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Building Blocks of the Universe
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● Fundamental constituents of the Standard Model (SM) of particle physics

✦ Quantum Chromodynamics (QCD) & Electroweak (EW) theories

● Local non-abelian gauge field theories

✦ a special type of relativistic quantum field theory

● SM Lagrangian has gauge symmetries: SU(3)c ⊗ SU(2)L ⊗ UY (1)

✦ SM has 19 parameters which need to be determined by experiment

✦ however only 2 parameters are intrinsic to QCD: ΛQCD & θQCD 6 10−9



Motivation of Lectures
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● Explore non-perturbative structure of QCD as it relates to hadron structure

● The tools available are:

✦ lattice QCD

✦ chiral perturbation theory

✦ QCD inspired models

● We will investigate QCDs Dyson-Schwinger Equations (DSEs)

✦ these are the equations of motion of the theory; represented by an

infinite tower of coupled integral equations

✦ a solution to these equations is a solution to QCD

✦ in practice this tower must be truncated ⇐⇒ modeling

● Some of the advantages of models over lattice and χPT are

✦ can explore a wider array of physics topics

✦ provide intuition

✦ facilitate a dynamic interplay between experiment and theory



Plan of Lectures
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● Part 1 – introduction to QCD and the non-perturbative frameworks of the

Dyson–Schwinger equations (DSEs) and the Nambu–Jona-Lasinio (NJL)

model

● Part 2 – pion and nucleon form factors within the DSE and NJL

approaches to non-perturbative QCD

● Part 3 – parton distribution functions within the DSE and NJL approaches

to non-perturbative QCD

● Part 4 – the study of quark degrees of freedom in nuclei and nuclear

matter within the NJL approach to non-perturbative QCD
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Quantum Chromodynamics (QCD)
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● QCD is the fundamental theory of the strong interaction, where the quarks

and gluons are the basic degrees of freedom
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● QCD is a non-abelian gauge theory whose dynamics are governed by the

Lagrangian
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● Gluon self-interactions have many profound consequences



Asymptotic Freedom
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● At large Q2 or short distances interaction

strength becomes logarithmically small

✦ a striking features of QCD

✦ QED has opposite behaviour: αe ≃
1

137

αLO
s (Q2) =

4π
(

11− 2
3 Nf

)

ln
(

Q2/Λ2
QCD

)

● Asymptotic Freedom – 2004 Nobel Prize – Gross, Politzer and Wilczek

● ΛQCD is the most important parameter in QCD

✦ ΛQCD ≃ 200MeV ≃ 1 fm−1 – sets scale, QCDs “standard kilogram”

● Momentum-dependent coupling ⇐⇒ coupling depends on separation

✦ interaction strength between quarks and gluons grows with separation



Asymptotic Freedom (2)
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● Use 1 fm = 1
197.3 MeV−1 to plot αs(Q) as function of separation r

● For r ≃ 0.2 fm = 1
4 rproton coupling is huge!

✦ perturbation theory completely breaks down in this domain

● What happens to coupling as r → ∞? Is αs(r) unbounded?

✦ could it require an infinite amount of energy to extract a quark or gluon

from inside a hadron? Confinement

● QCD and hadron physics is inherently non-perturbative!



Confinement
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● Hadron structure & QCD is characterized by two emergent phenomena

✦ confinement and dynamical chiral symmetry breaking (DCSB)

● Both of these phenomena are not evident from the QCD Lagrangian

● All known hadrons are colour singlets, even though they are composed of

coloured quarks and gluons: baryons (qqq) & mesons (q̄q)

● Confinement conjecture: particles that carry the colour charge cannot be

isolated and can therefore not be directly observed

● Related to $1 million Millennium Prize:

✦ for SU(3)c must prove that glueballs have a lower bound on their mass

✦ partial explanation as to why strong force is short ranged

● Understanding confinement should be intimately related to the infra-red

properties of αs(Q
2) or QCDs β-function: β(gs) = µ ∂gs

∂µ & αs =
g2s
4π



Chiral Symmetry
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● Define left- and right-handed fields: ψR,L = 1
2 (1± γ5)ψ

● The QCD Lagrangian then takes the form [M = diag (mu,md,ms, . . .)]

