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Hadron Spectrum
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● In quantum field theory physical states appear as poles in n-point Green

Functions

● For example, the quark–antiquark scattering matrix or t-matrix, contains

poles for all q̄q bound states, that is, the physical mesons

● The quark–antiquark t-matrix is obtained by solving the Bethe-Salpeter

equation

T = K + T K =⇒ Γ = Γ K

● Kernels of gap and BSE must be intimately related

−1

=
−1

+
⇐⇒ K

● For example, consider axial–vector Ward–Takahashi Identity

qµ Γ
µ,i
5 (p′, p) = S−1(p′) γ5

1
2τi +

1
2τi γ5 S

−1(p) + 2mΓi
π(p

′, p)



Inhomogeneous & Homogeneous vertex functions
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T = K + T K =⇒ Γ = Γ K

● Near a bound state pole of mass m a two-body t-matrix behaves as

T (p, k) → Γ(p, k)Γ̄(p, k)

p2 −m2
where p = p1 + p2, k = p1 − p2

● Γ(p, k) is the homogeneous Bethe-Salpeter vertex and describes the

relative motion of the quark and anti-quark while they form the bound state

● The inhomogeneous BSE is a generalization and contains all the poles of

the t-matrix

Γ = + Γ K

✦ the first term on the RHS is the elementary driving term

✦ the driving term projects out various channels

✦ the quark-photon vertex is described by a inhomogeneous BSE



The Pion
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● How does the pion become (almost) massless when it is composed of two

massive constituents

● The pion is realized as the lowest lying pole in the quark anti-quark

t-matrix in the pseudoscalar channel

● In the NJL model this t-matrix is given by

T (q)αβ,γδ = Kαβ,γδ +

∫

d4k

(2π)4
Kαβ,λǫ S(q + k)εε′ S(k)λ′λ T (q)ε′λ′,γδ,

γ

δ

q

α

β

=

γ

δ

α

β

+

γ

δ

ε′

λ′

α

β

ε

λ

K = −2iGπ (γ5τ )αβ(γ5τ )λǫ

● The NJL pion t-matrix is

T (q)iαβ,γδ = (γ5τi)αβ
−2iGπ

1 + 2Gπ ΠPP (q2)
(γ5τi)λǫ

● The pion mass is then given by: 1 + 2Gπ ΠPP (q
2 = m2

π) = 0



Pion Bethe-Salpeter Amplitude

frontpage table of contents appendices 5 / 24

T = K + T K =⇒ Γ = Γ K

● Recall that near a bound state pole the t-matrix behaves as

T (p, k) → Γ(p, k)Γ̄(p, k)

p2 −m2
where p = p1 + p2, k = p1 − p2

● Expanding the pion t-matrix about the pole gives

T (q) = (γ5τi)
−2iGπ

1+2Gπ ΠPP (q2)
(γ5τi) → i gπ

q2−m2
π
(γ5τi)(γ5τi)

● Where gπ is interpreted as the pion-quark coupling constant

gπ = − 1
∂

∂q2
ΠPP (q2)

∣

∣

∣

∣

q2=m2
π

● The pion homogeneous BS vertex is therefore: Γπ =
√
gπ γ5τi

✦ this is a very simple vertex that misses a lot of physics



The Pion as a Goldstone Boson
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● Using the NJL gap equation and the pion pole condition gives

m2
π = m

2M

Gπ Π
(L)
AA(m

2
π)

● Therefore in the chiral limit, m→ 0, the pion is massless

● In quantum mechanics one could tune a potential to give a massless

ground state for a bound state of two massive constituents

✦ however quantum mechanics always gives: Mbound state ∝Mconstituents

● However quantum field theory with DCSB gives: m2
π ∝ m

● Recall the Gell-Mann–Oakes–Renner relation

f2π m
2
π = 1

2 (mu +md)
〈

ūu+ d̄d
〉

● The pion decay constant is given by

µα α′

β β′q q
〈0 |Aµ

a |πb(p)〉 = i fπ p
µ δab



ρ–a1 mass splitting
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● The ρ and a1 are the lowest lying vector (JP = 1−) and axial-vector

