## Hadron Phenomenology and QCDs DSEs

Lecture 5: Parton Distribution Functions

Ian Cloët
University of Adelaide \& Argonne National Laboratory

Collaborators
Wolfgang Bentz - Tokai University
Craig Roberts - Argonne National Laboratory
Anthony Thomas - University of Adelaide
David Wilson - Argonne National Laboratory

## Deep Inelastic Scattering



$$
\begin{aligned}
& q^{2}=\left(k-k^{\prime}\right)^{2}=-Q^{2} \leq 0 \\
& x_{A} \equiv A \frac{Q^{2}}{2 p \cdot q}=A \frac{Q^{2}}{2 M_{A} \nu}, \quad 0<x_{A} \leqslant A \\
& s=(\ell+P)^{2}, \quad y=\frac{Q^{2}}{x s}
\end{aligned}
$$

- Unpolarized cross-section for DIS with single photon exchange is

$$
\frac{d \sigma^{\gamma}}{d x_{A} d Q^{2}}=\frac{2 \pi \alpha_{e}^{2}}{x_{A} Q^{4}}\left[\left(1+(1+y)^{2}\right) F_{2}^{\gamma}\left(x, Q^{2}\right)-y^{2} F_{L}^{\gamma}\left(x, Q^{2}\right)\right]
$$

- $F_{L}^{\gamma}\left(x, Q^{2}\right)=F_{2}^{\gamma}\left(x, Q^{2}\right)-2 x F_{1}^{\gamma}\left(x, Q^{2}\right)$
- The longitudinally polarized cross-section is

$$
\frac{d \Delta_{L} \sigma^{\gamma}(\lambda)}{d x_{A} d Q^{2}}=\frac{4 \pi \alpha_{e}^{2}}{x_{A} Q^{4}}\left[-2 \lambda\left(1-(1-y)^{2}\right) x g_{1}^{\gamma}\left(x, Q^{2}\right)+y^{2} g_{L}^{\gamma}\left(x, Q^{2}\right)\right]
$$

- Also structure functions for $\gamma Z, Z^{0}$ \& $W^{ \pm}$exchange


## Bjorken Limit and Scaling

- The Bjorken limit is defined as:

$$
Q^{2}, \nu \rightarrow \infty \mid x=\text { fixed }
$$

- In 1968 J. D. Bjorken argued that in this limit the photon interactions with the target constituents (partons) involves no dimensional scale, therefore

$$
\begin{aligned}
F_{2}^{\gamma}\left(x, Q^{2}\right) & \rightarrow F_{2}^{\gamma}(x) \\
g_{1}^{\gamma}\left(x, Q^{2}\right) & \rightarrow g_{1}^{\gamma}(x) \quad \text { etc }
\end{aligned}
$$

- Bjorken scaling
- Confirmation from SLAC in 1968 was the first evidence for pointlike constituents inside proton
- Scaling violation $\Leftrightarrow$ perturbative QCD



## Physical meaning of Bjorken $x$

- Choose a frame where $\vec{q}_{\perp}=0$ then photon moment is

$$
q=\left[\nu, 0,0,-\sqrt{\nu^{2}+Q^{2}}\right] \xrightarrow{\text { Bjorken limit }} q=\left[\nu, 0,0,-\nu-x M_{N}\right]
$$

- Lightcone coordinates: $q^{ \pm}=\frac{1}{\sqrt{2}}\left(q^{0} \pm q^{3}\right) \Rightarrow a \cdot b=a^{+} b^{-}+a^{-} b^{+}-\vec{a}_{\perp} \cdot \vec{b}_{\perp}$
- Therefore in Bjorken limit: $q^{-} \rightarrow \infty \quad q^{+} \rightarrow-x M_{N} / \sqrt{2}$ and

$$
x=\frac{Q^{2}}{2 p \cdot q}=-\frac{q^{+} q^{-}}{q^{-} p^{+}+q^{+} p^{-}} \rightarrow-\frac{q^{+}}{p^{+}}
$$

