Hadron Phenomenology and QCDs DSEs

Lecture 3: Relativistic Scattering and Bound State Equations

Ian Cloët
University of Adelaide \& Argonne National Laboratory

Collaborators
Wolfgang Bentz - Tokai University
Craig Roberts - Argonne National Laboratory
Anthony Thomas - University of Adelaide
David Wilson - Argonne National Laboratory

Hadron Spectrum

- In quantum field theory physical states appear as poles in n-point Green Functions
- For example, the quark-antiquark scattering matrix or t-matrix, contains poles for all $\bar{q} q$ bound states, that is, the physical mesons
- The quark-antiquark t-matrix is obtained by solving the Bethe-Salpeter equation

- Kernels of gap and BSE must be intimately related

- For example, consider axial-vector Ward-Takahashi Identity

$$
q_{\mu} \Gamma_{5}^{\mu, i}\left(p^{\prime}, p\right)=S^{-1}\left(p^{\prime}\right) \gamma_{5} \frac{1}{2} \tau_{i}+\frac{1}{2} \tau_{i} \gamma_{5} S^{-1}(p)+2 m \Gamma_{\pi}^{i}\left(p^{\prime}, p\right)
$$

Inhomogeneous $\boldsymbol{\&}$ Homogeneous vertex functions

- Near a bound state pole of mass m a two-body t-matrix behaves as

$$
\mathcal{T}(p, k) \rightarrow \frac{\Gamma(p, k) \bar{\Gamma}(p, k)}{p^{2}-m^{2}} \quad \text { where } \quad p=p_{1}+p_{2}, \quad k=p_{1}-p_{2}
$$

- $\Gamma(p, k)$ is the homogeneous Bethe-Salpeter vertex and describes the relative motion of the quark and anti-quark while they form the bound state
- The inhomogeneous BSE is a generalization and contains all the poles of the t-matrix

- the first term on the RHS is the elementary driving term
- the driving term projects out various channels
- the quark-photon vertex is described by a inhomogeneous BSE

The Pion

- How does the pion become (almost) massless when it is composed of two massive constituents
- The pion is realized as the lowest lying pole in the quark anti-quark t-matrix in the pseudoscalar channel
- In the NJL model this t-matrix is given by

$$
\mathcal{T}(q)_{\alpha \beta, \gamma \delta}=\mathcal{K}_{\alpha \beta, \gamma \delta}+\int \frac{d^{4} k}{(2 \pi)^{4}} \mathcal{K}_{\alpha \beta, \lambda \epsilon} S(q+k)_{\varepsilon \varepsilon^{\prime}} S(k)_{\lambda^{\prime} \lambda} \mathcal{T}(q)_{\varepsilon^{\prime} \lambda^{\prime}, \gamma \delta},
$$

$$
\mathcal{K}=-2 i G_{\pi}\left(\gamma_{5} \tau\right)_{\alpha \beta}\left(\gamma_{5} \tau\right)_{\lambda \epsilon}
$$

- The NJL pion t-matrix is

$$
\mathcal{T}(q)_{\alpha \beta, \gamma \delta}^{i}=\left(\gamma_{5} \tau_{i}\right)_{\alpha \beta} \frac{-2 i G_{\pi}}{1+2 G_{\pi} \Pi_{P P}\left(q^{2}\right)}\left(\gamma_{5} \tau_{i}\right)_{\lambda \epsilon}
$$

- The pion mass is then given by: $1+2 G_{\pi} \Pi_{P P}\left(q^{2}=m_{\pi}^{2}\right)=0$

Pion Bethe-Salpeter Amplitude

- Recall that near a bound state pole the t-matrix behaves as

$$
\mathcal{T}(p, k) \rightarrow \frac{\Gamma(p, k) \bar{\Gamma}(p, k)}{p^{2}-m^{2}} \quad \text { where } \quad p=p_{1}+p_{2}, \quad k=p_{1}-p_{2}
$$

