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Why Nuclear Targets
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● One of the greatest challenges confronting nuclear physics is to

understand how quarks and gluons give rise to nucleons and nuclei

✦ need a deeper understanding than traditional nuclear physics

● What do we know?

✦ no macroscopic coloured objects – quarks in nuclei seem to cluster

within colour singlet objects

✦ effective description in terms of bound nucleons and mesons works

fairly well

✦ “nucleons” held apart by short-range repulsion:

■ ds ∼ 1.8 fm & rp ∼ 0.8 fm

● Many open questions, for example:

✦ what is the role of gluons in nuclei

✦ when do non-nucleonic dof play an important role e.g. ∆’s

✦ are off-shell effects important, etc . . .



EMC effect
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● Fundamentally challenged our understanding of nuclear structure

● Immediate parton model interpretation:

✦ valence quarks in nucleus carry less momentum than in nucleon

● What is the mechanism? After almost 30 years still no consensus

● nuclear structure, pion excess, SR correlations, medium modification

● Understanding EMC effect critical for QCD based description of nuclei

[J. J. Aubert et al. [European Muon Collaboration], Phys. Lett. B 123, 275 (1983)]
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● Fundamentally challenged our understanding of nuclear structure

● Immediate parton model interpretation:

✦ valence quarks in nucleus carry less momentum than in nucleon

● What is the mechanism? After almost 30 years still no consensus

● nuclear structure, pion excess, SR correlations, medium modification

● Understanding EMC effect critical for QCD based description of nuclei

[J. J. Aubert et al. [European Muon Collaboration], Phys. Lett. B 123, 275 (1983)]
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● Need new experiments accessing different aspects of the EMC effect

● Important near term measurements

✦ flavour decomposition – SIDIS, PVDIS, Drell-Yan

✦ spin-dependent nuclear PDFs – polarized DIS

✦ in-medium form factors, response functions – quasi-elastic scattering

● To increase our understanding of the EMC effect, model builders should

make robust predictions that can be tested in future experiments

[J. J. Aubert et al. [European Muon Collaboration], Phys. Lett. B 123, 275 (1983)]



Medium Modification
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● 50 years of traditional nuclear physics tells us that the nucleus is

composed of nucleon-like objects

● However if a nucleon property is not protected by a symmetry its value

may change in medium – e.g.

✦ mass, magnetic moment, size

✦ quark distributions, form factors, GPDs, etc

● There must be medium modification:

✦ nucleon propagator is changed in medium

✦ off-shell effects (p2 6=M2)

✦ Lorentz covariance implies bound nucleon has 12 EM form factors

〈Jµ〉 =
∑

α, β=+,−
Λα(p′)

[

γµ fαβ1 + 1
2M iσµνqν f

αβ
2 + qµ fαβ3

]

Λβ(p)

● Need to understand these effects as first step toward QCD based

understanding of nuclei
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● 50 years of traditional nuclear physics tells us that the nucleus is

composed of nucleon-like objects

● However if a nucleon property is not protected by a symmetry its value

may change in medium – for example:

✦ mass, magnetic moment, size

✦ quark distributions, form factors, GPDs, etc

● There must be medium modification:

✦ nucleon propagator is changed in medium

✦ off-shell effects (p2 6=M2)

✦ Becomes two form factors for on-shell nucleon

〈Jµ〉 = ū(p′)
[

γµ F1(Q
2) + 1

2M iσµνqν F2(Q
2)
]

u(p)

● Need to understand these effects as first step toward QCD based

understanding of nuclei



EMC effect in light nuclei
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● For theory to confront these results

need sophisticated few & many body

techniques

● Size of EMC effect determined by the

local density not the average density or

A: RHe ≃ RBe ≃ RC

[J. Seely et al., Phys. Rev. Lett. 103, 202301 (2009)]



Anti-quarks in nuclei and Drell-Yan
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● Pions play a fundamental role in traditional nuclear physics

✦ expect pion (anti-quark) enhancement in nuclei compared to nucleon

● Drell-Yan experiment set up to probe anti-quarks in target nucleus

✦ q̄q → µ+µ− – E906: running FNAL, [E772: Alde et al., PRL. 64, 2479 (1990).]