(JP = 1+) q̄q bound states: mρ ≃ 770MeV & ma1 ≃ 1230MeV

● The masses of these states are given by t-matrix poles in the vector and

axial-vector q̄q channels
γ

δ

q

α

β

=

γ

δ

α

β

+

γ

δ

ε′

λ′

α

β

ε

λ

K = −2iGρ

[

(γµτ )αβ (γ
µ
τ )γδ

+ (γµγ5τ )αβ (γ
µγ5τ )γδ

]

● Chiral symmetry implies one NJL coupling, Gρ. NJL gives

mρ ≡ 770MeV & ma1 ≃ 1000MeV

✦ NJL interaction is insufficient to obtain correct ρ–a1 mass splitting

● The rainbow ladder Maris–Tandy DSE model gives

mρ ≃ 644MeV & ma1 ≃ 759MeV

● Clearly something is missing!



ρ–a1 mass splitting – Generalized Quark-Gluon Vertex
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● Recall that going below rainbow

ladder by adding σµνqν τ5(p
′, p) to

quark-gluon vertex, generates

quark anomalous magnetic moment

● An order parameter for dynamical

chiral symmetry; Chiral symmetry

forbids massless particle having

anomalous magnetic moments 0 1 2 3 4 5
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● What about the hadron spectrum

● Important example of interplay between observables and DSE

quark–gluon vertex



An Aside – Muon Anomalous Magnetic Moment
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β α

p p′

µ

q

= + + . . . + + . . . + + . . . + + . . .

● aexp
µ = 11659208.0± 6.3× 10−10; a

theory
µ = 11659179.0± 6.5× 10−10

● largest theory error come from HLBL scattering contribution

q k

ℓ t

µ ν

α β

Πµναβ =

q k

ℓ t

µ ν

α β

+

q k

ℓ t

µ ν

α β

+ · · · +

q k

ℓ t

µ ν

α β

+

q k

ℓ t

µ ν

α β

+ . . .

● Box diagram contribution is least know

✦ only γµ coupling and VMD has been considered so far

✦ we argue that the anomalous magnetic moment term cannot be ignored

● At least error on aHLBL
µ = 8.3± 3.2× 10−10 should be much larger

● Fred Jegerlehner, Andreas Nyffeler, Physics Reports 477 (2009) 1–110



Pion Form Factor
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● Hadron form factors describe its interaction

with the electromagnetic current

● An on-shell pion has one EM form factor

〈Jµ
π 〉 = (p′µ + pµ)F1(Q

2)

ℓ

q

k

k′

p
π

p′

π

θ

● In the impulse approximation the pion form factors are given by

Γ Γ Γ = Γ

● Ingredients:

✦ dressed quark propagators

✦ homogeneous Bethe-Salpeter vertices

✦ dressed quark-photon vertex



Pion Form Factor (2)

frontpage table of contents appendices 11 / 24

● Pion BSE vertex has the general form

Γπ(p, k) = γ5

[

Eπ(p, k) + /pFπ(p, k) + /k k · pG(p, k) + σµνkµpν H(p, k)
]

● Pseudovector component Fπ(p, k) dominates ultra-violet

● Perturbative QCD predicts

Q2 F1π(Q
2)

Q2→∞
= 16π f2π αs(Q

2) ≃ 0.44αs(Q
2)

● DSE finds that pQCD sets in at about Q2 = 8GeV2



Some Consequences of Running Quark Mass
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● Pion BSE vertex has the general form

Γπ(p, k) = γ5

[

Eπ(p, k) + /pFπ(p, k) + /k k · pG(p, k) + σµνkµpν H(p, k)
]

● In gap equation use simple kernel ⇐⇒ NJL model with π − a1 mixing

g2Dµν(p− k)Γν(p, k) → 1
m2

G

gµν γ
ν =⇒ Γπ(p, k) = γ5

[

Eπ + /pFπ

]

✦ Quark no longer has a running mass

● Nature of interaction has drastic observable consequences for Q2 > 0



Measuring Pion Form Factor
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● At low Q2 pion form factor is measured by scattering a pion from the

electron cloud of an atom [t ≡ p2]

✦ small mass of electron limits this to Q2 < 0.5GeV2

● Higher Q2 experiments have been performed at Jefferson Lab where a

virtual photon scatters from a virtual pion that is part of the nucleon

wavefunction

● Initial pion is off its mass shell – p2 6 0 – on mass shell p2 = m2
π

✦ need to extrapolate to the pion pole p2 = m2
π



Off-Shell Pion Form Factors
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p′2 = m2

