Hadron Phenomenology and QCDs DSEs

Lecture 5: Parton Distribution Functions

Ian Cloët University of Adelaide & Argonne National Laboratory

Collaborators

Wolfgang Bentz – Tokai University Craig Roberts – Argonne National Laboratory Anthony Thomas – University of Adelaide David Wilson – Argonne National Laboratory

USC Summer Academy on Non-Perturbative Physics, July–August 2012

Deep Inelastic Scattering

$$q^{2} = (k - k')^{2} = -Q^{2} \leq 0$$
$$x_{A} \equiv A \frac{Q^{2}}{2 p \cdot q} = A \frac{Q^{2}}{2 M_{A} \nu}, \quad 0 < x_{A} \leq A$$
$$s = (\ell + P)^{2}, \qquad y = \frac{Q^{2}}{x s}$$

Unpolarized cross-section for DIS with single photon exchange is

$$\frac{d\sigma^{\gamma}}{dx_A \, dQ^2} = \frac{2\pi \, \alpha_e^2}{x_A \, Q^4} \left[\left(1 + (1+y)^2 \right) F_2^{\gamma}(x,Q^2) - y^2 F_L^{\gamma}(x,Q^2) \right]$$

•
$$F_L^{\gamma}(x,Q^2) = F_2^{\gamma}(x,Q^2) - 2 x F_1^{\gamma}(x,Q^2)$$

The longitudinally polarized cross-section is

$$\frac{d\Delta_L \sigma^{\gamma}(\lambda)}{dx_A \, dQ^2} = \frac{4\pi \, \alpha_e^2}{x_A \, Q^4} \left[-2\lambda \left(1 - (1-y)^2 \right) x \, g_1^{\gamma}(x, Q^2) + y^2 g_L^{\gamma}(x, Q^2) \right]$$

• Also structure functions for γZ , Z^0 & W^{\pm} exchange

Bjorken Limit and Scaling

• The Bjorken limit is defined as:

 $Q^2, \nu \to \infty \mid x = \text{fixed}$

 In 1968 J. D. Bjorken argued that in this limit the photon interactions with the target constituents (partons) involves no dimensional scale, therefore

$$\begin{split} F_2^\gamma(x,Q^2) &\to F_2^\gamma(x) \\ g_1^\gamma(x,Q^2) &\to g_1^\gamma(x) \quad etc \end{split}$$

- Bjorken scaling
- Confirmation from SLAC in 1968 was the first evidence for pointlike constituents inside proton
- Scaling violation ⇔ perturbative QCD

Physical meaning of Bjorken x

• Choose a frame where $\vec{q}_{\perp} = 0$ then photon moment is

$$q = \begin{bmatrix} \nu, 0, 0, -\sqrt{\nu^2 + Q^2} \end{bmatrix} \xrightarrow{\text{Bjorken limit}} q = \begin{bmatrix} \nu, 0, 0, -\nu - x M_N \end{bmatrix}$$

- Lightcone coordinates: $q^{\pm} = \frac{1}{\sqrt{2}} \left(q^0 \pm q^3 \right) \Rightarrow a \cdot b = a^+ b^- + a^- b^+ \vec{a}_{\perp} \cdot \vec{b}_{\perp}$
- Therefore in Bjorken limit: $q^- o \infty$ $q^+ o -x \, M_N/\sqrt{2}$ and

$$x = \frac{Q^2}{2 p \cdot q} = -\frac{q^+ q^-}{q^- p^+ + q^+ p^-} \to -\frac{q^+}{p^+}$$

- The lightcone dispersion relation reads: $k^- = \frac{m^2 + \vec{k}^2}{k^+}$
- Can only be satisfied for k' = k + q if $k'^+ = 0$ which implies $k^+ = -q^+$
- Therefore x has physical meaning of the lightcone momentum fraction carried by the struck quark before it is hit by photon

$$x = \frac{k^+}{p^+}$$

Parton Distribution Functions

- Factorization theorems in QCD prove that the structure functions can be expressed in terms of *universal* parton distribution functions (PDFs)
 - that is, the cross-sections can be factorized into process depend perturbative pieces, determined by pQCD (Wilson coefficients) and the innately non-perturbative universal PDFs
- For example at LO and leading twist the structure functions are given by

$$F_2^{\gamma}(x,Q^2) = \sum_{q=u,d,s,\dots} e_q^2 \left[x \, q(x,Q^2) + x \, \bar{q}(x,Q^2) \right]$$
$$g_1^{\gamma}(x,Q^2) = \frac{1}{2} \sum_{q=u,d,s,\dots} e_q^2 \left[\Delta q(x,Q^2) + \Delta \bar{q}(x,Q^2) \right]$$