- Expanding the pion t-matrix about the pole gives

$$
\mathcal{T}(q)=\left(\gamma_{5} \tau_{i}\right) \frac{-2 i G_{\pi}}{1+2 G_{\pi} \Pi_{P P}\left(q^{2}\right)}\left(\gamma_{5} \tau_{i}\right) \rightarrow \frac{i g_{\pi}}{q^{2}-m_{\pi}^{2}}\left(\gamma_{5} \tau_{i}\right)\left(\gamma_{5} \tau_{i}\right)
$$

- Where g_{π} is interpreted as the pion-quark coupling constant

$$
g_{\pi}=-\left.\frac{1}{\frac{\partial}{\partial q^{2}} \Pi_{P P}\left(q^{2}\right)}\right|_{q^{2}=m_{\pi}^{2}}
$$

- The pion homogeneous BS vertex is therefore: $\Gamma_{\pi}=\sqrt{g_{\pi}} \gamma_{5} \tau_{i}$
- this is a very simple vertex that misses a lot of physics

The Pion as a Goldstone Boson

- Using the NJL gap equation and the pion pole condition gives

$$
m_{\pi}^{2}=m \frac{2 M}{G_{\pi} \Pi_{A A}^{(L)}\left(m_{\pi}^{2}\right)}
$$

- Therefore in the chiral limit, $m \rightarrow 0$, the pion is massless
- In quantum mechanics one could tune a potential to give a massless ground state for a bound state of two massive constituents
- however quantum mechanics always gives: $\quad M_{\text {bound state }} \propto M_{\text {constituents }}$
- However quantum field theory with DCSB gives: $m_{\pi}^{2} \propto m$
- Recall the Gell-Mann-Oakes-Renner relation

$$
f_{\pi}^{2} m_{\pi}^{2}=\frac{1}{2}\left(m_{u}+m_{d}\right)\langle\bar{u} u+\bar{d} d\rangle
$$

- The pion decay constant is given by

$$
\langle 0| A_{a}^{\mu}\left|\pi_{b}(p)\right\rangle=i f_{\pi} p^{\mu} \delta_{a b}
$$

$\rho-a_{1}$ mass splitting

- The ρ and a_{1} are the lowest lying vector $\left(J^{P}=1^{-}\right)$and axial-vector $\left(J^{P}=1^{+}\right) \bar{q} q$ bound states: $m_{\rho} \simeq 770 \mathrm{MeV}$ \& $m_{a_{1}} \simeq 1230 \mathrm{MeV}$
- The masses of these states are given by t-matrix poles in the vector and axial-vector $\bar{q} q$ channels

$$
\begin{aligned}
\mathcal{K}= & -2 i G_{\rho}\left[\left(\gamma_{\mu} \boldsymbol{\tau}\right)_{\alpha \beta}\left(\gamma^{\mu} \boldsymbol{\tau}\right)_{\gamma \delta}\right. \\
& \left.+\left(\gamma_{\mu} \gamma_{5} \boldsymbol{\tau}\right)_{\alpha \beta}\left(\gamma^{\mu} \gamma_{5} \boldsymbol{\tau}\right)_{\gamma \delta}\right]
\end{aligned}
$$

- Chiral symmetry implies one NJL coupling, G_{ρ}. NJL gives

$$
m_{\rho} \equiv 770 \mathrm{MeV} \& m_{a_{1}} \simeq 1000 \mathrm{MeV}
$$

- NJL interaction is insufficient to obtain correct $\rho-a_{1}$ mass splitting
- The rainbow ladder Maris-Tandy DSE model gives

$$
m_{\rho} \simeq 644 \mathrm{MeV} \& m_{a_{1}} \simeq 759 \mathrm{MeV}
$$

- Clearly something is missing!