L = ψ̄L i /D ψL + ψ̄R i /D ψR − ψ̄R MψL − ψ̄LMψR −
1

4
F a
µνF

µν
a

● Therefore for M = 0 QCD Lagrangian is chirally symmetric

SU(Nf )L ⊗ SU(Nf )R =⇒ ψL,R → e−i ωa
L,R Ta

ψL,R

● SU(Nf )L ⊗ SU(Nf )R chiral symmetry is equivalent to

SU(Nf )V ⊗ SU(Nf )A =⇒ ψ → e−i ωa
V Ta

ψ, ψ → e−i ωa
A Ta γ5ψ

● Global symmetries: Wigner-Weyl or Nambu-Goldstone modes

✦ Wigner-Weyl mode: vacuum is also invariant

✦ Nambu-Goldstone mode: vacuum breaks symmetry



Dynamical Chiral Symmetry Breaking
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● Recall for M = 0 QCD Lagrangian is invariant under

SU(Nf )L ⊗ SU(Nf )R ⇐⇒ SU(Nf )V ⊗ SU(Nf )A

● Transformations SU(Nf )V form generalized isospin subgroup

✦ hadronic mass spectrum tells us nature respects isospin symmetry

✦ mπ− ≃ mπ0 ≃ mπ+ , mp ≃ mn, mΣ− ≃ mΣ0 ≃ mΣ+

✦ therefore SU(Nf )V is realized in the Wigner-Weyl mode

● SU(Nf )A transformations mix states of opposite parities

✦ expect hadronic mass spectrum to exhibit parity degeneracy

✦ ma1 −mρ ≃ 490MeV, mN(940) −mN∗(1535) ≃ 600MeV, etc

✦ recall: mu ≃ md ≃ 5MeV =⇒ cannot produce large mass splittings

✦ therefore SU(Nf )A must be realized in the Nambu-Goldstone mode

● Therefore chiral symmetry is dynamically broken

SU(Nf )L ⊗ SU(Nf )R
vacuum/interactions

=⇒ SU(Nf )V



Goldstone’s Theorem
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● Goldstone’s theorem: if a continuous global symmetry is broken

dynamically, then for each broken group generator there must appear in

the theory a massless spinless particle (Goldstone boson)

● QCDs chiral symmetry is explicitly broken by small current quark masses

mu = 1.5− 3.3MeV, md = 3.5− 6.0MeV, ms = 70− 130MeV (≪ ΛQCD)

● For Nf = 3 expect N2
f − 1 = 8 Goldstone bosons

✦ π+, π0, π−, K+, K0, K̄0, K−, η

✦ physical particle masses are not zero – mπ ∼ 140MeV, mK ∼ 495MeV

etc – because of explicit chiral symmetry breaking: mu,d,s 6= 0

● Chiral symmetry and its dynamical breaking has profound consequences

for the QCD mass spectrum and hadron structure

✦ this is not apparent from the QCD Lagrangian and is an innately

non-perturbative (emergent) phenomena

● Need non-perturbative methods to fully understand consequences of

QCD



Chiral Condensate; GT & GMOR Relations
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● If a symmetry is dynamically broken some operator must acquire a

vacuum expectation value, that is, 〈0 |Θ| 0〉 6= 0 ❁

✦ operator must be Lorentz scalar: QCD =⇒ composite operator

✦ colour singlet

● Simplest candidate for the DSCB order parameter is
〈

ψ̄ψ
〉

=
〈

ūu+ d̄d
〉

〈

0
∣

∣ψ̄ψ
∣

∣ 0
〉µ=2GeV

MS
≃ − (230MeV)3

● Some important non-trivial consequences of DCSB (M = 0)

✦ fπ gπNN =MN gA Goldberger–Treiman (GT) relation

[we will study this relation in detail later]

✦ f2π m
2
π = 1

2 (mu +md)
〈

ūu+ d̄d
〉

Gell-Mann–Oakes–Renner (GMOR)

❁ This is the standard interpretation, Craig will discuss his idea that in fact

the vacuum condensate equals zero and the order parameters for DCSB

are the in-hadron condensates, for example, 〈π |q̄q|π〉



Proof of Gell-Mann–Oakes–Renner
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● The axial-vector and pseudoscalar currents are

Aµ
a(x) = ψ(x) γµγ5 ta ψ(x) & Pa(x) = ψ(x) iγ5 ta ψ(x).