✦ no anti-quark enhancement compared to free nucleon was observed

● Important to understand anti-quarks in nuclei: Drell-Yan & PV DIS



Lattice QCD and nuclear physics
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● Lattice QCD is beginning to make

inroads into nuclear physics

✦ primarily binding energies

● Calculations require huge

computational resources & 10yrs

● S. R. Beane, et al., Prog. Part. Nucl. Phys. 66, 1-40 (2011).

● Quenched, mπ ∼ 800MeV

● PACS-CS Collaboration, Phys. Rev. D81, 111504 (2010).



DIS on Nuclear Targets
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● Why nuclear targets?

✦ only targets with J > 1
2 are nuclei

✦ study QCD and nucleon structure at finite density

● Hadronic Tensor: in Bjorken limit & Callen-Gross (F2 = 2xF1)

✦ For J = 1
2 target

Wµν =
(

gµν
p·q
q2

+
pµpν
p·q

)

F2(x,Q
2) +

iεµνλσq
λpσ

p·q g1(x,Q
2)

✦ For arbitrary J : −J 6 H 6 J [2J + 1 DIS structure functions]

WH
µν =

(

gµν
p·q
q2

+
pµpν
p·q

)

FH
2A(xA, Q

2) +
iεµνλσq

λpσ

p·q gH1A(xA, Q
2)

● Parton model expressions [2J + 1 quark distributions]

gH1A(xA) =
1
2

∑

q
e2q

[

∆qHA (xA) + ∆qHA (xA)
]

; parity =⇒ gH1A = −g−H
1A



Finite nuclei quark distributions
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● Definition of finite nuclei quark distributions

∆qHA (xA) =
P+

A

∫

dξ−

2π
eiP

+ xA ξ−/A〈A,P,H|ψq(0) γ
+γ5 ψq(ξ

−)|A,P,H〉

● Approximate using a modified convolution formalism

∆qHA (xA) =
∑

α,κ,m

∫

dyA

∫

dx δ(xA − yA x)∆f
(H)
α,κ,m(yA) ∆qα,κ(x)

protonsneutrons

s1/2 (κ = −1)4He

p3/2 (κ = −2)12C

p1/2 (κ = 1)16O

d5/2 (κ = −3)28Si



Finite nuclei quark distributions
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● Definition of finite nuclei quark distributions

∆qHA (xA) =
P+

A

∫

dξ−

2π
eiP

+ xA ξ−/A〈A,P,H|ψq(0) γ
+γ5 ψq(ξ

−)|A,P,H〉

● Approximate using a modified convolution formalism

∆qHA (xA) =
∑

α,κ,m

∫

dyA

∫

dx δ(xA − yA x)∆f
(H)
α,κ,m(yA) ∆qα,κ(x)

● Convolution formalism diagrammatically:

p

P

k

k + q

k

p

P
A − 1

k

k + q

k



Convolution Formalism: implications
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● Assume all spin is carried by the valence nucleons

✦ if A & 8 and for example if: J = 3
2 =⇒ F

3/2
2A ≃ F

1/2
2A

● Basically a model independent result within the convolution formalism

● Introduce multipole quark distributions

q(K)(x) ≡
∑

H
(−1)J−H

√
2K + 1

(

J J K
H −H 0

)

qH(x), K = 0, 2, . . . , 2J

● J = 3
2 −→ q(0) = q

3

2 + q
1

2 q(2) = q
3

2 − q
1

2

● Higher multipoles encapsulate difference between helicity distributions



Multipole quark distributions results
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● Large K > 1 multipole PDFs would be very surprising

✦ =⇒ large off-shell effects &/or non-nucleon components, etc



New Sum Rules
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● Sum rules for multipole quark distributions

∫

dxxn−1 q(K)(x) = 0, K, n even, 2 6 n < K,
∫

dxxn−1∆q(K)(x) = 0, K, n odd, 1 6 n < K.

● Examples:

J = 3
2 =⇒

〈

∆q(3)(x)
〉

= 0

J = 2 =⇒
〈

q(4)(x)
〉

=
〈

∆q(3)(x)
〉

= 0

J = 5
2 =⇒

〈

q(4)(x)
〉

=
〈

∆q(3)(x)
〉

=
〈

∆q(5)(x)
〉

=
〈

x2∆q(5)(x)
〉

= 0

● Sum rules place tight constraints on multipole PDFs

● Jaffe and Manohar, DIS from arbitrary spin targets, Nucl. Phys. B 321, 343 (1989).