• These PDFs have a probability interpretation:

 $q(x) = q_+(x) + q_-(x)$ [spin-independent PDF] "probability to strike a quark of flavour q with lightcone momentum fraction x of the target momentum"

 $\Delta q(x) = q_+(x) - q_-(x)$ [spin-dependent PDF] "helicity weighted probability to strike a quark of flavour q with lightcone momentum fraction x of the target momentum"

Experimental Status: Nucleon PDFs

• The distance scales, ξ , probed in DIS are given by: $\xi \sim 1/(x M_N)$

 $\ \, \bullet \ \ \, x=0.5 \quad \Longrightarrow \quad \xi=0.4\,{\rm fm}$

$$\bullet \quad x = 0.05 \quad \Longrightarrow \quad \xi = 4 \text{ fm}$$

The Pion PDF

- In QCD alone the pion is a stable particle, however in the real world it decays via the electroweak interaction with a mean lifetime of 2.6×10^{-8} s
- Therefore in nature there are no pion targets, however because of time dilation it is possible to create a beam of pions: e.g. $p + Be \rightarrow \pi^- + X$
- Can measure pion PDFs via a process called pion-induced Drell-Yan: $\pi p \rightarrow \mu^+ \nu^- X$

There have been three experiments: CERN 1983 & 1985, Fermilab 1989

 $q_{\pi}(x) \xrightarrow{x \to 1} (1-x)^{1+\varepsilon} \quad \text{pQCD} \implies q_{\pi}(x) \sim (1-x)^{2+\gamma}$

Theory Definition of Pion PDFs

- Pion is a spin zero particle \implies only has spin-independent PDFs: $q_{\pi}(x, Q^2)$
- The pion quark distribution function is defined by

$$q_{\pi}(x) = p^{+} \int \frac{d\xi^{-}}{2\pi} e^{i x p^{+} \xi^{-}} \langle p, s | \overline{\psi}_{q}(0) \gamma^{+} \psi_{q}(\xi^{-}) | p, s \rangle_{c},$$

• The *moments* of PDFs are defined by

$$\left\langle x^{n-1} \, q_{\pi} \right\rangle = \int_0^1 dx \; x^{n-1} \; q_{\pi}(x)$$

- The moments of these PDFs must satisfy the baryon number & momentum sum rules
- For example the $\pi^+ = u\bar{d}$ PDFs must satisfy

$$\langle u_{\pi} - \bar{u}_{\pi} \rangle = 1$$
 $\langle d_{\pi} - \bar{d}_{\pi} \rangle = -1$ $\langle x u_{\pi} + x \bar{d}_{\pi} + ... \rangle = 1$
baryon number sum rules momentum sum rule

the baryon number sum rule is equivalent to charge conservation

Pion PDF in the NJL Model

- The pion quark distribution functions can be obtains from a Feynman diagram calculation
- The needed ingredients are
 - the pion Bethe-Salpeter amplitude:
 - dressed quark propagator:
- The operator insertion is given by

$$\gamma^+ \,\delta\!\left(x - \frac{k^+}{p^+}\right) \frac{1}{2} \left(1 \pm \tau_3\right)$$

- plus sign projects out u-quarks and minus d-quarks
- \bullet recall x is the lightcone momentum fraction carried by struck quark

 $\Gamma_{\pi} = \sqrt{g_{\pi}} \gamma_5 \tau_i$ $S(p)^{-1} = p - M + i\varepsilon$

Pion PDF Results in NJL

- PDFs are scale Q² dependent, however within the NJL model there is no way to determine the model scale Q₀²
- Standard method is to fit the proton valence u-quark distribution to empirical results, best fit determines Q₀²
- The NJL model result for π^+ PDFs at $Q^2 = Q_0^2 = 0.16 \,\mathrm{GeV^2}$

$$u_{\pi}(x) = \bar{d}_{\pi}(x) = \frac{3 g_{\pi}}{4\pi^2} \int d\tau \left[\frac{1}{\tau} + x \left(1 - x\right) m_{\pi}^2\right] e^{-\tau \left[x(x-1)m_{\pi}^2 + M^2\right]}.$$