● Pion to vacuum matrix elements of these operators are

〈0 |Aµ
a(0)|πb(p)〉 = δab i fπ p

µ & 〈0 |Pa(0)|πb(p)〉 = δab gπ.

● PCAC: ∂µA
µ
a = ψ iγ5 {m, ta}ψ =⇒ ∂µA

µ
a = (mu +md)Pa,

● 〈0 |∂µA
µ
a |πb(p)〉 = δab fπ p

2 = (mu +md) 〈0 |Pa|πb(p)〉 = (mu +md) δab gπ

● This gives the exact relation in QCD:

● In chiral limit – fπm
2
π = 0 – important consequences

✦ ground state: mπ = 0 =⇒ fπ 6= 0; excited states: mπ 6= 0 =⇒ fπ = 0

✦ decay constants for pseudoscalar excited states are zero

● To complete the proof: [Qa
A, Pb] = −δab

i
2 ψψ;

∫ d3p

2 p0(2π3)3
|πa〉 〈πa| = 1

fπm
2
π = (mu +md) gπ



Dyson–Schwinger Equations
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● DSEs are the equations of motion for a quantum field theory

✦ infinite tower of coupled integral equations

✦ usually a solution is only possible after a truncation

● Some important aspects of the Dyson–Schwinger Equations approach:

✦ study hadrons as bound states of quarks AND gluons

✦ Poincaré covariance

✦ renormalizable

✦ exhibits dynamical chiral symmetry breaking

➞ generation of fermion mass from nothing

✦ usually formulated in Euclidean space

✦ yields Schwinger functions ⇐⇒ Euclidean space Green functions

● Very useful tool for building/guiding models of QCD



QCDs Dyson–Schwinger Equations
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ETC!



QCDs Gap Equation: simplest DSE
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● QCDs gap equation =⇒ quark propagator – most important DSE

−1

=
−1

+

✦ ingredients – dressed gluon propagator & quark-gluon vertex

S(p)−1 = Z2

(

i /p+m0

)

+ Z1

∫

d4k

(2π)4
g2Dµν(p− k)

λa

2
γµ S(q) Γa,ν(p, k)

● Ingredients

✦ S(p) dressed quark propagator

✦ Dµν(p− k) dressed gluon propagator

✦ Γa,ν(p, k) dressed quark-gluon vertex

✦ m0 bare current quark mass

✦ Z1, Z2 vertex and quark wave function renormalization constants

● Recall Dµν and Γν,a satisfy their own DSE



Gap Equation: Key Ingredients
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−1

=
−1

+

● Dressed gluon propagator

Dµν(p) =

(

δµν +
qµqν

q2

)

∆(q2) + ξ
qµqν

q4

● Characterized by one dressing function

∆(p2) & a gauge parameter ξ

● Choose Landau gauge ξ = 0
(fixed point of RG)
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A. C. Aguilar et al, Phys. Rev. D81, 034003 (2010).

● Quark–gluon vertex

Γa,µ
gqq(p

′, p) =
λa

2

∑12

i=1
λµi fi(p

′2, p2, q2) = Γµ
L + Γµ

T



Challenge: Symmetry Preserving Trucations
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−1

=
−1

+

S(p)−1 = Z2

(

i /p+m0

)

+ Z1

∫

d4k

(2π)4
g2Dµν(p− k)

λa

2
γµ S(k)

λa

2
Γν(p, k)

● Need a sensible truncation scheme that must maintain symmetries of

theory

● Conservation of vector and axial-vector currents is critical to a robust

description of hadron structure. Breaking the

✦ vector current =⇒ will not conserve charge

✦ axial current incorrectly =⇒ will not respect chiral symmetry (M = 0)

● Axial–Vector Ward–Takahashi identity - encapsulates structure of DCSB

qµ Γ
µ,i
5 (p′, p) = S−1(p′) γ5 ti + ti γ5 S

−1(p) + 2mΓi
π(p

′, p)

✦ relates inhomogeneous axial-vector & pseudoscalar vertices with quark

propagator



Rainbow Ladder Truncation
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−1

=
−1

+

● Rainbow-ladder – a symmetry preserving truncation to QCDs DSEs

1
4π g

2Dµν(p− k) Γν(p, k) −→ αeff(p− k)Dfree
µν (p− k) γν

● Need model for αeff(k
2) – must agree with perturbative QCD as k2 → ∞

✦ the “Maris–Tandy model” is historically the most successful example
[P. Maris and P.C. Tandy, Phys. Rev. C 60, 055214 (1999).]

