Hadron Phenomenology and QCDs DSEs

Lecture 4: Nucleon Form Factors

Ian Cloët University of Adelaide & Argonne National Laboratory

Collaborators

Wolfgang Bentz – Tokai University Craig Roberts – Argonne National Laboratory Anthony Thomas – University of Adelaide David Wilson – Argonne National Laboratory

USC Summer Academy on Non-Perturbative Physics, July–August 2012

 If the proton was a point particle its electromagnetic properties would be characterized by two observables

charge: $e_p = +1$ & magnetic moment (μ_p)

Dirac:
$$\mu_p = \frac{e_p \hbar}{2 M_P}$$
 Stern: $\mu_p = (1 + 1.79) \frac{e_p \hbar}{2 M_P}$

- this was strong evidence that the proton was not a point particle
- later of course quarks were discovered at SLAC in 1968 via deep inelastic experiments
- In 1943 Otto Stern would receive the Nobel Prize in part for this discovery

Nucleon electromagnetic form factors

- The electromagnetic structure of the nucleon is best determined by electron elastic scattering
- The electron makes a good probe because its interaction with the electromagnetic current is very well understood
 - the electron anomalous magnetic moment is known experimentally to 1 part in a 1 trillion a = 0.00115965218085(76)
 - theory agrees almost perfectly
- The interaction of the electromagnetic with the nucleon is characterized by two form factors

$$\langle J^{\mu} \rangle = u(p') \left[\gamma^{\mu} F_1(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_2(Q^2) \right] u(p)$$

Dirac Pauli
Sachs form factors: $G_E = F_1 - \frac{Q^2}{4M^2} F_2$, $G_M = F_1 + F_2$

Experimental Status (1)

- Proton form factors were first measured by Hofstadter et al. in 1953
 - Deviation from constant gives information on nucleon structure e.g. radii
- Many new things are still being learnt about nucleon EM structure
- A recent atomic experiment discovered the "Proton Radius puzzle"
 - $r_{Ep} = 0.84184 \pm 0.00067$ fm muonic hydrogen [Pohl *et al.*]

• $r_{Ep} = 0.8768 \pm 0.0069$ fm

ep elastic scattering & hydrogen [PDG]

• radius is defined by: $\left| \langle r_E^2 \rangle = -6 \frac{\partial}{\partial Q^2} G_E(Q^2) \right|_{Q^2=0}$

- Until the late 90s Rosenbulth experiments found that the G_{Ep}/G_{Mp} ratio was flat
- However JLab polarization transfer experiments which are directly sensitive to this ratio, found a slope toward zero

Experimental Status (2)

• pQCD $F_1 \sim 1/Q^4$ $F_2 \sim 1/Q^6$ \implies $Q^2 F_2/F_1 \sim \text{constant}$

♦ this behaviour is not seen in the data yet: $Q F_2/F_1 \sim \text{constant}$

Physical Interpretation of Form Factors

- Most textbooks teach that the Fourier transform of the Sachs form factors, G_E and G_M , give the charge and magnetization densities
 - this is definitely true in the non-relativistic limit where the initial and final states are invariant under Galilean transformations
 - however relativistically the initial and final states are not invariant under Lorentz boosts and therefore a density cannot be defined
- A modern interpretation of the form factors is that they provide information on the transverse charge density, because the transverse structure is invariant under boosts in the z-direction

 Neutron negative charge density contradicts pion cloud picture

Nucleon Form Factors in the NJL model

• The Feynman diagrams that give the nucleon form factors in our NJL are

- Ingredients are:
 - nucleon Faddeev amplitude <>>> Faddeev equation
 - diquark propagators <>>> Bethe-Salpeter equation
 - diquark BS vertex \leftarrow homogeneous Bethe-Salpeter equation
 - ♦ quark propagator ⇐⇒ gap equation
- A separate calculation gives diquark form factors
- We also make the "static approximation" to the quark exchange kernel:

$$S(p) = \left[p - M + i\varepsilon \right]^{-1} \longrightarrow M^{-1}$$

Nucleon Form Factors in the NJL model

• The Feynman diagrams that give the nucleon form factors in our NJL are

- Ingredients are:
 - nucleon Faddeev amplitude <>>> Faddeev equation
 - diquark propagators <>>> Bethe-Salpeter equation
 - diquark BS vertex \leftarrow homogeneous Bethe-Salpeter equation
 - ♦ quark propagator ⇐⇒ gap equation
- A separate calculation given diquark form factors
- We also make the "static approximation" to the quark exchange kernel:

