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● The Nambu–Jona-Lasinio (NJL) Model was invented in 1961 by Yoichiro

Nambu and Giovanni Jona-Lasinio while at The University of Chicago

✦ was inspired by the BCS theory of superconductivity

✦ was originally a theory of elementary nucleons

✦ rediscovered in the 80s as an effective quark theory

● It is a relativistic quantum field theory, that is relatively easy to work with,

and is very successful in the description of hadrons, nuclear matter, etc

● Nambu won half the 2008 Nobel prize in physics in part for the NJL model:

“for the discovery of the mechanism of spontaneous broken symmetry in

subatomic physics” [Nobel Committee]
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● NJL model is interpreted as low energy chiral effective theory of QCD

Z(k2)

k2

➞ G Θ(k2−Λ2)

● Can be motivated by infrared

enhancement of quark–gluon

interaction

e.g. DSEs and Lattice QCD

A. Holl, et al, Phys. Rev. C 71, 065204 (2005)
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● Investigate the role of quark degrees of freedom

● NJL has same flavour symmetries as QCD

● NJL is non-renormalizable =⇒ cannot remove regularization parameter

● We will contrast NJL results with full DSE results
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● In general the NJL Lagrangian has the form

LNJL = L0 + LI = ψ
(
i /∂ −m

)
ψ +

∑

α
Gα

(
ψ Γα ψ

)2

✦ Γα represents a product of Dirac, colour and flavour matrices

● What about LI? – effective theories should maintain symmetries of QCD

● In chiral limit QCD Lagrangian has symmetries

SQCD = SU(3)c ⊗ SU(Nf )V ⊗ SU(Nf )A ⊗ U(1)V ⊗ U(1)A ⊗ C ⊗ P ⊗ T

✦ SU(Nf )A is broken dynamically – DCSB

✦ U(1)A is broken in the anomalous mode – U(1) problem – massive η′

● NJL interaction Lagrangian must respect the symmetries

SNJL = SU(3)c ⊗ SU(Nf )V ⊗ SU(Nf )A ⊗ U(1)V ⊗ C ⊗ P ⊗ T

✦ in NJL SU(3)c will be considered a global gauge symmetry

✦ U(1)A is often broken explicitly =⇒ mη′ 6= 0



NJL Lagrangian (2)

frontpage table of contents appendices 5 / 20

SNJL = SU(3)c ⊗ SU(Nf )V ⊗ SU(Nf )A ⊗ U(1)V ⊗ C ⊗ P ⊗ T

● The NJL Lagrangian should be symmetric under the transformations

SU(Nf )V : ψ −→ e−i t·θV ψ ψ̄ −→ ψ̄ ei t·θV

SU(Nf )A : ψ −→ e−i γ5 t·θA ψ ψ̄ −→ ψ̄ e−i γ5 t·θA

U(1)V : ψ −→ e−i θ ψ ψ̄ −→ ψ̄ ei θ

U(1)A : ψ−→ e−i γ5 θ ψ ψ̄−→ ψ̄ e−i γ5 θ

● Nambu and Jona-Lasinio choose the Lagrangian

L = ψ̄
(
i/∂ −m

)
ψ +Gπ

[(
ψ̄ψ

)2
−
(
ψ̄ γ5τ ψ

)2
]

● Can choose any combination of these 4−fermion interactions

(
ψ̄ψ

)2
,

(
ψ̄ γ5 ψ

)2
,

(
ψ̄ γµ ψ

)2 (
ψ̄ γµγ5 ψ

)2
,

(
ψ̄ iσµν ψ

)2
,

(
ψ̄ tψ

)2
,

(
ψ̄ γ5 tψ

)2
,

(
ψ̄ γµ tψ

)2
,

(
ψ̄ γµγ5 tψ

)2
,

(
ψ̄ iσµν tψ

)2
.
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● The most general Nf = 2 NJL Lagrangian that respects the symmetries is

L = ψ̄
(

i/∂ −m
)

ψ +Gπ

[

(

ψ̄ψ
)2

−
(

ψ̄ γ5τ ψ
)2

]

+Gω

(

ψ̄ γµ ψ
)2

+Gρ

[

(

ψ̄ γµτ ψ
)2

+
(

ψ̄ γµγ5τ ψ
)2

]