π
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● Initial pion is off its mass shell – p2 < 0 – on mass shell p2 = m2
π

✦ need to extrapolate to the pion pole p2 = m2
π

● However an off-shell pion has two form factors not one and each form

factor is a three dimensional function

Γµ
π(p

′, p) = (p′µ + pµ)Fπ1(p
′2, p2, q2) + (p′µ − pµ)Fπ2(p

′2, p2, q2)

● Using NJL model can determine off-shell pion form factors

● Potentially important for experimental extraction of Fπ



Baryons in the DSEs

frontpage table of contents appendices 15 / 24

● Baryons are 3-quark bound states – with the proton (uud) and neutron

(udd) being the most important examples

● In quantum field theory physical baryons appear as poles in six-point

Green Functions

● Recall that two-body bound states appear as poles in four-point Green

Functions and solutions were obtained by solving the Bethe-Salpeter

Equation

● The analogue of the Bethe-Salpeter equation for 3-quark bound states is

called the Faddeev equation

● By definition the Faddeev kernel only contains two-body interactions

✦ this is an approximation which is yet to be explored and could have

important consequences for QCD

● Diagrammatically the homogeneous Faddeev equation is given by



Baryons in the DSEs (2)
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● We will render this problem tractable by making the quark-diquark

approximation

● This is a linear matrix equation, whose solution gives the “Baryon

wavefunction” – strictly the Poincaré covariant Faddeev amplitude

● We will include scalar (JP = 0+, T = 0) and axial-vector diquarks

(JP = 1+, T = 1)

✦ parity dictates that pseudoscalar and vector diquarks must be in an

ℓ = 1 state and are therefore suppressed in the nucleon

✦ for the negative parity N∗(1535) the opposite is true

● The nucleon wavefunction contains S, P and D wave correlations

● Equation has discrete solutions at p2 = m2
i ; nucleon, roper, etc



What is a Diquark
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● A diquark is a correlated (interacting) quark-quark state

● This interaction is attractive in the colour 3̄ (antisymmetric) or colour 6
(symmetric), however only the colour 3̄ can exist inside a colour singlet

nucleon

● Diquarks are analogous to mesons – colour singlet q̄q bound states

● Because diquarks are coloured they should not appear as physical states

in QCD ⇐⇒ confinement

● However in the rainbow ladder approximation and the NJL model diquarks

do appear as poles in the qq scattering (t) matrix

● Lattice QCD also sees evidence for diquarks
● I. Wetzorke, F. Karsch, hep-lat/0008008

● (3̄03̄) implies scalar diquark:

(flavour-3̄, spin-0, colour-3̄)

● (603̄) implies axial-vector diquark:

(flavour-6, spin-0, colour-3̄)



Diquarks in The NJL model
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● To describe diquarks in the NJL model one usually rewrites the q̄q
interaction Lagrangian into a qq interaction Lagrangian

(

ψ̄ Γψ
)2 →

(

ψ̄Ω ψ̄T
) (

ψT Ω̄ψ
)

✦ Ω has quantum numbers if

interaction channel

Γ Γ Ω Ω

● The qq NJL Lagrangian in the scalar and axial-vector diquark channels

has the form

LI = Gs

[

ψ γ5C τ2 β
A ψ

T
][

ψT C−1 γ5 τ2 β
A′

ψ
]

+Ga

[

ψ γµC τiτ2 β
A ψ

T
][

ψT C−1 γµ τ2τj β
A′

ψ
]

+ . . . .

✦ the first term is the scalar diquark channel (JP = 0+, T = 0)

✦ the second the axial-vector diquark channel (JP = 1+, T = 1)

✦ τ2 couples isospin of two quarks to T = 0, Cγ5 couples spin to J = 0,

βA =
√

3
2 λ

A A = 2, 5, 7



NJL diquark t-matrices
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● The equation for the qq scattering matrix – the Bethe-Salpeter equation

has the form

T (q)αβ,γδ = Kαβ,γδ +
1

2

∫

d4k

(2π)4
Kαβ,ελ S(k)εε′ S(q − k)λλ′ T (q)ε′λ′,γδ,

γ

δ

q

α

β

=

γ

δ

α

β

+

γ

δ

ε′

λ′

α

β

ε

λ

=

γ

δ

α

β

+

γ

δ

ε

λ

ε′

λ′

α

β

✦ note symmetry factor of 1
2 (c.f. q̄q BSE)