$\rho-a_{1}$ mass splitting - Generalized Quark-Gluon Vertex

- Recall that going below rainbow ladder by adding $\sigma^{\mu \nu} q_{\nu} \tau_{5}\left(p^{\prime}, p\right)$ to quark-gluon vertex, generates quark anomalous magnetic moment
- An order parameter for dynamical chiral symmetry; Chiral symmetry forbids massless particle having anomalous magnetic moments
- What about the hadron spectrum

	Experiment	Rainbow- ladder	One-loop corrected	Ball-Chiu	Full vertex
a1	1230	759	885	1128	1270
ρ	770	644	764	919	790
Mass splitting	455	115	121	209	480

- Important example of interplay between observables and DSE quark-gluon vertex

An Aside - Muon Anomalous Magnetic Moment

- $a_{\mu}^{\exp }=11659208.0 \pm 6.3 \times 10^{-10} ; \quad a_{\mu}^{\text {theory }}=11659179.0 \pm 6.5 \times 10^{-10}$
- largest theory error come from HLBL scattering contribution

- Box diagram contribution is least know
- only γ^{μ} coupling and VMD has been considered so far
- we argue that the anomalous magnetic moment term cannot be ignored
- At least error on $a_{\mu}^{\mathrm{HLBL}}=8.3 \pm 3.2 \times 10^{-10}$ should be much larger
- Fred Jegerlehner, Andreas Nyffeler, Physics Reports 477 (2009) 1-110

Pion Form Factor

- Hadron form factors describe its interaction with the electromagnetic current
- An on-shell pion has one EM form factor

$$
\left\langle J_{\pi}^{\mu}\right\rangle=\left(p^{\prime \mu}+p^{\mu}\right) F_{1}\left(Q^{2}\right)
$$

- In the impulse approximation the pion form factors are given by

- Ingredients:
- dressed quark propagators
- homogeneous Bethe-Salpeter vertices
- dressed quark-photon vertex

Pion Form Factor (2)

- Pion BSE vertex has the general form

$$
\Gamma_{\pi}(p, k)=\gamma_{5}\left[E_{\pi}(p, k)+\not p F_{\pi}(p, k)+\not \not k k \cdot p \mathcal{G}(p, k)+\sigma^{\mu \nu} k_{\mu} p_{\nu} \mathcal{H}(p, k)\right]
$$

- Pseudovector component $F_{\pi}(p, k)$ dominates ultra-violet
- Perturbative QCD predicts

$$
Q^{2} F_{1 \pi}\left(Q^{2}\right) \stackrel{Q^{2} \rightarrow \infty}{=} 16 \pi f_{\pi}^{2} \alpha_{s}\left(Q^{2}\right) \simeq 0.44 \alpha_{s}\left(Q^{2}\right)
$$

- DSE finds that pQCD sets in at about $Q^{2}=8 \mathrm{GeV}^{2}$

Some Consequences of Running Quark Mass

- Pion BSE vertex has the general form

$$
\Gamma_{\pi}(p, k)=\gamma_{5}\left[E_{\pi}(p, k)+\not p F_{\pi}(p, k)+\not k k \cdot p \mathcal{G}(p, k)+\sigma^{\mu \nu} k_{\mu} p_{\nu} \mathcal{H}(p, k)\right]
$$

- In gap equation use simple kernel \Longleftrightarrow NJL model with $\pi-a_{1}$ mixing

$$
g^{2} D_{\mu \nu}(p-k) \Gamma^{\nu}(p, k) \rightarrow \frac{1}{m_{G}^{2}} g_{\mu \nu} \gamma^{\nu} \Longrightarrow \Gamma_{\pi}(p, k)=\gamma_{5}\left[E_{\pi}+\not p F_{\pi}\right]
$$

- Quark no longer has a running mass
- Nature of interaction has drastic observable consequences for $Q^{2}>0$

Measuring Pion Form Factor

- At low Q^{2} pion form factor is measured by scattering a pion from the electron cloud of an atom [$t \equiv p^{2}$]
- small mass of electron limits this to $Q^{2}<0.5 \mathrm{GeV}^{2}$
- Higher Q^{2} experiments have been performed at Jefferson Lab where a virtual photon scatters from a virtual pion that is part of the nucleon wavefunction
- Initial pion is off its mass shell - $p^{2} \leqslant 0$ - on mass shell $p^{2}=m_{\pi}^{2}$
- need to extrapolate to the pion pole $p^{2}=m_{\pi}^{2}$