Nambu–Jona-Lasinio Model
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● A low energy chiral effective

theory of QCD

Z(k2)

k2

➞ G Θ(k2−Λ2)

L = ψ̄q

(

i/∂ −m
)

ψq +G
(

ψ̄q Γψq

)2

A. Holl, et al, Phys. Rev. C 71, 065204 (2005)
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● Dynamically generated quark

masses ⇔ 〈ψψ〉 6= 0 ⇔ DCSB

● Proper-time regularization:

ΛIR & ΛUV =⇒ Confinement

● For example: quark propagator

1

/p−m+ iε
➞

Z(p2)

/p−M + iε

✦on mass-shell: Z(p2 =M2) = 0
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Nucleon quark distributions
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● Nucleon = quark+diquark

P

1
2
P + k

1
2
P − k

=
P

1
2
P + k

1
2
P − k

● PDFs given by Feynman diagrams: 〈γ+〉

P P

+

P P

● Covariant, correct support; satisfies sum rules, Soffer bound & positivity

〈q(x)− q̄(x)〉 = Nq, 〈xu(x) + x d(x) + . . .〉 = 1, |∆q(x)| , |∆T q(x)| 6 q(x)

● q(x): probability strike quark of favor q with momentum fraction x of target
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[ICC, W. Bentz and A. W. Thomas, Phys. Lett. B 621, 246 (2005).]



Asymmetric nuclear matter
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● Finite density Lagrangian: q̄q interaction in σ, ω, ρ channels

L = ψq (i 6∂ −M∗− 6Vq)ψq + L′
I [W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001)]

Fundamental idea:

mean-fields couple to

quarks in bound

nucleons

● Quark propagator: S−1 = /k −M + iε ➞ S−1
q = /k −M∗ − /Vq + iε

● Hadronization + mean–field =⇒ effective potential

Vu(d) = ω0 ± ρ0, ω0 = 6Gω (ρp + ρn) , ρ0 = 2Gρ (ρp − ρn)

✦ Gω ⇐⇒ Z = N saturation & Gρ ⇐⇒ symmetry energy



Nuclear matter results

frontpage table of contents appendices 20 /36

0

0.2

0.4

0.6

0.8

1.0

1.2
M

as
se

s
[G

eV
]

0 0.1 0.2 0.3 0.4 0.5 0.6

ρ [fm−3]

M

Ms

Ma

MN

−16

−12

−8

−4

0

4

8

12

E
B
/A

[M
eV

]

0 0.1 0.2 0.3 0.4 0.5

ρ [fm−3]

Z/N = 0

Z/N = 0.1

Z/N = 0.2

Z/N = 0.5

Z/N = 1

● Constituent mass: M∗ = m− 2Gπ〈ψψ〉∗

✦ small restoration of chiral symmetry: |〈ψψ〉∗| < |〈ψψ〉|

● Curvature [“scalar polarizability”] important for saturation

✦ prevents chiral collapse

● Hadronization ➞ effective potential: E = EV − ω2
0

4Gω
− ρ2

0

4Gρ
+ Ep + En

✦ EV : vacuum energy

✦ Ep(n): energy of nucleons moving in σ, ω, ρ mean-fields



Nuclear matter PDFs
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● ρp + ρn = fixed – Differences arise from:

✦ naive: different number protons and neutrons

✦ medium: p & n Fermi motion and Vu(d) differ ➞ up(x) 6= dn(x), . . .



Isovector EMC effect
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● EMC ratio: R =
F2A

F2A,naive
=

F2A

Z F2p +N F2n
≃ 4 uA(x) + dA(x)

4 uf (x) + df (x)

● Density is fixed only changing Z/N ratio [therefore only ρ0 is changing]

● EMC effect essentially a consequence of binding at the quark level

● proton excess: u-quarks feel more repulsion than d-quarks (Vu > Vd)

● neutron excess: d-quarks feel more repulsion than u-quarks (Vd > Vu)

[ICC, W. Bentz and A. W. Thomas, Phys. Rev. Lett. 102, 252301 (2009).]