+Gh

(

ψ̄ γµγ5 ψ
)2

+Gη

[

(

ψ̄ γ5 ψ
)2

−
(

ψ̄ τ ψ
)2

]

+GT

[

(

ψ̄ iσµνψ
)2

−
(

ψ̄ iσµν
τ ψ

)2
]

✦ LI is U(1)A invariant if: Gπ = −Gη & GT = 0

ψ̄ψ ←→ σ ←→
(
JP , T

)
=

(
0+, 0

)

ψ̄ γ5τ ψ ←→ π ←→
(
JP , T

)
=

(
0−, 1

)

ψ̄ γµ ψ ←→ ω ←→
(
JP , T

)
=

(
1−, 0

)

ψ̄ γµτ ψ ←→ ρ ←→
(
JP , T

)
=

(
1−, 1

)

ψ̄ γµγ5 ψ ←→ f1, h1 ←→
(
JP , T

)
=

(
1+, 0

)

ψ̄ γµγ5τ ψ ←→ a1 ←→
(
JP , T

)
=

(
1+, 1

)

ψ̄τψ ←→ a0 ←→
(
JP , T

)
=

(
0+, 1

)

ψ̄ γ5 ψ ←→ η, η′ ←→
(
JP , T

)
=

(
0−, 0

)
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● The most general Nf = 2 NJL Lagrangian that respects the symmetries is

LI = 1
2
Gπ

[

(

ψ̄ψ
)2

−
(

ψ̄ γ5τ ψ
)2

]

−
1
2
Gω

(

ψ̄ γµ ψ
)2

−
1
2
Gρ

[

(

ψ̄ γµτ ψ
)2

−
(

ψ̄ γµγ5τ ψ
)2

]

+ 1
2
Gf

(

ψ̄ γµγ5 ψ
)2

−
1
2
Gη

[

(

ψ̄ γ5 ψ
)2

−
(

ψ̄ τ ψ
)2

]

−
1
2
GT

[

(

ψ̄ iσµνψ
)2

−
(

ψ̄ iσµν
τ ψ

)2
]

✦ LI is U(1)A invariant if: Gπ = −Gη & GT = 0

● The most general Nf = 3 NJL Lagrangian that respects the symmetries is

LI = Gπ

[

1
6

(

ψ̄ψ
)2

+
(

ψ̄ tψ
)2

−
1
6

(

ψ̄ γ5 ψ
)2

−
(

ψ̄ γ5 tψ
)2

]

−
1

2
Gρ

[

(

ψ̄ γµ tψ
)2

+
(

ψ̄ γµγ5 tψ
)2

]

−
1

2
Gω

(

ψ̄ γµ ψ
)2

−
1

2
Gf

(

ψ̄ γµγ5 ψ
)2

● Enlarging the SU(Nf )V ⊗ SU(Nf )A chiral group from Nf = 2 to Nf = 3
reduces the number of coupling from six to four

● The Nf = 3 Lagrangian is automatically U(1)A invariant

✦ U(1)A is then often broken by the ’t Hooft term – a 6-quark interaction

L
(6)
I = K

[
det

(
ψ̄(1 + γ5)ψ

)
+ det

(
ψ̄(1− γ5)ψ

)]



NJL Interaction Kernel
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● Using Wick’s theorem and the NJL Lagrangian their are 2 diagrams for

the interaction between a quark and an anti-quark

γ

δ

α

β
Direct

−

Time

δ α

γ βExchange

2iG
[

ΩiαβΩ
i
γδ − ΩiαδΩ

i
γβ

]

● Using Fierz transformations can express each exchange term as a sum of

direct terms

● The SU(2) NJL interaction kernel then takes the form

Kαβ,γδ = 2iGπ

[

(1)αβ (1)γδ − (γ5τ )αβ (γ5τ )γδ

]

− 2iGω (γµ)αβ (γ
µ)γδ

− 2iGρ

[

(γµτ )αβ (γ
µ
τ )γδ + (γµγ5τ )αβ (γ

µγ5τ )γδ

]

+ . . .

● This kernel enters the NJL gap and meson Bethe-Salpeter equations



Regularization Schemes
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● The NJL model is non-renormalizable =⇒ cannot remove regularization

✦ regularization parameter(s) play a dynamical role

● Popular choices are:

✦ 3-momentum cutoff: ~p2 < Λ2

✦ 4-momentum cutoff p2E < Λ2

✦ Pauli-Villars, etc

● We will use the proper-time regularization scheme

1

Xn
=

1

(n− 1)!

