Hadron Phenomenology and QCDs DSEs

Lecture 1: An Introduction to Non-Perturbative QCD

Ian Cloët University of Adelaide & Argonne National Laboratory

Collaborators

Wolfgang Bentz – Tokai University Craig Roberts – Argonne National Laboratory Anthony Thomas – University of Adelaide David Wilson – Argonne National Laboratory

USC Summer Academy on Non-Perturbative Physics, July–August 2012

Building Blocks of the Universe

FERMIONS matter constituents spin = 1/2, 3/2, 5/2,										
Lep	tons spin =1/		Quarks spin =1/2							
Flavor	Mass GeV/c ²	Electric charge		Flavor	Approx. Mass GeV/c ²	Electric charge				
ℓ lightest neutrino*	(0-0.13)×10 ⁻⁹	0		u up	0.002	2/3				
e electron	0.000511	-1		d down	0.005	-1/3				
𝔑 middle neutrino*	(0.009-0.13)×10 ⁻⁹	0		C charm	1.3	2/3				
μ muon	0.106	-1		S strange	0.1	-1/3				
\mathcal{V}_{H} heaviest neutrino*	(0.04-0.14)×10 ⁻⁹	0		t top	173	2/3				
τ tau	1.777	-1		bottom	4.2	-1/3				

BOSONS force carriers spin = 0, 1, 2,								
Unified Electroweak spin = 1				Strong (color) spin =1				
Name	Mass GeV/c ²	Electric charge		Name	Mass GeV/c ²	Electric charge		
Y photon	0	0		g gluon	0	0		
W	80.39	-1						
W+ W bosons	80.39	+1		Higgs boson				
Z ⁰ Z boson	91.188	0						

• Fundamental constituents of the Standard Model (SM) of particle physics

- Quantum Chromodynamics (QCD) & Electroweak (EW) theories
- Local non-abelian gauge field theories
 - a special type of relativistic quantum field theory
- SM Lagrangian has gauge symmetries: $SU(3)_c \otimes SU(2)_L \otimes U_Y(1)$
 - SM has 19 parameters which need to be determined by experiment
 - however only 2 parameters are intrinsic to QCD: $\Lambda_{QCD} \& \theta_{QCD} \le 10^{-9}$

- Explore non-perturbative structure of QCD as it relates to hadron structure
- The tools available are:
 - ♦ lattice QCD
 - chiral perturbation theory
 - QCD inspired models
- We will investigate QCDs Dyson-Schwinger Equations (DSEs)
 - these are the equations of motion of the theory; represented by an infinite tower of coupled integral equations
 - a solution to these equations is a solution to QCD
 - ♦ in practice this tower must be truncated ⇐⇒ modeling
- Some of the advantages of models over lattice and χ PT are
 - can explore a wider array of physics topics
 - provide intuition
 - facilitate a dynamic interplay between experiment and theory

- Part 1 introduction to QCD and the non-perturbative frameworks of the Dyson–Schwinger equations (DSEs) and the Nambu–Jona-Lasinio (NJL) model
- Part 2 pion and nucleon form factors within the DSE and NJL approaches to non-perturbative QCD
- Part 3 parton distribution functions within the DSE and NJL approaches to non-perturbative QCD
- Part 4 the study of quark degrees of freedom in nuclei and nuclear matter within the NJL approach to non-perturbative QCD

Recommended References

- Y. Nambu and G. Jona-Lasinio, "Dynamical model of elementary particles based on an analogy with superconductivity I", Phys. Rev. 122, 345 (1961).
- Y. Nambu and G. Jona-Lasinio, "Dynamical model of elementary particles based on an analogy with superconductivity II", Phys. Rev. 124, 246 (1961).
- U. Vogl and W. Weise, "The Nambu and Jona Lasinio model: Its implications for hadrons and nuclei", Prog. Part. Nucl. Phys. 27, 195 (1991).
- S. P. Klevansky, "*The Nambu-Jona-Lasinio model of quantum chromodynamics*," Rev. Mod. Phys. **64**, 649 (1992).
- C. D. Roberts and A. G. Williams, "*Dyson-Schwinger equations and their application to hadronic physics*", Prog. Part. Nucl. Phys. **3**3 (1994) 477.
- P. Maris and C. D. Roberts, "*Dyson-Schwinger equations: A tool for hadron physics*", Int. J. Mod. Phys. E **12**, 297 (2003).
- I. C. Cloët, G. Eichmann, B. El-Bennich, T. Klahn and C. D. Roberts, "Survey of nucleon electromagnetic form factors", Few Body Syst. 46, 1 (2009).
- I. C. Cloet, W. Bentz and A. W. Thomas, "Isovector EMC effect explains the NuTeV anomaly", Phys. Rev. Lett. 102, 252301 (2009).