Weak mixing angle and the NuTeV anomaly
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Fermilab press conference

“The predicted value was 0.2227. The value we

found was 0.2277, a difference of 0.0050. It might

not sound like much, but the room full of physicists

fell silent when we first revealed the result”

“99.75% probability that the neutrinos are not

behaving like other particles . . . only 1 in 400

chance that our measurement is consistent with

prediction”

● NuTeV: sin2 θW = 0.2277± 0.0013(stat)± 0.0009(syst)

[G. P. Zeller et al. Phys. Rev. Lett. 88, 091802 (2002)]

● Standard Model: sin2 θW = 0.2227± 0.0004 ⇔ 3σ =⇒ “NuTeV anomaly”

● Huge amount of experimental & theoretical interest [500+ citations]

● No universally accepted complete explanation

● Z-pole (LEP & SLC) e+e− → X, D0 & CDF at Fermilab: p̄p→ e+e−



Weak mixing angle and the NuTeV anomaly
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● NuTeV: sin2 θW = 0.2277± 0.0016

[G. P. Zeller et al. Phys. Rev. Lett. 88, 091802 (2002).]

● SM: sin2 θW = 0.2227± 0.0004

● Evidence for physics beyond the

Standard Model?

● Paschos-Wolfenstein ratio motivated NuTeV study:

RPW =
σν A
NC−σν̄ A

NC

σν A
CC−σν̄ A

CC

N∼Z
= 1

2 − sin2 θW +
(

1− 7
3 sin

2 θW
) 〈xu−

A−x d−A〉

〈xu−

A+x d−A〉

● NuTeV used a steel target – Z/N ≃ 26/30

✦ correct for neutron excess ⇐⇒ flavour dependent EMC effect

● Use our medium modified Iron quark distributions

∆RPW = ∆Rnaive
PW +∆REMC effect

PW = − (0.0107 + 0.0032) .

● Flavour dependent of EMC effect explains up to 65% of anomaly



Reassessment of the NuTeV anomaly
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● Also include corrections:

✦ charge symmetry violation:

mu 6= md & eu 6= ed

✦ strange quarks

● Use NuTeV functionals

● “NuTeV anomaly” is evidence for

medium modification
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[ICC, J. T. Londergan et al., Phys. Lett. B 693, 462 (2010).]

● Model dependence?

✦ sign of correction is fixed by nature of vector fields

q(x) = p+

p+−V + q0

(

p+

p+−V + x− V +
q

p+−V +

)

, N > Z =⇒ Vd > Vu

✦ ρ0-field shifts momentum from u to d quarks

✦ RPW correction term negative =⇒ sin2 θW decreases

✦ size of correction is constrained by nuclear matter symmetry energy

● ρ0 vector field reduces NuTeV anomaly – model independent!



Parity Violating DIS: Iron & Lead
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Q2 = 5 GeV2

Z/N = 26/30 (iron)
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● PV DIS – γ Z interference:

APV = dσR−dσL

dσR+dσL
∝ a2(x) = − 2geA

F γZ
2

F γ
2

N∼Z
= 9

5 − 4 sin2 θW − 12
25

u+

A(x)−d+A(x)

u+

A(x)+d+A(x)

● Same mechanism explains ∼1.5σ of NuTeV result

● Large x dependence of a2(x) ➞ evidence for medium modification

● a2(x) is also a excellent way to measure sin2 θW

● Predictions will be tested at Jefferson Lab

∑

X

γ

ℓ

ℓ′

A

X

+
Z0

ℓ

ℓ′

A

X
2

[ICC et al., submitted to PRL, arXiv:1202.6401 [nucl-th].]



Flavour dependence of EMC effect
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Q2 = 5.0 GeV2
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● Flavour dependence: F γ
2 =

∑

e2q x q
+(x), F γZ

2 = 2
∑

eq g
q
V x q

+(x)

● N > Z =⇒ d-quarks feel more repulsion than u-quarks: Vd > Vu

✦ u quarks are more bound than d quarks

✦ ρ0 field shifts momentum from u to d quarks

q(x) = p+

p+−V + q0

(

p+

p+−V + x− V +
q

p+−V +

)

● If observed, would be strong evidence for medium modification

[ICC et al., submitted to PRL, arXiv:1202.6401 [nucl-th].]
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Q2 = 5 GeV2

ρ = 0.16 fm−3
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I. Sick and D. Day, Phys. Lett. B 274, 16 (1992).