$$S(p) = \left[p - M + i\varepsilon \right]^{-1} \longrightarrow M^{-1}$$

Model Parameters

- Free Parameters:
 - $\bullet \quad \Lambda_{IR}, \ \Lambda_{UV}, \ M_0, \ G_{\pi}, \ G_s, \ G_a, \ G_{\omega}, \ G_{\rho}$
- Constraints:
 - *f*_π = 93 MeV, *m*_π = 140 MeV & *M*_N = 940 MeV
 - $g_A = 1.267$ [from Bjorken sum rule]
 - $(\rho, E_B/A) = (0.16 \, \text{fm}^{-3}, -15.7 \, \text{MeV})$
 - $a_4 = 32 \,\mathrm{MeV}$
 - $\Lambda_{IR} = 240 \text{ MeV}, M_0 = 400 \text{ MeV}$
- Obtain [MeV]:
 - $\Lambda_{UV} = 644$
 - $M_s = 690, \quad M_a = 990, \quad \dots$
- Can now study a large array of observables:
 - e.g. meson and baryon quark distributions, form factors, GPDs, properties at finite temperature and density; neutron stars, etc

The role of Pions

 Pions are the lightest hadrons, therefore, because of quantum fluctuations we expect them to play an important role in many observables

Because the pion is light it is long range

- expect proton and neutron charge and magnetic radii to be increased
- the nucleon magnetic moments are also sensitive to pion cloud effects
- To include pions in NJL we dress the constituent quarks with a pion cloud

Quark Form Factors with Pion Cloud

- Z_q is the probability to find a bare constituent quark: $Z_q = \left[\frac{\partial}{\partial p} S(p)\right]_{p=M}^{-1}$
- Pion cloud induces an anomalous magnetic moment for the quarks

Scalar Diquark Form Factor

- Scalar diquark BS vertex: $\Omega_s = \sqrt{g_s} \gamma_5 C \tau_2 \beta^A$ (c.f. pion $\Omega_{\pi} = \sqrt{g_{\pi}} \gamma_5 \tau_i$)
- Expressions for pion and scalar diquark form factors are very similar: $g_s \leftrightarrow g_\pi$ & $M_s \leftrightarrow m_\pi$
- In principle the scalar diquark is off its mass shell $(p^2 \neq M_s^2)$, therefore like the off-shell pion case the electromagnetic vertex is of the form

 $\langle \Gamma_s^{\mu} \rangle = (p'+p)^{\mu} F_{s1}(p'^2, p^2, Q^2) + (p'-p)^{\mu} F_{s2}(p'^2, p^2, Q^2) \to (p'+p)^{\mu} F_s(Q^2)$

- therefore we make the on-shell approximation for this vertex
- comparison with experiment informs on veracity of this approximation

Scalar Diquark Form Factor Results

Pion charge radius:

experiment: $\langle r_E^2 \rangle_{\pi} = 0.45 \pm 0.01 \,\text{fm}^2$; NJL model: $\langle r_E^2 \rangle_{\pi} = 0.46 \,\text{fm}^2$

Recall the perturbative QCD result for pion form factor at $Q^2
ightarrow \infty$

 $Q^2 F_{\pi}(Q^2) \rightarrow 16\pi f_{\pi}^2 \alpha_s(Q^2) \implies \alpha_{NJL} = 0.94 \implies Q^2 \sim 0.46 \,\mathrm{GeV}^2$

- in the NJL model $\alpha_s(Q^2) = \text{constant}$
- use above pQCD result to estimate effective strong coupling in NJL
- Evidence that our scalar diquark form factor is reliable

Axial–Vector Diquark Form Factors

The axial-vector diquark and rho BS vertices are

 $\Omega_a^{\mu,i} = \sqrt{g_a} \,\gamma^\mu \, C \,\tau_i \,\tau_2 \,\beta^A \qquad \qquad \Omega_\rho^{\mu,i} = \sqrt{g_\rho} \,\gamma^\mu \,\tau_i$