- The lightcone dispersion relation reads: $k^{-}=\frac{m^{2}+\vec{k}^{2}}{k^{+}}$
- Can only be satisfied for $k^{\prime}=k+q$ if $k^{\prime+}=0$ which implies $k^{+}=-q^{+}$
- Therefore $x$ has physical meaning of the lightcone momentum fraction carried by the struck quark before it is hit by photon

$$
x=\frac{k^{+}}{p^{+}}
$$

## Parton Distribution Functions

- Factorization theorems in QCD prove that the structure functions can be expressed in terms of universal parton distribution functions (PDFs)
- that is, the cross-sections can be factorized into process depend perturbative pieces, determined by pQCD (Wilson coefficients) and the innately non-perturbative universal PDFs
- For example at LO and leading twist the structure functions are given by

$$
\begin{aligned}
F_{2}^{\gamma}\left(x, Q^{2}\right) & =\sum_{q=u, d, s, \ldots} e_{q}^{2}\left[x q\left(x, Q^{2}\right)+x \bar{q}\left(x, Q^{2}\right)\right] \\
g_{1}^{\gamma}\left(x, Q^{2}\right) & =\frac{1}{2} \sum_{q=u, d, s, \ldots} e_{q}^{2}\left[\Delta q\left(x, Q^{2}\right)+\Delta \bar{q}\left(x, Q^{2}\right)\right]
\end{aligned}
$$

- These PDFs have a probability interpretation:
$q(x)=q_{+}(x)+q_{-}(x)$ [spin-independent PDF]
"probability to strike a quark of flavour $q$ with lightcone momentum fraction $x$ of the target momentum"
$\Delta q(x)=q_{+}(x)-q_{-}(x)$ [spin-dependent PDF]
"helicity weighted probability to strike a quark of flavour $q$ with lightcone momentum fraction $x$ of the target momentum"


## Experimental Status: Nucleon PDFs



- The distance scales, $\xi$, probed in DIS are given by: $\quad \xi \sim 1 /\left(x M_{N}\right)$
$\star x=0.5 \quad \Longrightarrow \xi=0.4 \mathrm{fm}$
$\star x=0.05 \quad \Longrightarrow \quad \xi=4 \mathrm{fm}$


## The Pion PDF

- In QCD alone the pion is a stable particle, however in the real world it decays via the electroweak interaction with a mean lifetime of $2.6 \times 10^{-8} \mathbf{s}$
- Therefore in nature there are no pion targets, however because of time dilation it is possible to create a beam of pions: e.g. $p+\mathrm{Be} \rightarrow \pi^{-}+X$
- Can measure pion PDFs via a process called pion-induced Drell-Yan:
$\pi p \rightarrow \mu^{+} \nu^{-} X$


- There have been three experiments: CERN 1983 \& 1985, Fermilab 1989

$$
q_{\pi}(x) \xrightarrow{x \rightarrow 1}(1-x)^{1+\varepsilon} \quad \mathrm{pQCD} \Longrightarrow q_{\pi}(x) \sim(1-x)^{2+\gamma}
$$

## Theory Definition of Pion PDFs

- Pion is a spin zero particle $\Longrightarrow$ only has spin-independent PDFs: $q_{\pi}\left(x, Q^{2}\right)$
- The pion quark distribution function is defined by

$$
q_{\pi}(x)=p^{+} \int \frac{d \xi^{-}}{2 \pi} e^{i x p^{+} \xi^{-}}\langle p, s| \bar{\psi}_{q}(0) \gamma^{+} \psi_{q}\left(\xi^{-}\right)|p, s\rangle_{c}
$$

- The moments of PDFs are defined by

$$
\left\langle x^{n-1} q_{\pi}\right\rangle=\int_{0}^{1} d x x^{n-1} q_{\pi}(x)
$$

- The moments of these PDFs must satisfy the baryon number \& momentum sum rules
- For example the $\pi^{+}=u \bar{d}$ PDFs must satisfy

$$
\left\langle u_{\pi}-\bar{u}_{\pi}\right\rangle=1 \quad\left\langle d_{\pi}-\bar{d}_{\pi}\right\rangle=-1 \quad\left\langle x u_{\pi}+x \bar{d}_{\pi}+\ldots\right\rangle=1
$$

baryon number sum rules
momentum sum rule

- the baryon number sum rule is equivalent to charge conservation


## Pion PDF in the NJL Model



- The pion quark distribution functions can be obtains from a Feynman diagram calculation
- The needed ingredients are
- the pion Bethe-Salpeter amplitude:

$$
\begin{aligned}
\Gamma_{\pi} & =\sqrt{g_{\pi}} \gamma_{5} \tau_{i} \\
S(p)^{-1} & =\not p-M+i \varepsilon
\end{aligned}
$$