Quantum Chromodynamics (QCD)

 QCD is the fundamental theory of the strong interaction, where the quarks and gluons are the basic degrees of freedom

 $(q_{\alpha})_{f}^{A} \quad \begin{cases} \text{colour} \quad A = 1, 2, 3\\ \text{spin} \quad \alpha = \uparrow, \downarrow \\ \text{flavour} \quad f = u, d, s, c, b, t \end{cases} \quad A_{\mu}^{a} \quad \begin{cases} \text{colour} \quad a = 1, \dots, 8\\ \text{spin} \quad \varepsilon_{\mu}^{\pm} \end{cases}$

 QCD is a non-abelian gauge theory whose dynamics are governed by the Lagrangian

$$\mathcal{L} = \bar{q}_f \left(i \not{\!\!D} + m_f \right) q_f - \frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a; \qquad i \not{\!\!D} = \gamma^\mu \left(i \partial_\mu + g_s A^a_\mu T^a \right) F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g_s f_{abc} A^b_\mu A^c_\nu$$

 β, B α, A

Gluon self-interactions have many profound consequences

Asymptotic Freedom

- At large Q^2 or short distances interaction strength becomes logarithmically small
 - a striking features of QCD
 - QED has opposite behaviour: $\alpha_e \simeq \frac{1}{137}$

$$\alpha_s^{LO}(Q^2) = \frac{4\pi}{\left(11 - \frac{2}{3}N_f\right)\ln\left(Q^2/\Lambda_{QCD}^2\right)}$$

- Asymptotic Freedom 2004 Nobel Prize Gross, Politzer and Wilczek
- Λ_{QCD} is the most important parameter in QCD
 - $\Lambda_{QCD} \simeq 200 \,\text{MeV} \simeq 1 \,\text{fm}^{-1}$ sets scale, QCDs "standard kilogram"
- Momentum-dependent coupling <i>coupling depends on separation
 - interaction strength between quarks and gluons grows with separation

Asymptotic Freedom (2)

- Use $1 \text{ fm} = \frac{1}{197.3} \text{ MeV}^{-1}$ to plot $\alpha_s(Q)$ as function of separation r
- For $r \simeq 0.2 \, \text{fm} = rac{1}{4} \, r_{\text{proton}}$ coupling is huge!
 - perturbation theory completely breaks down in this domain
- What happens to coupling as $r \to \infty$? Is $\alpha_s(r)$ unbounded?
 - could it require an infinite amount of energy to extract a quark or gluon from inside a hadron? *Confinement*
- QCD and hadron physics is inherently non-perturbative!

Confinement

- Hadron structure & QCD is characterized by two emergent phenomena
 - confinement and dynamical chiral symmetry breaking (DCSB)
- Both of these phenomena are not evident from the QCD Lagrangian
- All known hadrons are colour singlets, even though they are composed of coloured quarks and gluons: baryons (qqq) & mesons (q
 q
 q)
- Confinement conjecture: particles that carry the colour charge cannot be isolated and can therefore not be directly observed

Related to \$1 million Millennium Prize:

Yang-Mills Existence And Mass Gap: Prove that for any compact simple gauge group G, quantum Yang-Mills theory on \mathbb{R}^4 exists and has a mass gap $\Delta > 0$.