- Results for the rho and axial-vector diquark form factors are very similar: $g_a \leftrightarrow g_\rho$ & $M_a \leftrightarrow m_\rho$
- Again, in principle the axial-vector diquark is off its mass shell ($p^2 \neq M_a^2$) & therefore the electromagnetic vertex has 14 form factors
- Make the on-shell approximation for photon—axial-vector diquark vertex

$$J^{\mu,\alpha\beta} = \left[g^{\alpha\beta} F_1(Q^2) - \frac{q^{\alpha}q^{\beta}}{2M_a^2} F_2(Q^2)\right] (p+p')^{\mu} - \left(q^{\alpha} g^{\mu\beta} - q^{\beta} g^{\mu\alpha}\right) F_3(Q^2)$$

an on-shell spin 1 particle has 3 electromagnetic form factors

Axial–Vector Diquark Form Factors (2)

Sachs form factors can be obtained for a spin-1 particle & are given by

$$G_C(Q^2) = F_1(Q^2) + \frac{2}{3} \frac{Q^2}{4M^2} G_Q(Q^2)$$
$$G_M(Q^2) = F_3(Q^2)$$
$$G_Q(Q^2) = F_1(Q^2) + \left(1 + \frac{Q^2}{4M^2}\right) F_2(Q^2) - F_3(Q^2)$$

 The charge, magnetic moment & electric quadruple moment of a spin-1 particle are then given by

$$Q = G_C(0)$$
 $\mu = G_M(0) \frac{e}{2M}$ $Q = G_Q(0) \frac{e}{M^2}$

• A charge one structureless spin-1 particle has

$$Q \equiv 1, \qquad \mu = 2, \qquad \mathcal{Q} = -1$$

 Deviation from these canonical values gives information on internal structure of the particle

Axial–Vector Diquark Form Factors Results

There is no experimental information on the rho form factors

- because of short lifetime probably never will be
- Can only compare our result with other calculations
- The NJL model gives: $\mu_{
 ho}=2.08, \quad \mathcal{Q}_{
 ho}=-0.89, \quad \langle r_E^2
 angle_{
 ho}=0.52\,\mathrm{fm}^2$
- DSE results are:

$$\mu_{
ho} = 2.01, \quad \mathcal{Q}_{
ho} = -0.41, \quad \langle r_E^2 \rangle_{
ho} = 0.54 \, \mathrm{fm}^2$$

[M. S. Bhagwat and P. Maris, Phys. Rev. C 77, 025203 (2008)]

• Good agreement – except for Q

Nucleon Electromagnetic Form Factors

Now have all ingredients needed to determine NJL nucleon form factors

The nucleon electromagnetic current is given by

$$\langle J^{\mu} \rangle = u(p') \left[\gamma^{\mu} F_1(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M} F_2(Q^2) \right] u(p)$$

Include both scalar and axial-vector diquarks

$$\tau_s(q) = \frac{-4i G_s}{1 + 2 G_s \Pi_s(q^2)},$$

$$\tau_a^{\mu\nu}(q) = \frac{-4i G_a}{1 + 2 G_a \Pi_a(q^2)} \left[g^{\mu\nu} + 2 G_a \Pi_a(q^2) \frac{q^{\mu}q^{\nu}}{q^2} \right],$$

Proton Form Factor Results

For the proton magnetic moment $(\mu = 1 + \kappa)$ find

$$\mu_p^{\text{bare}} = 2.43 \,\mu_N, \qquad \mu_p^{\text{vmd}+\pi} = 2.78 \,\mu_N, \qquad \mu_p^{\text{experiment}} = 2.79 \,\mu_N$$

- + pion increases anomalous magnetic moment by $\sim 30\%$
- NJL gives excellent results for nucleon static properties
- The NJL form factors fall off too slowing with Q^2 , need an extra $1/Q^2$ factor
 - origin is that Faddeev amplitude has no relative momentum suppression
 - a self-consistent calculation relates this back to the quark propagator

Proton Form Factor Results

For the proton charge and magnetic radii, where

$$\left\langle r_E^2 \right\rangle = -6 \left. \frac{\partial G_E(Q^2)}{\partial Q^2} \right|_{Q^2 = 0}, \qquad \left\langle r_M^2 \right\rangle = -\frac{6}{\mu} \left. \frac{\partial G_M(Q^2)}{\partial Q^2} \right|_{Q^2 = 0}$$

we find

$$\begin{split} \left\langle r_E^2 \right\rangle_p^{\mathsf{vmd}} &= 0.56 \, \mathrm{fm}^2 \quad \left\langle r_E^2 \right\rangle_p^{\mathsf{vmd}+\pi} = 0.65 \, \mathrm{fm}^2 \quad \left\langle r_E^2 \right\rangle_p^{\mathsf{experiment}} = 0.72 \, \mathrm{fm}^2 \\ \left\langle r_M^2 \right\rangle_p^{\mathsf{vmd}} &= 0.46 \, \mathrm{fm}^2 \quad \left\langle r_M^2 \right\rangle_p^{\mathsf{vmd}+\pi} = 0.58 \, \mathrm{fm}^2 \quad \left\langle r_M^2 \right\rangle_p^{\mathsf{experiment}} = 0.71 \, \mathrm{fm}^2 \end{split}$$