- dressed quark propagator:
- The operator insertion is given by

$$
\gamma^{+} \delta\left(x-\frac{k^{+}}{p^{+}}\right) \frac{1}{2}\left(1 \pm \tau_{3}\right)
$$

- plus sign projects out $u$-quarks and minus $d$-quarks
- recall $x$ is the lightcone momentum fraction carried by struck quark


## Pion PDF Results in NJL

- PDFs are scale - $Q^{2}$ - dependent, however within the NJL model there is no way to determine the model scale $Q_{0}^{2}$
- Standard method is to fit the proton valence $u$-quark distribution to empirical results, best fit determines $Q_{0}^{2}$
- The NJL model result for $\pi^{+}$PDFs at $Q^{2}=Q_{0}^{2}=0.16 \mathrm{GeV}^{2}$

$$
u_{\pi}(x)=\bar{d}_{\pi}(x)=\frac{3 g_{\pi}}{4 \pi^{2}} \int d \tau\left[\frac{1}{\tau}+x(1-x) m_{\pi}^{2}\right] e^{-\tau\left[x(x-1) m_{\pi}^{2}+M^{2}\right]} .
$$

- Agreement with data excellent
- At large $x$ NJL finds

$$
u_{\pi}(x) \stackrel{x \rightarrow 1}{\simeq}(1-x)^{1}
$$

- Disagrees with pQCD result

$$
u_{\pi}(x) \stackrel{x \rightarrow 1}{\simeq}(1-x)^{2+\gamma}
$$



## Pion PDF in DSEs

- DSE calculations - fully dressed quark propagator and BS vertex function

$$
\begin{aligned}
S(p)^{-1} & =\not p A\left(p^{2}\right)+B\left(p^{2}\right) \\
\Gamma_{\pi}(p, k) & =\gamma_{5}\left[E_{\pi}(p, k)+\not p F_{\pi}(p, k)+\nVdash k \cdot p \mathcal{G}(p, k)+\sigma^{\mu \nu} k_{\mu} p_{\nu} \mathcal{H}(p, k)\right]
\end{aligned}
$$

- At large $x$ DSE and pQCD results agree: $u_{\pi}(x) \stackrel{x \rightarrow 1}{\simeq}(1-x)^{2+\gamma}$
- this 2001 result seemed to disagree with experiment for a decade
- Recent reanalysis of data by Aicher et al. now finds excellent agreement with DSEs!




## QCD Evolution Equation

- One of the greatest successes of perturbative QCD are the DGLAP evolution equations
- DGLAP $\Longleftrightarrow$ Dokshitzer (1977), Gribov-Lipatov (1972), Altarelli-Parisi (1977)
- These QCD evolution equations relate the PDFs at one scale, $Q_{0}^{2}$, to another scale, $Q^{2}$, provided $Q_{0}^{2}, Q^{2} \gg \Lambda_{Q C D}$.
- The evolution equation for $q^{-} \equiv q-\bar{q}$ type PDFs is

$$
\left.\frac{\partial}{\partial \ln Q^{2}} q^{-}\left(x, Q^{2}\right)=\alpha_{s}\left(Q^{2}\right) P(z) \otimes q^{-}\left(y, Q^{2}\right) \quad \text { [non-singlet }\right]
$$

- note that the gluon PDF does not contribute here
- Evolution equations for $q^{+} \equiv q+\bar{q}$ and gluon, $g(x)$, PDFs are coupled The physics behind these equations is that a valence quark can radiate gluons and a gluon can become a quark-antiquark pair, therefore momentum can be shifted between the valence quarks, sea quarks and gluons. The probability of this radiation is scale, $Q^{2}$, dependent.