- Agreement with data excellent
- At large x NJL finds

$$u_{\pi}(x) \stackrel{x \to 1}{\simeq} (1-x)^1$$

Disagrees with pQCD result

$$u_{\pi}(x) \stackrel{x \to 1}{\simeq} (1-x)^{2+\gamma}$$

Pion PDF in DSEs

DSE calculations – fully dressed quark propagator and BS vertex function

 $S(p)^{-1} = p A(p^2) + B(p^2)$ $\Gamma_{\pi}(p,k) = \gamma_5 \Big[E_{\pi}(p,k) + p F_{\pi}(p,k) + k k \cdot p \mathcal{G}(p,k) + \sigma^{\mu\nu} k_{\mu} p_{\nu} \mathcal{H}(p,k) \Big]$

• At large x DSE and pQCD results agree: $u_{\pi}(x) \stackrel{x \to 1}{\simeq} (1-x)^{2+\gamma}$

this 2001 result seemed to disagree with experiment for a decade

 Recent reanalysis of data by Aicher et al. now finds excellent agreement with DSEs!

- One of the greatest successes of perturbative QCD are the DGLAP evolution equations
 - ◆ DGLAP ⇐⇒ Dokshitzer (1977), Gribov-Lipatov (1972), Altarelli-Parisi (1977)
- These QCD evolution equations relate the PDFs at one scale, Q_0^2 , to another scale, Q^2 , provided Q_0^2 , $Q^2 \gg \Lambda_{QCD}$.
- The evolution equation for $q^- \equiv q \bar{q}$ type PDFs is

$$\frac{\partial}{\partial \ln Q^2} q^-(x, Q^2) = \alpha_s(Q^2) P(z) \otimes q^-(y, Q^2) \qquad \text{[non-singlet]}$$

- note that the gluon PDF does not contribute here
- Evolution equations for $q^+ \equiv q + \bar{q}$ and gluon, g(x), PDFs are coupled

The physics behind these equations is that a valence quark can radiate gluons and a gluon can become a quark–antiquark pair, therefore momentum can be shifted between the valence quarks, sea quarks and gluons. The probability of this radiation is scale, Q^2 , dependent.

Nucleon PDFs in the NJL model

Nucleon quark distributions are defined by

$$q(x) = p^{+} \int \frac{d\xi^{-}}{2\pi} e^{i x p^{+} \xi^{-}} \langle p, s | \overline{\psi}_{q}(0) \gamma^{+} \psi_{q}(\xi^{-}) | p, s \rangle_{c}, \quad \Delta q(x) = \langle \gamma^{+} \gamma_{5} \rangle$$

 Nucleon bound state is obtained by solving the relativistic Faddeev equation in the quark-diquark approximation

• PDFs are associated with the Feynman diagrams

Results: proton quark distributions

Covariant, correct support, satisfies baryon and momentum sum rules

$$\int dx \, [q(x) - \bar{q}(x)] = N_q, \qquad \int dx \, x \, [u(x) + d(x) + \ldots] = 1$$

Satisfies positivity constraints and Soffer bound

 $|\Delta q(x)|, \ |\Delta_T q(x)| \leq q(x), \qquad q(x) + \Delta q(x) \ge 2 |\Delta_T q(x)|$

Martin, Roberts, Stirling and Thorne, Phys. Lett. B **531**, 216 (2002).

M. Hirai, S. Kumano and N. Saito, Phys. Rev. D 69, 054021 (2004).

Proton d/u ratio

- The d(x)/u(x) ratio as $x \to 1$ is of great interest because if does not change with QCD evolution and pQCD can make predictions
- There are three classes of predictions for this ratio
 - SU(6) spin-flavour symmetry
 - pQCD and helicity conservation
 - scalar diquark dominance

$$\implies d(x)/u(x) \stackrel{x \to 1}{=} 1/2$$
$$\implies d(x)/u(x) \stackrel{x \to 1}{=} 1/5$$
$$\implies d(x)/u(x) \stackrel{x \to 1}{=} 0$$

• Using DSEs with running mass: $d(x)/u(x) \stackrel{x \to 1}{=} 0.23 \pm 0.09$

Perturbative QCD Predictions $x \to 1$

- The pQCD predictions for $\Delta q(x)/q(x)$ as $x \to 1$ are the most robust
- The pQCD prediction is: $\Delta q(x)/q(x) \stackrel{x \to 1}{=} 1$ for $q \in u, d$
- Realization would require a dramatic change in sign of $\Delta d(x)/d(x)$

