
work by Miiller, Takashige, and Bednorz! on magnetic ir-
reversibility and relaxation showed that the behavior was
consistent with that of a superconducting glass: a model
proposed by Ebner and Stroud? that describes the behav-
ior of weakly linked superconducting clusters.

Subsequently Yeshurun and Malozemoff® showed that
a conventional critical-state—flux-creep type of model
could also explain these properties. In the critical-state
model*® the initial profile of the flux density B de-
pends only on the applied field H, and its history—with
the local critical-current-density (magnitude) given by
J(B)=(c/47)|dB /dx| (Maxwell’s equations). Measure-
ments of remanent magnetization®” support that descrip-
tion. As a result of flux creep, the slope of the profile de-
creases leading to a time-dependent magnetization
M(1).** The flux-pinning well depth U,, determined
from M (1), has served as an important parameter in the
comparison of different materials.” !°

Recent theoretical'!! and experimental work'? has
shown that the properties of the flux lattice and the char-
acter of the flux pinning in high-T, superconductors
might be quite unconventional. Additionally, Rossel,
Maeno, and Morgenstern'? have observed memory effects
in  Y-Ba-Cu-O single crystals supporting a
superconducting-glass picture—at least in their tempera-
ture and field ranges.

The preceding discussion indicates the ambiguity in the
correct description for the magnetic relaxation in high-T,
superconductors, and raises the question whether the
conventional flux-creep model is applicable even at low
temperatures. In this work we show that a memory effect
similar to that predicted by the superconducting-glass
model is also to be expected from the flux-creep model.
When a zero-field-cooled (ZFC) superconductor is sub-
jected to two consecutive field changes (0 to H, and H,
to H,) separated by a waiting time ¢, the subsequent de-
cay of magnetization shows an inflection or crossover
point at a time 7. In the superconducting-glass model
t/~t,. In the memory effect derived here, ¢/ in general
does not equal ¢, but is a function of the four parame-
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ters, t,,, T, H|, and H,. We present data that are con- -

sistent with the model’s predictions.

The single crystals of Bi,Sr,CaCu,04,; (preparation
described in Refs. 14 and 15) were platelets (c axis along
the small dimension) with approximate dimensions
1X1X0.1 mm® Previous magnetic measurements on
crystals from this batch were reported earlier.”'* Two
crystals were mounted on a sheet of mylar with the CuO
planes aligned parallel to the field. The contribution of
the sample holder was negligible ( <0.05% of total sig-
nal). Magnetic moments were measured in a
superconducting-quantum-interference-device suscep-
tometer (SHE model 905}, :

We will now proceed to calculate the relation between
T, Hy, Hy, t,, and t;. J, will be assumed to be indepen-
dent of field (i.e., the flux-density profiles are linear as in
the Bean model*) since other models and empirical
critical-state relations yield the Bean approximation in
their low-field limits.>'® Modifications to the results aris-
ing from other profile shapes will be discussed. When the
CuO planes are parallel to the field, it was shown in our
previous work’ that flux penetration and creep occur
predominantly parallel to the planes (i.e., flux enters the
platelet through the ends): The problem then reduces to
that of an infinite slab whose “thickness” equals the
width w, of the crystal. The case when the field is parallel
to the ¢ axis is complicated by the large field-dependent
demagnetizing factor and will not be treated here.
H.(~10 Oe) (Refs. 7 and 15) will be neglected
(H,H,~300 Oe).

Figure 1(a) shows the initial flux-density profiles in a
sample {only half shown for symmetry reasons) for
different fields. Because |dB/dx|=4wJ,/c, the field
penetrates to a depth X =cH /(4wJ,), from the surface of
the sample. H*=2mwJ_/c is the field for complete flux
penetration (for T=10 K, H*=1 kOe). The analysis
that follows applies to the case of incomplete flux
penetration at all times.

Figure 1{b) shows how the flux-density profile, created
by applying the first fieild H,, evolves with time.
Thermally activated flux creep causes the slope to de-
crease with time, as expressed by the following time- and
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FIG. 1. Flux-density (B) profiles in a sample of width 1 (half
shown) ¢ and ¢ are times measured after the applications of
fields H, and H,, respectively. (a) Initial profiles for different
applied fields. Complete flux penetration occurs at H*. (b) Ini-
tial and time-evolved profiles after applying H,. (c) Superposi-
tion of initial profile of H, over time-evolved profile of H,. (d)
Aged compound profile of (¢) at the time ¢/. (e) and (f) Similar
behavior for hypothetical rectangular profiles.

temperature-dependent form of J_:**
kT
Uy

4

Iy

Jc :JCO 1— In (1)