Off-Shell Pion Form Factors

- Initial pion is off its mass shell $-p^{2}<0$ - on mass shell $p^{2}=m_{\pi}^{2}$
- need to extrapolate to the pion pole $p^{2}=m_{\pi}^{2}$
- However an off-shell pion has two form factors not one and each form factor is a three dimensional function

$$
\Gamma_{\pi}^{\mu}\left(p^{\prime}, p\right)=\left(p^{\prime \mu}+p^{\mu}\right) F_{\pi 1}\left(p^{\prime 2}, p^{2}, q^{2}\right)+\left(p^{\prime \mu}-p^{\mu}\right) F_{\pi 2}\left(p^{\prime 2}, p^{2}, q^{2}\right)
$$

- Using NJL model can determine off-shell pion form factors
- Potentially important for experimental extraction of F_{π}

Baryons in the DSEs

- Baryons are 3-quark bound states - with the proton (uud) and neutron (udd) being the most important examples
- In quantum field theory physical baryons appear as poles in six-point Green Functions
- Recall that two-body bound states appear as poles in four-point Green Functions and solutions were obtained by solving the Bethe-Salpeter Equation
- The analogue of the Bethe-Salpeter equation for 3-quark bound states is called the Faddeev equation
- By definition the Faddeev kernel only contains two-body interactions
\checkmark this is an approximation which is yet to be explored and could have important consequences for QCD
- Diagrammatically the homogeneous Faddeev equation is given by

Baryons in the DSEs (2)

- We will render this problem tractable by making the quark-diquark approximation

- This is a linear matrix equation, whose solution gives the "Baryon wavefunction" - strictly the Poincaré covariant Faddeev amplitude
- We will include scalar $\left(J^{P}=0^{+}, T=0\right)$ and axial-vector diquarks $\left(J^{P}=1^{+}, T=1\right)$
- parity dictates that pseudoscalar and vector diquarks must be in an $\ell=1$ state and are therefore suppressed in the nucleon
- for the negative parity N^{*} (1535) the opposite is true
- The nucleon wavefunction contains S, P and D wave correlations
- Equation has discrete solutions at $p^{2}=m_{i}^{2}$; nucleon, roper, etc

What is a Diquark

- A diquark is a correlated (interacting) quark-quark state
- This interaction is attractive in the colour $\overline{3}$ (antisymmetric) or colour 6 (symmetric), however only the colour $\overline{3}$ can exist inside a colour singlet nucleon
- Diquarks are analogous to mesons - colour singlet $\bar{q} q$ bound states
- Because diquarks are coloured they should not appear as physical states in QCD \Longleftrightarrow confinement
- However in the rainbow ladder approximation and the NJL model diquarks do appear as poles in the $q q$ scattering (t) matrix
- Lattice QCD also sees evidence for diquarks

- I. Wetzorke, F. Karsch, hep-lat/0008008
- ($\overline{3} 0 \overline{3})$ implies scalar diquark: (flavour- $\overline{3}$, spin-0, colour- $\overline{3}$)
- ($60 \overline{3}$) implies axial-vector diquark: (flavour-6, spin-0, colour- $\overline{3}$)

Diquarks in The NJL model

- To describe diquarks in the NJL model one usually rewrites the $\bar{q} q$ interaction Lagrangian into a $q q$ interaction Lagrangian

$$
(\bar{\psi} \Gamma \psi)^{2} \rightarrow\left(\bar{\psi} \Omega \bar{\psi}^{T}\right)\left(\psi^{T} \bar{\Omega} \psi\right)
$$

- Ω has quantum numbers if interaction channel

$$
+G_{a}\left[\bar{\psi} \gamma_{\mu} C \tau_{i} \tau_{2} \beta^{A} \bar{\psi}^{T}\right]\left[\psi^{T} C^{-1} \gamma^{\mu} \tau_{2} \tau_{j} \beta^{A^{\prime}} \psi\right]+\ldots
$$