## Nucleon PDFs in the NJL model

- Nucleon quark distributions are defined by

$$
q(x)=p^{+} \int \frac{d \xi^{-}}{2 \pi} e^{i x p^{+} \xi^{-}}\langle p, s| \bar{\psi}_{q}(0) \gamma^{+} \psi_{q}\left(\xi^{-}\right)|p, s\rangle_{c}, \quad \Delta q(x)=\left\langle\gamma^{+} \gamma_{5}\right\rangle
$$

- Nucleon bound state is obtained by solving the relativistic Faddeev equation in the quark-diquark approximation

- PDFs are associated with the Feynman diagrams

$\leftrightarrow\left[q(x), \Delta q(x), \Delta_{T} q(x)\right] \rightarrow \mathrm{X}=\delta\left(x-\frac{k^{+}}{p^{+}}\right)\left[\gamma^{+}, \gamma^{+} \gamma_{5}, \gamma^{+} \gamma^{1} \gamma_{5}\right]$


## Results: proton quark distributions



- Covariant, correct support, satisfies baryon and momentum sum rules

$$
\int d x[q(x)-\bar{q}(x)]=N_{q}, \quad \int d x x[u(x)+d(x)+\ldots]=1
$$

- Satisfies positivity constraints and Soffer bound

$$
|\Delta q(x)|,\left|\Delta_{T} q(x)\right| \leqslant q(x), \quad q(x)+\Delta q(x) \geqslant 2\left|\Delta_{T} q(x)\right|
$$

- Martin, Roberts, Stirling and Thorne, Phys. Lett. B 531, 216 (2002).
- M. Hirai, S. Kumano and N. Saito, Phys. Rev. D 69, 054021 (2004).


## Proton $d / u$ ratio

- The $d(x) / u(x)$ ratio as $x \rightarrow 1$ is of great interest because if does not change with QCD evolution and pQCD can make predictions
- There are three classes of predictions for this ratio
- $S U(6)$ spin-flavour symmetry
- pQCD and helicity conservation
- scalar diquark dominance

$$
\begin{aligned}
& \Longrightarrow d(x) / u(x) \stackrel{x \rightarrow 1}{=} 1 / 2 \\
& \Longrightarrow d(x) / u(x) \stackrel{x \rightarrow 1}{=} 1 / 5 \\
& \Longrightarrow d(x) / u(x) \stackrel{x \rightarrow 1}{=} 0
\end{aligned}
$$

- Using DSEs with running mass: $d(x) / u(x) \stackrel{x \rightarrow 1}{=} 0.23 \pm 0.09$




## Perturbative QCD Predictions $x \rightarrow 1$



- The pQCD predictions for $\Delta q(x) / q(x)$ as $x \rightarrow 1$ are the most robust
- The pQCD prediction is: $\Delta q(x) / q(x) \stackrel{x \rightarrow 1}{=} 1$ for $q \in u, d$
- Realization would require a dramatic change in sign of $\Delta d(x) / d(x)$


## Transversity PDFs

- At leading twist there are three collinear PDFs
- $q(x)$ - spin-independent
- $\Delta q(x)$ - spin-dependent
- $\Delta_{T} q(x)$ - transversity
- However transversity PDFs are chiral odd and therefore do not appear in deep inelastic scattering
- Can be measured using semi-inclusive DIS on a transversely polarized target or certain Drell-Yan experiments

- Quarks in eigenstates of $\gamma^{\perp} \gamma_{5}$



## Why is Transversity Interesting?



- Quarks in eigenstates of $\gamma^{\perp} \gamma_{5}$
- Tensor charge [c.f. Bjorken sum rule for $g_{A}$ ]

$$
g_{T}=\int d x\left[\Delta_{T} u(x)-\Delta_{T} d(x)\right] \quad g_{A}=\int d x[\Delta u(x)-\Delta d(x)]
$$