Here t, is a parameter involving the fluxon-oscillation
frequency, mean fluxon hopping distance, etc. Equation
(1} is valid'? i the limit of large driving forces when
Uy >>kT (here Uy /kT ~ 50). Normally J, is evaluated at
some arbitrary initial time & (5-15 min), after a field
change. This initial nominal value of J, will be called
Joim (H* then is 27w/, ;. /c). By inserting Eq. (1) into
X =cH /(47wJ_), and keeping the two leading terms of its
Taylor expansion, X (£) can be expressed as:

Hj

2H*

L4
5

4rM =—H,+ 1+éln +

2H*a

The first term corresponds o the static Meissner term;
the second term corresponds to the usual simple flux
penetration and decay due to the application of a single
field H, upon the ZFC state; the third “memory” term is
the contribution due to the underlying flux-density profile
created by the first field change, and will tend to reduce
the slope for times shorter than ¢;. For such times Eq. (5)
predicts a very gradual departure from the ¢'=¢#/
straight-line portion. To understand how the results are

alH,—H,)+H I
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where X;,=wH/2H*. (The additional factor J.4/J;,
has appeared as a result of eliminating the ill known ¢, in
favor of 8.) Now consider what happens when the field is
raised to H, after having waited at H, for the time 7,,.
The resuiting flux-density profile is shown in Fig. 1(c). X’
is the extrapolated penetration-depth of the steep portion
{(due to the second field change). The time evolution of
X'(t") is also described by Eq. (2), where ¢’ is measured
from the time H, is applied. The steep portion will meet
the underlying old distribution when

X'(t"y=X(t)=X{t'+1,) . (3)
This is depicted in Fig. 1(d). Beyond this time all
memory of the previous state is erased and the decay of
the moment exhibits the usual logarithmic behavior for a
direct field change from O to H,. The crossover will
occur at the time ¢/ at which Eq. (3} is satisfied. Combin-
ing Eqs. (3) and (2) we arrive at the equation that relates
t; tot,, T, H, and H,, which is the central result of this
paper:

X(=X, , (2)

’
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OJc,in
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Note that Eq. (4) for ¢; is valid as long as X is proportion-
al to H and increases logarithmically with time—the re-
sult is independent of the specimen dimensions and
geometry, as well as the shapes of the flux-density profile
and flux front. M and dM /d(Int), on the other hand, de-
pend critically on all of these factors making their esti-
mates less certain. Therefore in comparing measure-
ments with theory, attention wiil be focused on #,.

The magnetization is given by dnM =—H +2.4 /u,
where 4 is the area under the profiles of Figs. 1. From
the geometry of Fig. 1(c), and the expressions for X (z),
X'(1), and a [Eqgs. (2) and (4)], the time-dependent magne-
tization becomes

.
w

— ‘—H,_ln

r
B

affected when the profiles are not linear, we consider the
rectangular shaped profiles shown in Figs. t(e) and 1(f.
An actual J_(B) will decrease with field causing the flux-
density profile to be steeper at locations deeper inside the
sample, so that the shape will be intermediate between
the two extremes of linear and rectangular profiles. As
mentioned earlier ¢; is unaffected by differences in profile
shapes, however, the behaviors of M and dM /d(Int’) are
changed significantly for ¢’ < ¢/
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" H=300 ] TABLE 1. AH=H,—~H, is the increment in field; H, =300
170k T=12 | Oe is the initial field for each run. ¢, is the Vfraiting. timf: be-
’ tween applications of H, and H,. The 1;’s; are inflection times.
6.5 (a) ®neas 18 the value of o obtained from t/. a, equals
Uodyin/ kg T 0.
20.0

s (1074 ema)

tw=315
17.8} AH=30 4

e T=12
173k (d)

10 100
t (min)

FIG. 2. Data for six runs. Tis in K, AH=H,—H, in Oe,
and ¢, in min. The arrows show the positions of the crossovers
(+'=t). For run (a) the field was directly stepped up from 0 to
H,. The broken lines in plot {f) correspond to predicted behav-
ior fot linear {upper) and rectangular {lower) profiles.

H
417M =_H2+
H

(6)

Equation (6) predicts a sharp inflection at t'=1¢/, an al-
most constant slope at shorter times and a more substan-
tial change in slope than that predicted for linear profiles
[Eq. (5)]—predictions which are self-evident from Figs.
1(e) and 1(f).