- the first term is the scalar diquark channel $\left(J^{P}=0^{+}, T=0\right)$
- the second the axial-vector diquark channel $\left(J^{P}=1^{+}, T=1\right)$
- τ_{2} couples isospin of two quarks to $T=0, C \gamma_{5}$ couples spin to $J=0$, $\beta^{A}=\sqrt{\frac{3}{2}} \lambda^{A} \quad A=2,5,7$

NJL diquark t-matrices

- The equation for the $q q$ scattering matrix - the Bethe-Salpeter equation has the form

$$
\mathcal{T}(q)_{\alpha \beta, \gamma \delta}=K_{\alpha \beta, \gamma \delta}+\frac{1}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} K_{\alpha \beta, \varepsilon \lambda} S(k)_{\varepsilon \varepsilon^{\prime}} S(q-k)_{\lambda \lambda^{\prime}} \mathcal{T}(q)_{\varepsilon^{\prime} \lambda^{\prime}, \gamma \delta},
$$

- note symmetry factor of $\frac{1}{2}$ (c.f. $\bar{q} q$ BSE)
- The Feynman rules for the interaction kernels are

$$
\mathcal{K}_{s}=4 i G_{s}\left(\gamma_{5} C \tau_{2} \beta^{A}\right)_{\alpha \beta}\left(C^{-1} \gamma_{5} \tau_{2} \beta^{A}\right)_{\gamma \delta} \quad \mathcal{K}_{a}=4 i G_{a}\left(\gamma_{\mu} C \tau_{i} \tau_{2} \beta^{A}\right)_{\alpha \beta}\left(C^{-1} \gamma^{\mu} \tau_{2} \tau_{i} \beta^{A}\right)_{\gamma \delta}
$$

- The solution to the BSE is of the form: $\mathcal{T}(q)_{\alpha \beta, \gamma \delta}=\tau\left(q^{2}\right) \Omega_{\alpha \beta} \bar{\Omega}_{\gamma \delta}$

$$
\tau_{s}\left(q^{2}\right)=\frac{4 i G_{s}}{1+2 G_{s} \Pi_{s}\left(q^{2}\right)} \quad \tau_{a}^{\mu \nu}(q)=\frac{4 i G_{a}}{1+2 G_{a} \Pi_{a}\left(q^{2}\right)}\left[g^{\mu \nu}+2 G_{a} \Pi_{a}\left(q^{2}\right) \frac{q^{\mu} q^{\nu}}{q^{2}}\right]
$$

Diquark Propagators

- The reduced t-matrices are the diquark propagators

$$
\tau_{s}\left(q^{2}\right)=\frac{4 i G_{s}}{1+2 G_{s} \Pi_{s}\left(q^{2}\right)} \quad \tau_{a}^{\mu \nu}(q)=\frac{4 i G_{a}}{1+2 G_{a} \Pi_{a}\left(q^{2}\right)}\left[g^{\mu \nu}+2 G_{a} \Pi_{a}\left(q^{2}\right) \frac{q^{\mu} q^{\nu}}{q^{2}}\right]
$$

- Near the pole they behave as elementary propagators

- The diquark masses are therefore given by

$$
1+2 G_{s} \Pi_{s}\left(q^{2}=M_{s}^{2}\right)=0 \quad 1+2 G_{a} \Pi_{a}\left(q^{2}=M_{a}^{2}\right)=0
$$

- Expanding $\Pi\left(q^{2}\right)$ near the pole gives the quark-diquark coupling constant

$$
g_{D}^{2}=-\left.\frac{2}{\frac{\partial}{\partial q^{2}} \Pi_{D}\left(q^{2}\right)}\right|_{q^{2}=M_{D}^{2}}
$$

The NJL Faddeev Equation

- To describe nucleon Faddeev equation kernel must be projected onto colour singlet, spin one-half, isospin one-half \& positive parity