Pion cloud is important – however NJL is not sufficient to get good radii

Neutron Form Factor Results

For the neutron magnetic moment $(\mu = \kappa)$ find

$$\mu_n^{\text{bare}} = 1.25 \,\mu_N, \qquad \mu_n^{\text{vmd}+\pi} = 1.81 \,\mu_N, \qquad \mu_n^{\text{experiment}} = 1.91 \,\mu_N$$

- \bullet pion increases anomalous magnetic moment by $\sim 45\%$
- NJL gives excellent results for nucleon static properties
- For the neutron charge and magnetic radii find

Nucleon electromagnetic current using DSEs

- Feedback with experiment can constrain DSE quark–gluon vertex
- Knowledge of quark–gluon vertex provides $\alpha_s(Q^2)$ within DSEs
 - also gives β -function and may shed light on confinement
- Add anomalous chromomagnetic term, $i\sigma^{\mu\nu}q_{\nu} \tau_5(p',p)$, to quark–gluon vertex
- Generates anomalous electromagnetic term in quark–photon vertex
- Quarks are strongly dressed by gluons, except sizeable an'lous mag'tic moment

[L. Chang, Y. -X. Liu, C. D. Roberts, Phys. Rev. Lett. 106, 072001 (2011)] p/M_

DSE nucleon form factors

[ICC, G. Eichmann, B. El-Bennich, T. Klahn and C. D. Roberts,, Few Body Syst. 46, 1 (2009)] 1.0 2.0with τ_5 term with τ_5 term 0.8 no τ_5 term no τ_5 term 1.5Empirical – Kelly Empirical – Kelly $F_{1p}(Q^2)$ $F_{2p}(Q^2)$ 1.00.50.20 0 23 523 1 0 4 0 1 4 5 Q^2/M_N^2 Q^2/M_N^2 0 0.06 with τ_5 term 0.04no τ_5 term -0.5Empirical – Kelly 0.02 $F_{2n}(Q^2)$ $F_{1n}(Q^2)$ 0 -0.02with τ_5 term -1.5no τ_5 term -0.04Empirical – Kelly -2.0-0.0623 4 1 23 50 1 50 4 Q^{2}/M_{N}^{2} Q^2/M_N^2

• $\tau_5(p',p)$ is the anomalous magnetic moment term in quark–photon vertex

Proton form factors ratios

- Quark anomalous magnetic moment gives good agreement with data
 - important for low to moderate Q^2
- Low Q^2 discrepancy will be alleviated by including ρ and ω contribution to quark-photon vertex
- Zero crossing sensitive to nature of transition from non-perturbative to perturbative regime
 - ◆ if perturbative regime is reached quicker ⇒ zero-crossing moves to larger Q², since τ₅(p', p) vanishes quicker: G_E = F₁ - $\frac{Q^2}{4M^2}F_2$

Proton form factors ratios

• Quark anomalous magnetic moment gives good agreement with data

igstarrow important for low to moderate Q^2

- Low Q^2 discrepancy will be alleviated by including ρ and ω contribution to quark-photon vertex
- Zero crossing sensitive to nature of transition from non-perturbative to perturbative regime
 - ◆ if perturbative regime is reached quicker ⇒ zero-crossing moves to larger Q², since τ₅(p', p) vanishes quicker: G_E = F₁ - Q²/4 M² F₂

Neutron Form Factors Ratios

- Quark anomalous magnetic moment only has minor impact on neutron form factor ratio
- Predict a zero-crossing in G_{En}/G_{Mn} at $Q^2 \simeq 11 \,\mathrm{GeV}^2$
- DSE predictions were confirmed on domain $1.5 \leq Q^2 \leq 3.5 \,\mathrm{GeV^2}$
- Agreement at low Q^2 requires the pion as a explicit degree of freedom

