Measurement of Gencralized Form Factors near the Rion Threshold In high momentum transfer square

Amg. $18-13,2012$
r*NN* Workshop at USC

Exclusive single positively charged pion electroproduction ofi the proton

```
\mp@subsup{Q}{}{2}}<\mathbf{5.0GGV}\mp@subsup{}{}{\mathbf{2}
```


fiom CLAS

Exclusive single positively charged pion electroproduction ofi the proton

$\mathbf{Q}^{2}<\mathbf{5 . O G e V}{ }^{\mathbf{2}}$

fiom CLAS

Exclusive simgle positively charged pion electroproduction ofi the proton $\mathbf{Q}^{2}<\mathbf{5 . 0 G e V}{ }^{\mathbf{2}}$

fiom CLAS

- Historically, threshold pion in the photo- and electroproduction is the very old subject that has been receiving continuous attention firom both experiment and theory sides for many years.
- Pion mass vanishing approximation in Chiral Symmetry allows us to make an exact prediction for threshold cross section known as LET
- The LETT established the connection between charged pion electroproduction and axial form factor in nucleon.
- Therefore, It is very interesting to extracting Axial Form Factor which is dominated by \mathbf{S} - wave transverse multipole $\mathbf{E}_{\mathbf{0}_{+}}$in LCSR

Perspective of soft pion in terms of Q 2 at threshold

1990s Scherer, Koch

LCSR (Light Cone Sum Rule)

$$
\begin{aligned}
& \left\langle N\left(P^{\prime}\right) \pi(k)\right| j_{\mu}^{\mathrm{em}}(0)|p(P)\rangle=-\frac{i}{f_{\pi}} \bar{N}\left(P^{\prime}\right) \gamma_{5}\left\{\left(\gamma_{\mu} q^{2}-q_{\mu} q\right) \frac{1}{m_{N}^{2}} G_{1}^{\pi N}\left(Q^{2}\right)-\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m_{N}} G_{2}^{\pi N}\left(Q^{2}\right)\right\} p(P) \\
& \quad+\frac{i c_{\pi} g_{A}}{2 f_{\pi}\left[\left(P^{\prime}+k\right)^{2}-m_{N}^{2}\right]} N\left(P^{\prime}\right) k \gamma_{5}\left(P^{\prime}+m_{N}\right)\left\{F_{1}^{p}\left(Q^{2}\right)\left(\gamma_{\mu}-\frac{q_{\mu} q}{q^{2}}\right)+\frac{i \sigma_{\mu \nu} q^{\nu}}{2 m_{N}} F_{2}^{p}\left(Q^{2}\right)\right\} p(P)
\end{aligned}
$$

- S-wave: generalized form factors from $\operatorname{LCSR}\left(G_{1}^{\pi N}\right.$ and $\left.G_{2}^{\pi N}\right)$
- P-wave: pion emission from final state nucleon
- Constructed relating the amplitude for the radiative decay of $\Sigma^{+}(\mathbf{p} \gamma)$ to properties of the QCD vacumm in alternating magnetic field.
- An advantage of study because soft contribution to hadron form factor can be calculated in terms of DA's that enter pQCD calculation without other non-perturbative parameters.
- New technique : the expansion of the standard QCD sum rule approach to hadron properties in alternating external fields.

$$
\begin{aligned}
& \mathrm{G}_{\mathrm{D}}\left(\mathrm{Q}^{2}\right)=\mathbf{1} /\left(1+\frac{\mathrm{Q}^{2}}{\mu_{0}^{2}}\right)^{2} \\
& \mu_{0}^{2}=0.71 \mathrm{GeV}^{2}
\end{aligned}
$$

symbol index

Dashed Lines: pure LCSR
Solid Lines: LCSR using experimental EM form factor as input
V. M. Braun et al., Phys. Rev. D
77:034016, 2008.

$$
\begin{array}{cc}
\frac{d^{4} \sigma}{d Q^{2} d W d \Omega_{\pi}^{*}}=|J| \Gamma_{v} \frac{d^{2} \sigma_{u}}{d \Omega_{\pi}^{*}} \quad|J| \Gamma_{v}=\frac{\alpha}{2 \pi^{2} Q^{2}} \frac{\left(W^{2}-M_{p}^{2}\right) E_{f}}{2 M_{p} E_{i}(1-\epsilon)} \\
\frac{d^{2} \sigma_{u}}{d \Omega_{\pi}^{*}}=\underbrace{\sigma_{T}+\epsilon \sigma_{L}}_{T}+\epsilon \underbrace{\sigma \sigma_{T T}} \cos 2 \phi_{\pi}^{*}+\sqrt{2 \epsilon(1+\epsilon)} \sigma_{L T} \cos \phi_{\pi}^{*} \\
\left.\operatorname{van}^{2} \frac{\theta_{e}}{2}\right]^{-1}
\end{array}
$$