- Make the "static approximation" to quark exchange kernel: $S(p) \rightarrow-\frac{1}{M}$
- Homogeneous Faddeev amplitude with static approximation does not depend of relative momentum between the quark and diquark
- The Faddeev equation and vertex have the form

$$
\begin{aligned}
& \Gamma_{N}(p, s)=K(p) \Gamma_{N}(p, s) \\
& \Gamma_{N}(p, s)=\sqrt{-Z_{N} \frac{M_{N}}{p_{0}}}\left[\begin{array}{c}
\alpha_{1} \\
\alpha_{2} \frac{p^{\mu}}{M_{N}} \gamma_{5}+\alpha_{3} \gamma^{\mu} \gamma_{5}
\end{array}\right] u_{N}(p, s)
\end{aligned}
$$

- $K(p)$ is the Faddeev kernel
- Faddeev equation describes the continual recombination of the three quark in quark-diquark configurations

The NJL Faddeev Equation (2)

- The kernel of this NJL Faddeev eq - $\Gamma_{N}(p, s)=K(p) \Gamma_{N}(p, s)$ - is

$$
\left[\begin{array}{l}
\Gamma_{s} \\
\Gamma_{a}^{\mu}
\end{array}\right]=\frac{3}{M}\left[\begin{array}{cc}
\Pi_{N s} & \sqrt{3} \gamma_{\alpha} \gamma_{5} \Pi_{N a}^{\alpha \beta} \\
\sqrt{3} \gamma_{5} \gamma^{\mu} \Pi_{N s} & -\gamma_{\alpha} \gamma^{\mu} \Pi_{N a}^{\alpha \beta}
\end{array}\right]\left[\begin{array}{c}
\Gamma_{s} \\
\Gamma_{a, \beta}
\end{array}\right]
$$

- The quark-diquark bubble diagrams are

$$
\begin{aligned}
& \Pi_{N s}(p)=\int \frac{d^{4} k}{(2 \pi)^{4}} \tau_{s}(p-k) S(k) \\
& \Pi_{N a}^{\mu \nu}(p)=\int \frac{d^{4} k}{(2 \pi)^{4}} \tau_{a}^{\mu \nu}(p-k) S(k)
\end{aligned}
$$

- Can now solve for the coefficients - $\alpha_{1}, \alpha_{2}, \alpha_{3}$
- this then gives the NJL Faddeev amplitude

DSE Faddeev Equation

- The DSE Faddeev equation has far more structure than in NJL
- For example the DSE Faddeev equation including scalar and axial-vector diquarks reads

$$
\left[\begin{array}{c}
\mathcal{S}(k, P) \\
\mathcal{A}_{i}^{\mu}(k, P)
\end{array}\right] u_{N}(p)=\int \frac{d^{4} \ell}{(2 \pi)^{4}} \mathcal{M}_{i j}^{\mu \nu}(\ell ; k, P)\left[\begin{array}{c}
\mathcal{S}(\ell, P) \\
\mathcal{A}_{\nu}^{j}(\ell, P)
\end{array}\right] u_{N}(p)
$$

- importantly the vertex function depends on the relative momentum, k, between the quark and diquark
- the Faddeev kernel is $\mathcal{M}_{i j}^{\mu \nu}(\ell ; k, P)$
- $\mathcal{S}(k, P)$ and $\mathcal{A}_{i}^{\mu}(k, P)$ describe the momentum space correlation between the quark and diquark in the nucleon
- This equation can be solved numerically on a large 2-D grid in k and P
- However standard practice to use a Chebyshev expansion for $\mathcal{S}(k, P)$ \& $\mathcal{A}_{i}^{\mu}(k, P)$ and the solve for the coefficients of the expansion
- a Chebyshev expansion is an expansion in Chebyshev polynomials

Table of Contents

hadron spectrum
vertex functions

* pion
* vertex functions
goldstone boson
* $\rho-a_{1}$ mass splitting
* muon $g-2$
* pion form factor
running quark mass

组 measuring pion form factor
(off-shell $F_{\pi}^{\prime} s$
baryons
diquarks

* njl model diquarks
njl diquark t-matrices
* diquark propagators
njl faddeev
dse faddeev equation