Transversity PDFs

- At leading twist there are three collinear PDFs
 - q(x) spin-independent
 - $\Delta q(x)$ spin-dependent
 - $\Delta_T q(x)$ transversity
- However transversity PDFs are chiral odd and therefore do not appear in deep inelastic scattering
- Can be measured using semi-inclusive DIS on a transversely polarized target or certain Drell-Yan experiments

$$\Delta_T q(x) = \bigcirc & - & \bigcirc & - & \frown & - & \frown & - & \frown & A \\ \mathbf{Q} uarks in eigenstates of \ \gamma^{\perp} \ \gamma_5 & \bullet & \bullet & \bullet \\ \end{array}$$

Why is Transversity Interesting?

$$\Delta_T q(x) = \bigcirc \bullet - \bigcirc \bullet$$

• Quarks in eigenstates of $\gamma^{\perp} \gamma_5$

• Tensor charge [c.f. Bjorken sum rule for g_A]

$$g_T = \int dx \left[\Delta_T u(x) - \Delta_T d(x) \right] \qquad g_A = \int dx \left[\Delta u(x) - \Delta d(x) \right]$$

• In non-relativistic limit:
$$\Delta_T q(x) = \Delta q(x)$$

- therefore $\Delta_T q(x)$ is a measure of relativistic effects
- Helicity conservation \implies no mixing between $\Delta_T q \& \Delta_T g$
- For $J \leq \frac{1}{2}$ we have $\Delta_T g(x) = 0$
- Therefore for the nucleon $\Delta_T q(x)$ is valence quark dominated
- Important!! A very common mistake transverse spin sum:

$$dx \,\Delta_T q(x) = \langle \overline{\psi}_q \gamma^+ \gamma^1 \gamma_5 \psi_q \rangle \neq \langle \psi_q^\dagger \gamma^0 \gamma^1 \gamma_5 \psi_q \rangle = \Sigma_T^q$$

• transversity moment \neq spin quarks in transverse direction [c.f. $g_T(x)$]

$\Delta_T u_v(x)$ and $\Delta_T d_v(x)$ distributions

Predict small relativistic corrections

Empirical analysis *potentially* found large relativistic corrections

M. Anselmino et. al., Phys. Rev. D 75, 054032 (2007).

• Large effects difficult to support with quark mass $\sim 0.4 \, \text{GeV}$

maybe running quark mass is needed

Transversity: Reanalysis

- M. Anselmino *et al*, Nucl. Phys. Proc. Suppl. **191**, 98 (2009)
- Our results are now in better agreement updated distributions
- Concept of constituent quark models safe ... for now

Transversity Moments

• M. Anselmino *et al*, Nucl. Phys. Proc. Suppl. **191**, 98 (2009)

• At model scale we find tensor charge

 $g_T = 1.28$ compared with $g_A = 1.267$

Including Anti-quarks

• Gottfried Sum Rule: NMC 1994: $S_G = 0.258 \pm 0.017 [Q^2 = 4 \,\text{GeV}^2]$

$$S_G = \int_0^1 \frac{dx}{x} \left[F_{2p}(x) - F_{2n}(x) \right] = \frac{1}{3} - \frac{2}{3} \int_0^1 dx \left[\bar{d}(x) - \bar{u}(x) \right]$$

• We find: $S_G = \frac{1}{3} - \frac{4}{9} (1 - Z_q) = 0.252$ $[Z_q = 0.817]$

Extracting Proton Spin Content

- Ellis–Jaffe sum rule $\begin{bmatrix} \frac{1}{2} = \frac{1}{2} \Delta \Sigma + L_q + J_g \end{bmatrix}$ $\int dx \, g_{1p}^{\gamma}(x, Q^2) = \frac{1}{36} \left[3 \Delta q_3 + \Delta q_8 \right] + \frac{1}{9} \Delta q_0,$ $\Delta \Sigma = \Delta q_0 = \Delta u^+ + \Delta d^+ + \Delta s^+ \qquad \text{[singlet]}$ $g_A = \Delta q_3 = \Delta u^+ - \Delta d^+ \qquad \text{[triplet]}$ $\Delta q_8 = \Delta u^+ + \Delta d^+ - 2 \Delta s^+ \qquad \text{[octet]}$
- To help extract $\Delta \Sigma$ usual to use semi-leptonic hyperon decays and assume SU(3) flavour symmetry to relate Δq_3 and Δq_8

$$\begin{array}{ll} \Delta q_3 = F + D & \Delta q_8 = 3 \, F - D \\ n \, p \to F + D, & \Lambda \, p \to F + \frac{1}{3} \, D, & \Sigma \, n \to F - D, \end{array} \mbox{etc}$$