∫
∞

0
dτ τn−1 e−τ X →

1

(n− 1)!

∫ 1/Λ2
IR

1/Λ2
UV

dτ τn−1 e−τ X

✦ only ΛUV is need to render the theory finite

✦ however, as we shall see, ΛIR plays a very important role; it prevents

quarks going on their mass shell and hence simulates confinement



NJL Gap Equation
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−1

=
−1

+ +

π, ρ, ω, . . .

+ . . .

● The NJL gap equation has the form

S−1(k) = S−1
0 (k)− Σ(k) = [/k −m]−

∑

j

∫
d4ℓ

(2π)4
Tr

[

S(ℓ) Ω
j
]

Ωj

● The only piece of the interaction kernel that contributes is:

Kσ
αβ,γδ = 2iGπ (1)γδ (1)αβ

● Solving this equation give a quark propagator of the form

S−1(k) = /k −M + iε

● The constituent quark mass satisfies the equation

M = m+ 48iGπM

∫
d4ℓ

(2π)4
1

ℓ2 −M2 + iε
= m+M

3Gπ
π2

∫

dτ
e−τ M

2

τ2



NJL Gap Equation (2)
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M = m+M
3Gπ
π2

∫

dτ
e−τ M

2

τ2

● For the case m = 0 the gap equation has two solutions:

✦ trivial solution: M = 0 & non-trivial solution: M 6= 0

● Which solution does nature choose, that is, which solution minimizes the

energy. Compare vacuum energy density, E , for each case

E(M)− E(M = 0) = −
3

4π2

∫

dτ
1

τ3

(

e−τM
2
− 1

)

+
M2

4Gπ
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Gπ = Gπ,crit

Gπ = 20 GeV−2

Gπ = 30 GeV−2

● For Gπ > Gπ,crit the lowest energy

solution has M 6= 0

● Therefore for Gπ > Gπ,crit NJL has

DCSB

● DCSB⇐⇒ generates mass from

nothing



NJL & DSE gap equations
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● NJL constituent mass is given by: M = m− 2Gπ
〈
ψ̄ψ

〉

● Chiral condensate is defined by

〈
ψ̄ψ

〉
≡ lim

x→y
Tr [−iS(x− y)] = −

∫
d4k

(2π)4
Tr [i S(k)]

● Mass is generated via interaction with vacuum

● Dynamically generated quark masses ⇐⇒ 〈ψψ〉 6= 0

● Difference in mass functions should have observable consequences!



Confinement in NJL model
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● In general the NJL model is not confining; quark propagator is simply

S(k) =
1

/k −M + iε
=

/k +M

k2 −M2 + iε

✦ quark propagator has a pole =⇒ quarks are part of physical spectrum

● However the proper-time scheme is unique

S(k) =

∫
∞

0
dτ (/k +M) e−τ(k

2−M2) →

[

e−ΛUV (k2−M2)−e−ΛIR(k2−M2)
]

k2−M2
︸ ︷︷ ︸

≡Z(k2)

[/k +M ]

● quark propagator does not have a pole: Z(k2)
k2→M2

= ΛIR − ΛUV 6=∞

● Are confinement and DCSB related?

✦ NJL model is proof that DCSB can exist without confinement

✦ however their is no example of model with confinement and no DCSB!



From Current to Constituent Quarks
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● Both the DSE and NJL gap equations take current quarks and dress them

non-perturbatively so that they become constituent quarks

● Constituent quarks are extended non-trivial quasi-particles

● Consider an arbitrary current interacting with the current quarks

= + + + · · ·

● This series can be represented by an integral equation

p

p
′

=

p

p
′

+

p

p
′

=

p

p
′

+

p

p
′

✦ This is the inhomogeneous Bethe-Salpeter equation (BSE)



Constituent Quark EM Form Factors
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● The quark-photon vertex is given by the Bethe-Salpeter equation – where

the driving term is an external vector current: γµ
(
1
6 + τ3

2

)

p

p

=

p

p
′

+

p

p
′

q

p

p
′

=
q

p

p
′

+
q

p

p
′

● Lorentz covariance implies that the quark–photon vertex has the structure

Γµγqq(p
′, p) =

∑12

i=1
λµi fi(p

′2, p2, q2) = ΓµL(p
′, p) + ΓµT (p

′, p)