● Maris–Tandy effective running coupling is given by

αeff(k
2)

k2
=
πD

ω6
k2 e−k2/ω2

+
24π

25

1− e−k2/µ2

k2

[

ln

[

e2− 1+
(

1+ k2

Λ2
QCD

)2
]]−1

✦ µ = 1GeV, ΛQCD = Λ
(4)

M̄S
= 0.234GeV, ωD = (0.72GeV)3

● Correct LO perturbative limit is build in: αeff(k
2)

k2→∞
−→ 12

25
π

ln[k2/Λ2
QCD]

✦ one parameter model for QCDs infra-red behaviour



QCDs Quark Propagator
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A. Holl, et al, Phys. Rev. C 71, 065204 (2005)
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● Quark propagator: S(p) =
Z(p2)

i/p+M(p2)
=

1

i/pA(p2) +B(p2)

● Dynamical mass generation, M ∝ 〈q̄q〉 ⇐⇒ 〈q̄q〉 6= 0 ⇐⇒ DCSB

✦ Higgs mechanism is almost irrelevant for light quarks

● DCSB generates 98% of the mass in the visible universe

● In perturbative QCD: B(p2) = m
[

1− α
π ln

(

p2

m2

)

+ . . .
]

m→0
→ 0

● QCD is an innately non-perturbative theory! The only example in nature



Solving the QCDs Gap Equation
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S(p, µ2)−1 = Z2(µ
2,Λ2)S0(p) +

4
3 Z1(µ

2,Λ2)

∫

Λ
g2Dµν(p− k)γµS(k, µ2)Γν(p, k)

● Use quark propagator: S−1(p, µ2) = i/pA(p
2, µ2) +B(p2, µ2)

● Rainbow ladder truncation:

g2

4π
Γν(p, k) → αeff(k

2) γµ, Dµν(k) → Dfree
µν (k)

● Use off-shell subtraction scheme for renormalization:

S(p)−1
∣

∣

∣

p2=µ2
= i /p+m(µ2)

✦ m(µ2) is the renormalized current quark mass: m(µ2) = m0(Λ2)
Zm(µ2,Λ2)

● Gap equation becomes set of coupled integral eqs. for A(p2) & B(p2):

A(p2, µ2) = Z2(µ
2,Λ2)A0(p

2,Λ2) & B(p2, µ2) = Z2(µ
2,Λ2)B0(p

2,Λ2)

● Then solve the two coupled equations by iteration



Charting Interaction between light quarks
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● Formally, hadronic observables are related to QCDs Schwinger functions

● For example, the quark propagator is a Schwinger Function and the gap

equation relates this to:

✦ the gluon propagator: Dµν(k)

✦ the quark-gluon vertex Γa,µ
γqq(p, p′)

✦ the quark propagator is the building block of hadrons in the DSEs

● The DSEs are therefore a tool that can relate QCDs Schwinger Functions

to hadronic observables

● Measurements of, for example, the hadron mass spectrum, elastic and

transition form factors, PDFs, etc must provide information on the

long-range interaction between light quarks and gluons

● Interplay between DSEs & experiment provides a sufficient framework to

extract infra-red behaviour of QCDs Schwinger functions

● Within DSE framework can map out infra-red properties of QCDs running

coupling αs(Q
2) ⇐⇒ confinement



Charting a Path Forward
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● The full machinery of the DSE with a sophisticated quark-gluon vertex

gives a solid connection between QCD and experiment

✦ remains much to be explored, notably baryon PDFs, TMDs & GPDs

✦ however DSEs calculations are time & resource intensive – useful to

have some physics intuition before embarking upon DSE studies

✦ very good reason to explore hadron and nuclear structure with a

simplified quark-gluon interaction

● Replace gluon propagator with a δ-function in configuration space

g2Dµν(p− k)Γν(p, k) →
1

m2
G

gµν γ
ν

● This “contact interaction” framework is basically equivalent to the

Nambu–Jona Lasinio (NJL) model

● The NJL model is powerful tool and can guide experiment

✦ use as exploratory tool for subsequent DSE investigation
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