- In non-relativistic limit: $\Delta_{T} q(x)=\Delta q(x)$
- therefore $\Delta_{T} q(x)$ is a measure of relativistic effects
- Helicity conservation $\Longrightarrow$ no mixing between $\Delta_{T} q$ \& $\Delta_{T} g$
- For $J \leqslant \frac{1}{2}$ we have $\Delta_{T} g(x)=0$
- Therefore for the nucleon $\Delta_{T} q(x)$ is valence quark dominated
- Important!! A very common mistake - transverse spin sum:

$$
\int d x \Delta_{T} q(x)=\left\langle\bar{\psi}_{q} \gamma^{+} \gamma^{1} \gamma_{5} \psi_{q}\right\rangle \neq\left\langle\psi_{q}^{\dagger} \gamma^{0} \gamma^{1} \gamma_{5} \psi_{q}\right\rangle=\Sigma_{T}^{q}
$$

- transversity moment $\neq$ spin quarks in transverse direction [c.f. $g_{T}(x)$ ]


## $\Delta_{T} u_{v}(x)$ and $\Delta_{T} d_{v}(x)$ distributions



- Predict small relativistic corrections
- Empirical analysis potentially found large relativistic corrections
$\downarrow$ M. Anselmino et. al.,Phys. Rev. D 75, 054032 (2007).
- Large effects difficult to support with quark mass $\sim 0.4 \mathrm{GeV}$
- maybe running quark mass is needed


## Transversity: Reanalysis



- M. Anselmino et al, Nucl. Phys. Proc. Suppl. 191, 98 (2009)
- Our results are now in better agreement updated distributions
- Concept of constituent quark models safe ... for now


## Transversity Moments



- M. Anselmino et al, Nucl. Phys. Proc. Suppl. 191, 98 (2009)
- At model scale we find tensor charge

$$
g_{T}=1.28 \quad \text { compared } \text { with } \quad g_{A}=1.267
$$

## Including Anti-quarks

- Dress quarks with pions



- Gottfried Sum Rule: NMC 1994: $S_{G}=0.258 \pm 0.017\left[Q^{2}=4 \mathrm{GeV}^{2}\right]$

$$
S_{G}=\int_{0}^{1} \frac{d x}{x}\left[F_{2 p}(x)-F_{2 n}(x)\right]=\frac{1}{3}-\frac{2}{3} \int_{0}^{1} d x[\bar{d}(x)-\bar{u}(x)]
$$

- We find: $S_{G}=\frac{1}{3}-\frac{4}{9}\left(1-Z_{q}\right)=0.252 \quad\left[Z_{q}=0.817\right]$


## Extracting Proton Spin Content

- Ellis-Jaffe sum rule $\quad\left[\frac{1}{2}=\frac{1}{2} \Delta \Sigma+L_{q}+J_{g}\right]$

$$
\begin{aligned}
\int d x g_{1 p}^{\gamma}\left(x, Q^{2}\right) & =\frac{1}{36}\left[3 \Delta q_{3}+\Delta q_{8}\right]+\frac{1}{9} \Delta q_{0}, & & \\
\Delta \Sigma=\Delta q_{0} & =\Delta u^{+}+\Delta d^{+}+\Delta s^{+} & & {[\text {singlet }] } \\
g_{A}=\Delta q_{3} & =\Delta u^{+}-\Delta d^{+} & & {[\text {triplet }] } \\
\Delta q_{8} & =\Delta u^{+}+\Delta d^{+}-2 \Delta s^{+} & & {[\text {octet] }}
\end{aligned}
$$

- To help extract $\Delta \Sigma$ usual to use semi-leptonic hyperon decays and assume $S U(3)$ flavour symmetry to relate $\Delta q_{3}$ and $\Delta q_{8}$

$$
\begin{aligned}
\Delta q_{3} & =F+D & \Delta q_{8}=3 F-D \\
n p & \rightarrow F+D, & \Lambda p \rightarrow F+\frac{1}{3} D, \quad \Sigma n \rightarrow F-D, \text { etc }
\end{aligned}
$$

- Solve for quark polarizations

$$
\begin{aligned}
\Delta u^{+} & =\frac{1}{3} \Delta q_{0}+\frac{1}{2} \Delta q_{3}+\frac{1}{6} \Delta q_{8} \\
\Delta d^{+} & =\frac{1}{3} \Delta q_{0}-\frac{1}{2} \Delta q_{3}+\frac{1}{6} \Delta q_{8} \\
\Delta s^{+} & =\frac{1}{3} \Delta q_{0}-\frac{1}{3} \Delta q_{8}
\end{aligned}
$$