EMC effect

polarized EMC effect

● Polarized EMC ratio: ∆R =
g1A

gnaive
1A

=
g1A

Pp g1p + Pn g1n

● Spin-dependent cross-section is suppressed by 1/A

✦ must choose nuclei with A . 27

✦ protons should carry most of the spin e.g. =⇒ 7Li, 11B, . . .

● Ideal nucleus is probably 7Li

✦ from Quantum Monte–Carlo: Pp = 0.86 & Pn = 0.04

● Ratios equal 1 in limit of no nuclear effects

[ICC et al., Phys. Rev. Lett. 95, 052302 (2005)] [J. R. Smith and G. A. Miller, PRC 72, 022203(R) (2005)]



Polarized EMC effect
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Experiment: 12C

Unpolarized EMC effect

Polarized EMC effect

● Polarized EMC ratio: ∆R =
g1A

gnaive
1A

=
g1A

Pp g1p + Pn g1n

● Spin-dependent cross-section is suppressed by 1/A

✦ must choose nuclei with A . 27

✦ protons should carry most of the spin e.g. =⇒ 7Li, 11B, . . .

● Ideal nucleus is probably 7Li

✦ from Quantum Monte–Carlo: Pp = 0.86 & Pn = 0.04

● Ratios equal 1 in limit of no nuclear effects

[ICC, W. Bentz and A. W. Thomas, Phys. Lett. B 642, 210 (2006)]
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[ICC, W. Bentz and A. W. Thomas, Phys. Lett. B 642, 210 (2006)]
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Unpolarized EMC effect

Polarized EMC effect

● Medium modification of nucleon has been switched off

● Relativistic effects remain

● Large splitting very difficult without medium modification

[ICC, W. Bentz and A. W. Thomas, Phys. Lett. B 642, 210 (2006)]
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Proton spin states ∆u ∆d Σ gA

p 0.97 -0.30 0.67 1.267
7Li 0.91 -0.29 0.62 1.19
11B 0.88 -0.28 0.60 1.16
15N 0.87 -0.28 0.59 1.15
27Al 0.87 -0.28 0.59 1.15

Nuclear Matter 0.79 -0.26 0.53 1.05

● Angular momentum of nucleon: J = 1
2 = 1

2 ∆Σ+ Lq + Jg

✦ in medium M∗ < M and therefore quarks are more relativistic

✦ lower components of quark wavefunctions are enhanced

✦ quark lower components usually have larger angular momentum

✦ ∆q(x) very sensitive to lower components

● Therefore, in-medium quark spin ➞ orbital angular momentum



Form factors of a bound nucleon
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[S. Strauch, et al., Phys. Rev. Lett. 91, 052301 (2003)]

[M. Paolone, et al., Phys. Rev. Lett. 105, 072001 (2010)]
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Relativistic light front constituent quark

[ICC et al., Phys. Rev. Lett. 103, 082301 (2009)]

● Reaction 4He (~e, e′~p ) 3H sensitive to GE/GM of bound proton

● Assume bound neutron is almost on-shell & Foldy term
[

3
2M2

N

κn

]

remains

dominate contribution to bound neutron charge radius

R∗

n

Rn
≃

(

MN

M∗

N

)2
, Rn ≡ GEn/GMn ≃ − 1

µn

1
6 Q

2 R̂2
En, for Q2 ≪ 1

● An almost model independent result



In-medium nucleon form factors
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● Nucleon form factors are modified in-medium

● Free and in-medium nucleon magnetic moments [µN ]

✦ µp = 2.78, µn = −1.81, µ∗p = 2.96, µ∗n = −1.72

● Free and in-medium radii [fm] – ri ≡
√

〈

r2i
〉

✦ rCp = 0.858, rCn = −0.336, rMp = 0.835, rMn = 0.861

✦ r∗Cp = 0.926, r∗Cn = −0.324, r∗Mp = 0.878, r∗Mn = 0.891
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Conclusion
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Hopefully I have demonstrated that the DSEs are a
powerful tool with which to study QCD and hadron
structure

Thank you!
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