- for $SU(3)_c$ must prove that glueballs have a lower bound on their mass
- partial explanation as to why strong force is short ranged
- Understanding confinement should be intimately related to the infra-red properties of $\alpha_s(Q^2)$ or QCDs β -function: $\beta(g_s) = \mu \frac{\partial g_s}{\partial \mu} \& \alpha_s = \frac{g_s^2}{4\pi}$

Chiral Symmetry

- Define left- and right-handed fields: $\psi_{R,L} = \frac{1}{2} (1 \pm \gamma_5) \psi$
- The QCD Lagrangian then takes the form $[\mathbf{M} = \operatorname{diag}(m_u, m_d, m_s, \ldots)]$

$$\mathcal{L} = \bar{\psi}_L \, i \not\!\!D \, \psi_L + \bar{\psi}_R \, i \not\!\!D \, \psi_R - \bar{\psi}_R \, \mathbf{M} \, \psi_L - \bar{\psi}_L \, \mathbf{M} \, \psi_R - \frac{1}{4} \, F^a_{\mu\nu} F^{\mu\nu}_a$$

• Therefore for M = 0 QCD Lagrangian is chirally symmetric

$$SU(N_f)_L \otimes SU(N_f)_R \implies \psi_{L,R} \to e^{-i\,\omega_{L,R}^a\,T^a}\,\psi_{L,R}$$

- $SU(N_f)_L \otimes SU(N_f)_R$ chiral symmetry is equivalent to $SU(N_f)_V \otimes SU(N_f)_A \implies \psi \to e^{-i\omega_V^a T^a} \psi, \ \psi \to e^{-i\omega_A^a T^a \gamma_5} \psi$
- Global symmetries: Wigner-Weyl or Nambu-Goldstone modes
 - Wigner-Weyl mode: vacuum is also invariant
 - Nambu-Goldstone mode: vacuum breaks symmetry

Dynamical Chiral Symmetry Breaking

- Recall for $\mathbf{M} = 0$ QCD Lagrangian is invariant under $SU(N_f)_L \otimes SU(N_f)_R \iff SU(N_f)_V \otimes SU(N_f)_A$
- Transformations $SU(N_f)_V$ form generalized isospin subgroup
 - hadronic mass spectrum tells us nature respects isospin symmetry
 - $m_{\pi^-} \simeq m_{\pi^0} \simeq m_{\pi^+}, \quad m_p \simeq m_n, \quad m_{\Sigma^-} \simeq m_{\Sigma^0} \simeq m_{\Sigma^+}$
 - therefore $SU(N_f)_V$ is realized in the Wigner-Weyl mode
- $SU(N_f)_A$ transformations mix states of opposite parities
 - expect hadronic mass spectrum to exhibit parity degeneracy
 - $m_{a_1} m_{
 ho} \simeq 490 \, \text{MeV}, \quad m_{N(940)} m_{N^*(1535)} \simeq 600 \, \text{MeV}, \text{ etc}$
 - recall: $m_u \simeq m_d \simeq 5 \text{ MeV} \Longrightarrow$ cannot produce large mass splittings
 - + therefore $SU(N_f)_A$ must be realized in the Nambu-Goldstone mode

vacuum/interactions

 $SU(N_f)_V$

Therefore chiral symmetry is dynamically broken

 $SU(N_f)_L \otimes SU(N_f)_R$

Goldstone's Theorem

- Goldstone's theorem: if a continuous global symmetry is broken dynamically, then for each broken group generator there must appear in the theory a massless spinless particle (Goldstone boson)
- QCDs chiral symmetry is explicitly broken by small current quark masses

 $m_u = 1.5 - 3.3 \,\text{MeV}, \ m_d = 3.5 - 6.0 \,\text{MeV}, \ m_s = 70 - 130 \,\text{MeV} \ (\ll \Lambda_{QCD})$

• For $N_f = 3$ expect $N_f^2 - 1 = 8$ Goldstone bosons

$$\bullet \quad \pi^+, \ \pi^0, \ \pi^-, \ K^+, \ K^0, \ \bar{K}^0, \ K^-, \ \eta$$

- physical particle masses are not zero $m_{\pi} \sim 140 \text{ MeV}, m_{K} \sim 495 \text{ MeV}$ etc – because of explicit chiral symmetry breaking: $m_{u,d,s} \neq 0$
- Chiral symmetry and its dynamical breaking has profound consequences for the QCD mass spectrum and hadron structure
 - this is not apparent from the QCD Lagrangian and is an innately non-perturbative (emergent) phenomena
- Need non-perturbative methods to fully understand consequences of QCD