● The Feynman rules for the interaction kernels are

Ks = 4iGs(γ5 C τ2 β
A)

αβ
(C−1 γ5 τ2 β

A)
γδ

Ka = 4iGa(γµ C τiτ2 β
A)

αβ
(C−1 γµ τ2τi β

A)
γδ

● The solution to the BSE is of the form: T (q)αβ,γδ = τ(q2) ΩαβΩ̄γδ

τs(q
2) = 4iGs

1+2Gs Πs(q2)
τµνa (q) = 4 iGa

1+2Ga Πa(q2)

[

gµν + 2GaΠa(q
2)
qµqν

q2

]



Diquark Propagators
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● The reduced t-matrices are the diquark propagators

τs(q
2) = 4iGs

1+2Gs Πs(q2)
τµνa (q) = 4 iGa

1+2Ga Πa(q2)

[

gµν + 2GaΠa(q
2)
qµqν

q2

]

● Near the pole they behave as elementary propagators

Tαβ,γδ =

γ

δ
τ (q2)

α

β

Ω Ω

γ

δ

i gD

q2 −M2
D

α

β

Ω Ω

● The diquark masses are therefore given by

1 + 2GsΠs(q
2 =M2

s ) = 0 1 + 2GaΠa(q
2 =M2

a ) = 0

● Expanding Π(q2) near the pole gives the quark-diquark coupling constant

g2D = − 2
∂

∂q2
ΠD(q2)

∣

∣

∣

∣

q2=M2

D



The NJL Faddeev Equation
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● To describe nucleon Faddeev

equation kernel must be projected

onto colour singlet, spin one-half,

isospin one-half & positive parity
p

=
p

● Make the “static approximation” to quark exchange kernel: S(p) → − 1
M

● Homogeneous Faddeev amplitude with static approximation does not

depend of relative momentum between the quark and diquark

● The Faddeev equation and vertex have the form

ΓN (p, s) = K(p) ΓN (p, s)

ΓN (p, s) =
√

−ZN
MN

p0

[

α1

α2
pµ

MN
γ5 + α3 γ

µγ5

]

uN (p, s)

✦ K(p) is the Faddeev kernel

● Faddeev equation describes the continual recombination of the three

quark in quark-diquark configurations



The NJL Faddeev Equation (2)

frontpage table of contents appendices 22 / 24

p
=

p

p

p − k

k

p

α α′

β β′

● The kernel of this NJL Faddeev eq – ΓN (p, s) = K(p) ΓN (p, s) – is

[

Γs

Γµ
a

]

=
3

M

[

ΠNs

√
3γαγ5Π

αβ
Na√

3γ5γ
µΠNs −γαγµΠαβ

Na

]

[

Γs

Γa,β

]

● The quark-diquark bubble diagrams are

ΠNs(p) =

∫

d4k

(2π)4
τs(p− k)S(k)

Πµν
Na(p) =

∫

d4k

(2π)4
τµνa (p− k)S(k)

● Can now solve for the coefficients – α1, α2, α3

✦ this then gives the NJL Faddeev amplitude



DSE Faddeev Equation
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● The DSE Faddeev equation has far more structure than in NJL

● For example the DSE Faddeev equation including scalar and axial-vector

diquarks reads
[

S(k, P )
Aµ

i (k, P )

]

uN (p) =

∫

d4ℓ

(2π)4
Mµν

ij (ℓ; k, P )

[ S(ℓ, P )
Aj

ν(ℓ, P )

]

uN (p)

✦ importantly the vertex function depends on the relative momentum, k,

between the quark and diquark

✦ the Faddeev kernel is Mµν
ij (ℓ; k, P )

✦ S(k, P ) and Aµ
i (k, P ) describe the momentum space correlation

between the quark and diquark in the nucleon

● This equation can be solved numerically on a large 2-D grid in k and P

● However standard practice to use a Chebyshev expansion for S(k, P ) &

Aµ
i (k, P ) and the solve for the coefficients of the expansion

✦ a Chebyshev expansion is an expansion in Chebyshev polynomials
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