● In QCD the properties of the quark–photon vertex are governed by the

quark propagator and the quark–gluon vertex

● Ward-Takahashi identity constrains ΓµL piece of quark–photon vertex

qµ Γ
µ
γqq = qµ Γ

µ
L = Q̂

[
S−1(p′)− S−1(p)

]
, qµ Γ

µ
T = 0

● This BSE is difficult to solve in DSE framework, however in the NJL model

it is straight forward



NJL Constituent Quark Form Factors
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p

p

=

p

p
′

+

p

p
′

Kαβ,γδ =− 2iGω (γµ)αβ (γ
µ)γδ

− 2iGρ (γµτ )αβ (γ
µ
τ )γδ

● In general the quark–photon vertex has form

Γµγqq(p
′, p) =

1

6
Λµω(p

′, p) +
τ3
2
Λµρ(p

′, p).

● Recall Ward–Takahashi identity [S−1(p) = /p−M + iε]

qµ Γ
µ
γqq(p

′, p) =

(
1

6
+
τ3
2

)
[
S−1(p′)− S−1(p)

]NJL
−→

(
1

6
+
τ3
2

)

/q

● NJL the vertex must be of form Λµω,ρ = γµ + transverse terms

● Solving the NJL inhomogeneous BSE for the quark–photon vertex gives

Λµω(p
′, p) = γµ+

(

γµ −
qµ/q

q2

)

F̂1ω(q
2), Λµρ(p

′, p) = γµ+

(

γµ −
qµ/q

q2

)

F̂1ρ(q
2)



NJL Results
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● Putting the quark-photon vertex on-shell gives

〈Jµ〉 = ū(p′) Γµγqq u(p) = γµ 1
6 [1 + F̂1ω] + γµ τ3

2 [1 + F̂1ρ] ≡ γ
µ
[
1
6 F1ω + τ3

2 F1ρ

]

● The up and down constituent quark form factors are given by [Q2 = −q2]

F1U (Q
2) = 1

6 F1ω(Q
2) + 1

2 F1ρ(Q
2) & F1D(Q

2) = 1
6 F1ω(Q

2)− 1
2 F1ρ(Q

2)

● Timelike poles at: F1ω(Q
2 = −m2

ω) & F1ρ(Q
2 = −m2

ρ)
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DSE Quark Form Factors
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q

p

p
′

=
q

p

p
′

+
q

p

p
′

qµ Γ
µ
γqq(p

′, p) = Q̂
[
S−1(p′)− S−1(p)

]

● The longitudinal piece of the quark-photon vertex, Γµγqq = ΓµL + ΓµT , is

completely determined by the quark propagator

● This result is encapsulated in the Ball-Chiu vertex

ΓµBC = A(p′2)+A(p2)
2 γµ − A(p′2)−A(p2)

p′2−p2
i(p′ + p)µ + 1

2
A(p′2)−A(p2)

p′2−p2
(/p

′ + /p)(p
′ + p)µ

● Recall: S−1(p) = i/pA(p2) +B(p2) – it is then straight forward to show

ΓµBC satisfies the WTI

● The nature of the quark-photon vertex is largely controlled by the

structure of the quark-gluon vertex

✦ different quark-gluon vertices can give very similar quark-propagators

✦ therefore transverse piece of Γµγqq sensitive to the quark-gluon vertex

● Recall rainbow ladder: Γa,µgqq =
λa

2 γ
µ



DSE Quark Anomalous Magnetic Moment
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● Include σµνqν τ5(p
′, p) [anomalous chromomagnetic] term in quark–gluon

vertex: Γa,µgqq(p′, p) =
λa

2 [γµ + σµνqν τ5(p
′, p)]

✦ beyond rainbow ladder – has been absent from previous calculations

● Generates anomalous electromagnetic term in quark–photon vertex

● Confined quarks =⇒ no mass shell – anomalous mm ill defined

✦ however associate with iσµνqν piece of quark–photon vertex

q

p

p
′

=
q

p

p
′

+
q

p

p
′

● L. Chang, Y. -X. Liu, C. D. Roberts, Phys.

Rev. Lett. 106, 072001 (2011).

● Investigate effect on

nucleon form factors 0 1 2 3 4 5
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