## Spin Sum in NJL Model

- Nucleon angular momentum must satisfy: $J=\frac{1}{2}=\frac{1}{2} \Delta \Sigma+L_{q}+J_{g}$

$$
\Delta \Sigma=0.33 \pm 0.03(\text { stat. }) \pm 0.05 \text { (syst.) } \quad \text { [COMPASS \& HERMES] }
$$

- Result from Faddeev calculation: $\Delta \Sigma=0.66$

- Correction from pion cloud: $\Delta \Sigma=0.79 \times 0.66=0.52$

- Bare operator $\gamma^{\mu} \gamma_{5}$ gets renormalized: $\Delta \Sigma=0.91 \times 0.52=0.47$



## A 3D image of the nucleon - TMD PDFs

- Measured in semi-inclusive DIS

- Leading twist $6 T$-even TMD PDFs

$$
\begin{array}{rlr}
q\left(x, k_{\perp}^{2}\right), & \Delta q\left(x, k_{\perp}^{2}\right), & \Delta_{T} q\left(x, k_{\perp}^{2}\right) \\
g_{1 T}^{q}\left(x, k_{\perp}^{2}\right), & h_{1 L}^{\perp q}\left(x, k_{\perp}^{2}\right), & h_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right)
\end{array}
$$

$$
\left\langle p_{T}\right\rangle(x) \equiv \frac{\int d \vec{k}_{\perp} k_{\perp} q\left(x, k_{\perp}^{2}\right)}{\int d \vec{k}_{\perp} q\left(x, k_{\perp}^{2}\right)}
$$

[H. Avakian, et al., Phy. Rev. D81, 074035 (2010).]

- $\left\langle p_{T}\right\rangle^{Q^{2}=Q_{0}^{2}}=0.36 \mathrm{GeV}$ c.f. $\left\langle p_{T}\right\rangle_{\text {Gauss }}=0.56 \mathrm{GeV}_{\text {[HERMES] }}, 0.64 \mathrm{GeV}_{\text {[EMC] }}$


[H. H. Matevosyan, ICC et al., Phys. Rev. D 85, 014021 (2012).]


## NJL robust conclusions

- Diquark correlations in nucleon are very important
- $d(x)$ is softer than $u(x) \Longleftrightarrow$ scalar diquark $(u d)_{0^{+}}$
- $d(x) / u(x) \stackrel{x \rightarrow 1}{\simeq} 0.2$ - sensitive to strength of axial-vector diquark
- Using DSEs with running mass: $d(x) / u(x) \stackrel{x \rightarrow 1}{=} 0.23 \pm 0.09$
- Can almost reproduce measured spin sum: $\Delta \Sigma=0.366_{-0.062}^{+0.042}$ [DSSV]
- relativistic effects + pions + vertex renormalization $\Longrightarrow \Delta \Sigma=0.47$
- perturbative gluon dressing on quarks will reduce $\Delta \Sigma$ further
- Perturbative pions $\Rightarrow$ Gottfried Sum Rule: $\left[S_{G}=0.258 \pm 0.017\left(Q^{2}=4 G_{e v} V^{2}\right)\right.$-NMC 1994]

$$
S_{G}=\int_{0}^{1} \frac{d x}{x}\left[F_{2 p}(x)-F_{2 n}(x)\right]=\frac{1}{3}-\frac{2}{3} \int_{0}^{1} d x[\bar{d}(x)-\bar{u}(x)] \xrightarrow{N J L} \frac{1}{3}-\frac{4}{9}\left(1-Z_{q}\right)=0.252
$$



## Table of Contents

DIS

* bjorken limit and scaling
* Bjorken $x$
, pdfs
experimental status
* pion pdf
definition of pion pdfs
* njl pion pdf
dse pion pdfs
* DGLAP
nucleon pdfs
* proton pdfs
* proton $d / u$ ratio
* pQCD predictions
* transversity
* anti-quarks
* proton spin content
* spin content
. tmds
njl robust conclusions