In the above calculations we have considered a single
U,. Extending the calculations of Hagen and Griessen,'®
we will assume that at a fixed temperature a finite distri-
bution of Uy’s can be taken into account, by employing
an effective U, given by

[f:.,m(Uo)dUo ]/ [f:,m(Uo)/(bUO)dU(, ,
3 0

T AH te ¢

Run (K) (Oe) (min) (min) s A Tealc
a 12
b 9 30 315 27 245 28.2
¢ 12 30 195 55 13.8 13.3
d 12 30 315 111 12.6 13.3
e 12 45 7 315 47 12.5 13.3
f 12 60 315 30 13.3 13.3

where Ug and & are constants and m (U,) is the distribu-
tion function.

The data are shown in Fig. 2 as plots of m versus Int’,
the various runs having different sets of values of the pa-
rameters ¢, T, H,, and H,. These parameters and other
relevant quantities for each run are shown in Table L
Plot (a) in Fig. 2 shows the usual smooth logarithmic de-
cay when the field is stepped directly from 0 to H, (300
Oe). The other curves show a change in behavior at some
time ¢; (indicated by arrows), beyond which the curves
become smooth and straight, and the slope steeper.
Scatter in the data and rounding of the transition region
make ¢/ uncertain by 5 Int; =0.4,

The t’s show the trends expected from Eq. (4). Runs ¢
and d have waiting times of 195 and 315 min respectively
(same T, H\, and H,). As expected t/ increases with ¢,
although not in the simple manner predicted by the
superconducting-glass model. Plots & (at 9 K) and d (at
12 K) show the expected variation with temperature for
given t,, H,, and H, —the slower decay rate at the lower
temperature gives rise to a smaller X(z,) and hence X'
has a smaller distance to cover before it overtakes X.
Plots d, e, and f correspond to field increments of 30, 45,
and 60 Oe, respectively (H,=300 Oe, T=12 K, and
t, =315 min in each case). As can be seen, ¢/ decreases
as AH is increased because X’ increases with AH, bring-
ing it closer to X (1, ).

To make a quantitative comparison with the model,
the parameter a{T) of Eq. {4) is obtained in two ways:
O q1c (Shown in column 7 of Table 1) is calculated from the
right-hand side and known values of J_;,, J, and Up;
O meas (COlumn 6) is from the observed ¢/ and the left-hand
side of Eq. (4). In earlier work’ we found U,=0.046 eV
and

J,in=14.74—0.278T) X 10* A /cm®

(J.,in Was called J._ there}. § has been chosen to be 15
min {for consistency with the earlier work), but the re-
sults are not sensitive to its choice. As can be seen from
the table, the “measured” (a,,,) and “calculated” (o, )
values are in reasonable agreement. It was found that the
data were not reproducible for much shorter or much
longer times. The error involved in defining the zero of
time is probably responsible for the former, whereas limi-
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tations to the long-term stability of the decay rate (possi-
bly caused by temperature and mechanical disturbances)
may restrict the maximum reproducible experimental
time. Similarly the field increment had to be at least 30
Qe for reproducible results. Because of the limitations on
time and AH, it was not possible to obtain reliable data at
much lower temperatures (the slower decay rates demand
unacceptably long waiting times). At higher tempera-
tures (e.g., 50 K) the magnetization becomes predom-
inantly reversible (the irreversible component vanishing
above the irreversibility line’), and the signal-to-noise ra-
tio very small (H* ~ 100 Oe). As a result of the latter we
could not determine whether the relaxation was exhibit-
ing any memory effect.

In the regime ¢’ </, the behavior of the data is inter-
mediate to that predicted for the linear [Eq. (5)] and rec-
tangular [Eq. (6)] profiles and therefore corresponds to a
physically reasonable J_(B). As an example, this is illus-
trated on plot f in Fig. 2, where the broken lines corre-
spond to Egs. {5) and (6). Obtaining more information
about J_(B) from the data in the ¢’ <¢/ region is difficult
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because of the scatter and inherent inaccuracy of that
data, and the additional assumptions that must be made
regarding sample and flux-front geometries.

In conclusion we have shown that, with flux creep in a
superconductor, the application of two consecutive field
changes separated by a long waiting time will, under cer-
tain conditions, create a two-component decaying flux
distribution. The decay of this compound state will show
a crossover in behavior at a time ¢/, when the memory of
the first flux distribution is erased. Because the deriva-
tion depends in such an essential way on the picture [por-
trayed in Figs. i(a) and 1{b)] of well-defined flux-density
profiles, and flux fronts that gradually propagate into the
sample, the qualitative trends exhibited by the data sup-
port that picture. Although, because of its more compli-
cated nature, it is not inconceivable that a sophisticated
treatment of the superconducting-glass model (which is
beyond the scope of the present work) might be able to
explain our observations, the quantitative agreement that
we see indicates the validity of the conventional flux-
creep model, at least at low temperatures.
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