Comparison with NJL model results

Find that at $Q^2 = 0$ two results agree rather well

- Reinforces the notion that a constant constituent mass is a reasonable approximation to low energy QCD
 - provided symmetries are preserved
 - good for calculating static properties: magnetic moments, PDFs, etc.
- However for $Q^2 \neq 0$ operators running mass is important

Nucleon, $N^* \& N \to N^*$ **Electromagnetic Form Factors**

 Recall that the nucleon electromagnetic current has the form

$$\langle J^{\mu} \rangle = u_N(p') \left[\gamma^{\mu} F_{1N} + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_N} F_{2N} \right] u_N(p)$$

- The Roper [N*(1440)] is thought to be the first excited of the nucleon and has the same quantum numbers
- Therefore the Roper electromagnetic current has the form

$$\langle J^{\mu} \rangle = u_{N^*}(p') \left[\gamma^{\mu} F_{1N^*}(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_N^*} F_{2N^*}(Q^2) \right] u_{N^*}(p)$$

- EM current cause transition between the nucleon and Roper $[N o N^*]$
- Gauge invariance implies this transition current must satisfy: $q_{\mu} J^{\mu} = 0$

$$\langle J^{\mu} \rangle = u_{N^*}(p') \left[\left(\gamma^{\mu} - \frac{q^{\mu} \not q}{q^2} \right) F_{1N \to N^*} + \frac{i \sigma^{\mu\nu} q_{\nu}}{M_N + M_{N^*}} F_{2N \to N^*} \right] u_N(p)$$

The N^* (Roper) Resonance

- N* manifests as second pole in Faddeev equation kernel
 - $M_N = 0.940 \,\text{GeV}$ and $M_{N^*} = 1.8 \,\text{GeV}$
 - Agrees very well with EBAC value for quark core mass
- "Wavefunction" is given by eigenvector at pole: $p^2 = m_i^2$
- For NJL model N, N^* "wavefunction" has the simple form

$$\Gamma(p) = \begin{bmatrix} \alpha_1 \\ \alpha_2 \frac{p^{\mu}}{M} \gamma_5 + \alpha_3 \gamma^{\mu} \gamma_5 \end{bmatrix} u(p)$$

- For the nucleon: $\alpha_1 = 0.43$, $\alpha_2 = 0.024$, $\alpha_3 = -0.45$
- For the Roper: $\alpha_1 = 0.0011$, $\alpha_2 = 0.94$, $\alpha_3 = -0.051$
- For nucleon scalar and axial-vector diquarks equally dominant
- However, N^* is complete dominated by the axial-vector diquark

Nucleon and N^* Form Factors

- Note these results are obtained within the constant mass function framework
 - therefore moderate to large Q^2 behaviour is poor
- Pion cloud effects have been ignored
 - expect magnetic moments and radii to be too small
- However we find N^* radii are 10% larger than the protons
- Find a zero in both F_1 and F_2 for Roper

Nucleon and N^* – F_1 Form Factors Results

Contributions originate from the following diagrams

• Find that N* form factors are axial-vector diquark dominated

Nucleon and N^* – F_2 Form Factors Results

Contributions originate from the following diagrams

• Find that N^* form factors are axial–vector diquark dominated

$N \rightarrow N^*$ Transition Form Factors Results

Why the Zero

The photon—axial-vector diquark vertex has the form

$$\Lambda_{ax}^{\mu,\alpha\beta} = \left[g^{\alpha\beta} F_1(Q^2) - \frac{q^{\alpha}q^{\beta}}{2M_a^2} F_2(Q^2) \right] (p+p')^{\mu} - \left(q^{\alpha} g^{\mu\beta} - q^{\beta} g^{\mu\alpha} \right) F_3(Q^2)$$

- The three axial-vector diquark form factors are positive definite
- Cancellations between pieces of diagram give zero in $F_{2p \rightarrow N^*}$
- This zero is directly related to the zeros in the N^* form factors

Table of Contents

- nucleon static properties
- nucleon form factors
- experimental status
- physical interpretation
- NJL nucleon form factors
- model parameters
- role of pions
- quark form factors
- 🏶 scalar diquark
- axial-vector diquark
- nucleon form factors
- proton form factor

- neutron form factor
- dse nucleon em current
- dse nucleon form factors
- proton form factors ratios
- proton form factors ratios
- neutron form factors ratios
- njl comparison
- \circledast N, N^* & $N \to N^*$ form factors
- roper
- N & N* form factors
- why the zero