Chiral Condensate; GT & GMOR Relations

- If a symmetry is dynamically broken some operator must acquire a vacuum expectation value, that is, $\langle 0 | \Theta | 0 \rangle \neq 0$ &
 - ♦ operator must be Lorentz scalar: QCD ⇒ composite operator
 - colour singlet
- Simplest candidate for the DSCB order parameter is $\langle \bar{\psi}\psi
 angle = \langle ar{u}u + ar{d}d
 angle$

$$\left\langle 0 \left| \bar{\psi} \psi \right| 0 \right\rangle_{\overline{\mathrm{MS}}}^{\mu=2\,\mathrm{GeV}} \simeq - \left(230\,\mathrm{MeV} \right)^3$$

- Some important non-trivial consequences of DCSB (M = 0)
 - $f_{\pi} g_{\pi NN} = M_N g_A$ Goldberger–Treiman (GT) relation [we will study this relation in detail later]

•
$$f_{\pi}^2 m_{\pi}^2 = \frac{1}{2} (m_u + m_d) \langle \bar{u}u + \bar{d}d \rangle$$
 Gell-Mann–Oakes–Renner (GMOF

Solution This is the standard interpretation, Craig will discuss his idea that in fact the vacuum condensate equals zero and the order parameters for DCSB are the in-hadron condensates, for example, $\langle \pi | \bar{q}q | \pi \rangle$

Proof of Gell-Mann–Oakes–Renner

The axial-vector and pseudoscalar currents are

$$A_a^{\mu}(x) = \overline{\psi}(x) \gamma^{\mu} \gamma_5 t_a \psi(x) \quad \& \quad P_a(x) = \overline{\psi}(x) i \gamma_5 t_a \psi(x).$$

• Pion to vacuum matrix elements of these operators are $\langle 0 | A_a^{\mu}(0) | \pi_b(p) \rangle = \delta_{ab} i f_{\pi} p^{\mu}$ & $\langle 0 | P_a(0) | \pi_b(p) \rangle = \delta_{ab} g_{\pi}.$

• PCAC: $\partial_{\mu}A^{\mu}_{a} = \overline{\psi} i\gamma_{5} \{m, t_{a}\} \psi \implies \partial_{\mu}A^{\mu}_{a} = (m_{u} + m_{d}) P_{a},$

• $\langle 0 | \partial_{\mu} A_{a}^{\mu} | \pi_{b}(p) \rangle = \delta_{ab} f_{\pi} p^{2} = (m_{u} + m_{d}) \langle 0 | P_{a} | \pi_{b}(p) \rangle = (m_{u} + m_{d}) \delta_{ab} g_{\pi}$

• This gives the exact relation in QCD:

$$f_\pi m_\pi^2 = (m_u + m_d) g_\pi$$

- In chiral limit $f_{\pi} m_{\pi}^2 = 0$ important consequences
 - ground state: $m_{\pi} = 0 \implies f_{\pi} \neq 0$; excited states: $m_{\pi} \neq 0 \implies f_{\pi} = 0$
 - decay constants for pseudoscalar excited states are zero

• To complete the proof: $[Q_A^a, P_b] = -\delta_{ab} \frac{i}{2} \overline{\psi} \psi; \quad \int \frac{d^3p}{2 p^0 (2 \pi^3)^3} |\pi_a \rangle \langle \pi_a | = 1$

Dyson–Schwinger Equations

- DSEs are the equations of motion for a quantum field theory
 - infinite tower of coupled integral equations
 - usually a solution is only possible after a truncation
- Some important aspects of the Dyson–Schwinger Equations approach:
 - study hadrons as bound states of quarks AND gluons
 - Poincaré covariance
 - renormalizable
 - exhibits dynamical chiral symmetry breaking
 - \rightarrow generation of fermion mass from nothing
 - usually formulated in Euclidean space
 - ♦ yields Schwinger functions ⇔ Euclidean space Green functions
- Very useful tool for building/guiding models of QCD

QCDs Dyson–Schwinger Equations

ETC!