Solve for quark polarizations

$$\Delta u^{+} = \frac{1}{3} \Delta q_{0} + \frac{1}{2} \Delta q_{3} + \frac{1}{6} \Delta q_{8}$$
$$\Delta d^{+} = \frac{1}{3} \Delta q_{0} - \frac{1}{2} \Delta q_{3} + \frac{1}{6} \Delta q_{8}$$
$$\Delta s^{+} = \frac{1}{3} \Delta q_{0} - \frac{1}{3} \Delta q_{8}$$

Spin Sum in NJL Model

• Nucleon angular momentum must satisfy: $J = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + J_g$

 $\Delta \Sigma = 0.33 \pm 0.03(stat.) \pm 0.05(syst.)$ [COMPASS & HERMES]

• Result from Faddeev calculation: $\Delta \Sigma = 0.66$

• Correction from pion cloud: $\Delta \Sigma = 0.79 \times 0.66 = 0.52$

• Bare operator $\gamma^{\mu}\gamma_5$ gets renormalized: $\Delta\Sigma = 0.91 \times 0.52 = 0.47$

A 3D image of the nucleon – TMD PDFs

Measured in semi-inclusive DIS

• Leading twist 6 *T*-even TMD PDFs

$$\begin{array}{ll} q(x,k_{\perp}^{2}), & \Delta q(x,k_{\perp}^{2}), & \Delta_{T}q(x,k_{\perp}^{2}) \\ g_{1T}^{q}(x,k_{\perp}^{2}), & h_{1L}^{\perp q}(x,k_{\perp}^{2}), & h_{1T}^{\perp q}(x,k_{\perp}^{2}) \end{array}$$

$$\left\langle p_T \right\rangle (x) \equiv \frac{\int d\vec{k}_\perp k_\perp q(x,k_\perp^2)}{\int d\vec{k}_\perp q(x,k_\perp^2)}$$

[H. Avakian, et al., Phy. Rev. D81, 074035 (2010).]

•
$$\langle p_T \rangle^{Q^2 = Q_0^2} = 0.36 \,\text{GeV}$$
 c.f. $\langle p_T \rangle_{\text{Gauss}} = 0.56 \,\text{GeV}$ [Hermes], $0.64 \,\text{GeV}$ [Emc]

- Diquark correlations in nucleon are very important
 - d(x) is softer than $u(x) \iff$ scalar diquark $(ud)_{0^+}$

• $d(x)/u(x) \stackrel{x \to 1}{\simeq} 0.2$ – sensitive to strength of axial-vector diquark

- Using DSEs with running mass: $d(x)/u(x) \stackrel{x \to 1}{=} 0.23 \pm 0.09$
- Can *almost* reproduce measured spin sum: $\Delta \Sigma = 0.366^{+0.042}_{-0.062}$ [DSSV]
 - relativistic effects + pions + vertex renormalization $\implies \Delta \Sigma = 0.47$
 - perturbative gluon dressing on quarks will reduce $\Delta\Sigma$ further
- Perturbative pions \Rightarrow Gottfried Sum Rule: $[S_G = 0.258 \pm 0.017 (Q^2 = 4 \text{ GeV}^2) \text{NMC 1994}]$

$$S_G = \int_0^1 \frac{dx}{x} \left[F_{2p}(x) - F_{2n}(x) \right] = \frac{1}{3} - \frac{2}{3} \int_0^1 dx \left[\bar{d}(x) - \bar{u}(x) \right] \stackrel{NJL}{\to} \frac{1}{3} - \frac{4}{9} \left(1 - Z_q \right) = 0.252$$

Table of Contents

🏶 DIS

- bjorken limit and scaling
- 🏶 Bjorken x
- 🏶 pdfs
- experimental status
- 🏶 pion pdf
- definition of pion pdfs
- 🏶 njl pion pdf
- dse pion pdfs
- 🟶 DGLAP

- nucleon pdfs
- proton pdfs
- proton d/u ratio
- pQCD predictions
- transversity
- 🏶 anti-quarks
- proton spin content
- 🟶 spin content
- 🏶 tmds
- njl robust conclusions