QCDs Gap Equation: simplest DSE

- - ingredients dressed gluon propagator & quark-gluon vertex

$$S(p)^{-1} = Z_2 \left(i \not p + m_0 \right) + Z_1 \int \frac{d^4k}{(2\pi)^4} g^2 D_{\mu\nu}(p-k) \frac{\lambda^a}{2} \gamma^\mu S(q) \Gamma^{a,\nu}(p,k)$$

- Ingredients
 - S(p) dressed quark propagator
 - $D_{\mu\nu}(p-k)$ dressed gluon propagator
 - $\Gamma^{a,\nu}(p,k)$ dressed quark-gluon vertex
 - m_0 bare current quark mass
 - \bullet Z₁, Z₂ vertex and quark wave function renormalization constants
- Recall $D_{\mu\nu}$ and $\Gamma_{\nu,a}$ satisfy their own DSE

$$D^{\mu\nu}(p) = \left(\delta^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)\Delta(q^2) + \xi \ \frac{q^{\mu}q^{\nu}}{q^4}$$

- Characterized by one dressing function $\Delta(p^2)$ & a gauge parameter ξ
- Choose Landau gauge $\xi = 0$ (fixed point of RG)

• Quark–gluon vertex

$$\Gamma^{a,\mu}_{gqq}(p',p) = \frac{\lambda^a}{2} \sum_{i=1}^{12} \lambda^{\mu}_i f_i(p'^2,p^2,q^2) = \Gamma^{\mu}_L + \Gamma^{\mu}_T$$

Challenge: Symmetry Preserving Trucations

$$\xrightarrow{-1} = \xrightarrow{-1} + \xrightarrow{-1}$$

$$S(p)^{-1} = Z_2 \left(i \not p + m_0 \right) + Z_1 \int \frac{d^4 k}{(2\pi)^4} g^2 D_{\mu\nu}(p-k) \frac{\lambda^a}{2} \gamma^\mu S(k) \frac{\lambda^a}{2} \Gamma^\nu(p,k)$$

- Need a sensible truncation scheme that must maintain symmetries of theory
- Conservation of vector and axial-vector currents is critical to a robust description of hadron structure. *Breaking the*
 - vector current \implies will not conserve charge
 - axial current incorrectly \implies will not respect chiral symmetry (M = 0)
- Axial–Vector Ward–Takahashi identity encapsulates structure of DCSB

 $q_{\mu} \Gamma_5^{\mu,i}(p',p) = S^{-1}(p') \gamma_5 t_i + t_i \gamma_5 S^{-1}(p) + 2 m \Gamma_{\pi}^i(p',p)$

 relates inhomogeneous axial-vector & pseudoscalar vertices with quark propagator

Rainbow Ladder Truncation

Rainbow-ladder – a symmetry preserving truncation to QCDs DSEs

$$\frac{1}{4\pi} g^2 D_{\mu\nu}(p-k) \Gamma_{\nu}(p,k) \longrightarrow \alpha_{\text{eff}}(p-k) D_{\mu\nu}^{\text{free}}(p-k) \gamma_{\nu}$$

- Need model for $\alpha_{\text{eff}}(k^2)$ must agree with perturbative QCD as $k^2 \to \infty$
 - the "*Maris–Tandy model*" is historically the most successful example [P. Maris and P.C. Tandy, Phys. Rev. C 60, 055214 (1999).]
- Maris–Tandy effective running coupling is given by

$$\frac{\alpha_{\text{eff}}(k^2)}{k^2} = \frac{\pi D}{\omega^6} k^2 e^{-k^2/\omega^2} + \frac{24\pi}{25} \frac{1 - e^{-k^2/\mu^2}}{k^2} \left[\ln \left[e^2 - 1 + \left(1 + \frac{k^2}{\Lambda_{QCD}^2} \right)^2 \right] \right]^{-1}$$

•
$$\mu = 1 \text{ GeV}, \ \Lambda_{QCD} = \Lambda_{\overline{MS}}^{(4)} = 0.234 \text{ GeV}, \ \omega D = (0.72 \text{ GeV})^3$$

Correct LO perturbative limit is build in: $\alpha_{eff}(k^2) \xrightarrow{k^2 \to \infty} \frac{12}{25} \frac{\pi}{\ln[k^2/\Lambda_{ocn}^2]}$

one parameter model for QCDs infra-red behaviour

QCDs Quark Propagator

• Quark propagator: $S(p) = \frac{Z(p^2)}{ip + M(p^2)} = \frac{1}{ip A(p^2) + B(p^2)}$

- Dynamical mass generation, $M \propto \langle \bar{q}q \rangle \iff \langle \bar{q}q \rangle \neq 0 \iff \mathsf{DCSB}$
 - Higgs mechanism is almost irrelevant for light quarks
- DCSB generates 98% of the mass in the visible universe
- In perturbative QCD: $B(p^2) = m \left[1 \frac{\alpha}{\pi} \ln \left(\frac{p^2}{m^2} \right) + \ldots \right] \stackrel{m \to 0}{\to} 0$

QCD is an innately non-perturbative theory! The only example in nature

Solving the QCDs Gap Equation

$$S(p,\mu^2)^{-1} = Z_2(\mu^2,\Lambda^2) S_0(p) + \frac{4}{3} Z_1(\mu^2,\Lambda^2) \int_{\Lambda} g^2 D_{\mu\nu}(p-k) \gamma^{\mu} S(k,\mu^2) \Gamma^{\nu}(p,k)$$

- Use quark propagator: $S^{-1}(p,\mu^2) = i p A(p^2,\mu^2) + B(p^2,\mu^2)$
- Rainbow ladder truncation:

$$\frac{g^2}{4\pi} \,\Gamma^{\nu}(p,k) \to \alpha_{\text{eff}}(k^2) \,\gamma^{\mu}, \qquad D_{\mu\nu}(k) \to D_{\mu\nu}^{\text{free}}(k)$$

• Use off-shell subtraction scheme for renormalization:

$$S(p)^{-1}\Big|_{p^2=\mu^2} = i \not p + m(\mu^2)$$

- $m(\mu^2)$ is the renormalized current quark mass: $m(\mu^2) = \frac{m_0(\Lambda^2)}{Z_m(\mu^2,\Lambda^2)}$
- Gap equation becomes set of coupled integral eqs. for $A(p^2)$ & $B(p^2)$:

 $A(p^2,\mu^2) = Z_2(\mu^2,\Lambda^2) A_0(p^2,\Lambda^2) \quad \& \quad B(p^2,\mu^2) = Z_2(\mu^2,\Lambda^2) B_0(p^2,\Lambda^2)$

Then solve the two coupled equations by iteration

Charting Interaction between light quarks

- Formally, hadronic observables are related to QCDs Schwinger functions
- For example, the quark propagator is a Schwinger Function and the gap equation relates this to:
 - the gluon propagator: $D^{\mu\nu}(k)$
 - the quark-gluon vertex $\Gamma^{a,\mu}_{\gamma qq}(p,p')$
 - the quark propagator is the building block of hadrons in the DSEs
- The DSEs are therefore a tool that can relate QCDs Schwinger Functions to hadronic observables
- Measurements of, for example, the hadron mass spectrum, elastic and transition form factors, PDFs, etc must provide information on the long-range interaction between light quarks and gluons
- Interplay between DSEs & experiment provides a sufficient framework to extract infra-red behaviour of QCDs Schwinger functions
- Within DSE framework can map out infra-red properties of QCDs running coupling $\alpha_s(Q^2) \iff$ confinement

- The full machinery of the DSE with a sophisticated quark-gluon vertex gives a solid connection between QCD and experiment
 - remains much to be explored, notably baryon PDFs, TMDs & GPDs
 - however DSEs calculations are time & resource intensive useful to have some physics intuition before embarking upon DSE studies
 - very good reason to explore hadron and nuclear structure with a simplified quark-gluon interaction
- Replace gluon propagator with a δ -function in configuration space

$$g^2 D_{\mu\nu}(p-k)\Gamma^{\nu}(p,k) \rightarrow \frac{1}{m_G^2} g_{\mu\nu} \gamma^{\nu}$$

- This "contact interaction" framework is basically equivalent to the Nambu–Jona Lasinio (NJL) model
- The NJL model is powerful tool and can guide experiment
 - use as exploratory tool for subsequent DSE investigation

Table of Contents

- building blocks
- motivation
- 🏶 plan
- recommended references
- 🏶 QCD
- asymptotic freedom
- asymptotic freedom
- QCD & hadron structure
- chiral symmetry
- DCSB
- goldstone's theorem
- chiral condensate

- proof GMOR
- DSEs
- QCDs DSEs
- QCDs gap equation
- key ingredients
- trucations
- 🕸 rainbow ladder
- quark propagator
- solving gap equation
- interaction between quarks
- 🏶 path forward