Differential Cross-section

$$
\begin{aligned}
& \sigma_{\mathrm{T}} \rightarrow \quad \mathrm{G}_{1}^{\pi \mathrm{N}}, \mathrm{G}_{\mathrm{M}}^{2} \\
& \boldsymbol{\sigma}_{\mathrm{TT}} \rightarrow \mathbf{0} \\
& \text { No D-wave contribution } \\
& \sigma_{L} \rightarrow \mathrm{G}_{2}^{\pi \mathrm{N}}, \mathrm{G}_{\mathrm{E}}^{2} \\
& \sigma_{L T} \rightarrow \quad \operatorname{Re} \mathrm{G}_{1}^{\pi N}, \quad \operatorname{Re} \mathrm{G}_{2}^{\pi N}, G_{E}, G_{M} \\
& \sigma_{\mathrm{LT}}^{\prime} \rightarrow \quad \operatorname{Im} \mathrm{G}_{1}^{\pi \mathrm{N}}, \quad \operatorname{Im} \mathrm{G}_{2}^{\pi \mathrm{N}}, G_{\mathrm{E}}, \mathrm{G}_{\mathrm{M}}
\end{aligned}
$$

Legendre moments vs. Form Factors

V. Brawm PRR 77(2008)

$$
\begin{aligned}
D_{0}^{T+L}=\frac{1}{f_{\pi}^{2}}\left[\frac{4 \vec{k}_{i}^{2} Q^{2}}{m_{N}^{2}}\left|G_{1}^{n \pi^{+}}\right|^{2}\right. & +\frac{c_{\pi}^{2} g_{A}^{2}{\overrightarrow{k_{f}}}^{2}}{W^{2}-m_{N}^{2}} Q^{2} m_{N}^{2} G_{M}^{n 2} \\
& \left.+\epsilon\left(\vec{k}_{i}^{2}\left|G_{2}^{n \pi^{+}}\right|^{2}+\frac{4 c_{\pi}^{2} g_{A}^{2}{\overrightarrow{k_{f}}}^{2}}{W^{2}-m_{N}^{2}} m_{N}^{4} G_{E}^{n 2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
D_{1}^{T+L}= & \frac{1}{f_{\pi}^{2}} \frac{4 c_{\pi} g_{A}\left|k_{i}\right|\left|k_{f}\right|}{W^{2}-m_{N}^{2}} \\
& \times\left[Q^{2} G_{M}^{n} \operatorname{Re}\left(G_{1}^{n \pi^{+}}\right)-\epsilon m_{N}^{2} G_{E}^{n} \operatorname{Re}\left(G_{2}^{n \pi^{+}}\right)\right] \\
D_{0}^{L T}= & -\frac{1}{f_{\pi}^{2}} \frac{c_{\pi} g_{A}\left|k_{i}\right|\left|k_{f}\right|}{W^{2}-m_{N}^{2}} \\
& \times Q m_{N}\left[G_{M}^{n} \operatorname{Re}\left(G_{2}^{n \pi^{+}}\right)+4 G_{E}^{n} \operatorname{Re}\left(G_{1}^{n \pi^{+}}\right)\right]
\end{aligned}
$$

$$
\begin{array}{cccl}
G_{M}^{n} \text { and } G_{E}^{n} & c_{\pi}=\sqrt{2} & f_{\pi}=93 \mathrm{MeV} & g_{A}=1.267 \\
\text { Sachs form factors } & \text { isospin factor, } & \text { pion decay constant } & \text { axial coupling }
\end{array}
$$

assumption $\quad m_{\pi} \sim 0 \quad G_{E}^{n} \sim 0$

$$
D_{0}^{T+L}=\frac{1}{f_{\pi}^{2}}\left[\frac{4 \vec{k}_{i}^{2} Q^{2}}{m_{N}^{2}}\left|G_{1}^{n \pi^{+}}\right|^{2}+\frac{c_{\pi}^{2} g_{A}^{2}{\overrightarrow{k_{f}}}^{2}}{W^{2}-m_{N}^{2}} Q^{2} m_{N}^{2} G_{M}^{n 2}+\epsilon\left(\vec{k}_{i}^{2}\left|G_{2}^{n \pi^{+}}\right|^{2}\right)\right]
$$

$$
D_{1}^{T+L}=\frac{1}{f_{\pi}^{2}} \frac{4 c_{\pi} g_{A}\left|k_{i}\right|\left|k_{f}\right|}{W^{2}-m_{N}^{2}}\left[Q^{2} G_{M}^{n} \operatorname{Re}\left(G_{1}^{n \pi^{+}}\right)\right]
$$

$$
D_{0}^{L T}=-\frac{1}{f_{\pi}^{2}} \frac{c_{\pi} g_{A}\left|k_{i}\right|\left|k_{f}\right|}{W^{2}-m_{N}^{2}} Q m_{N}\left[G_{M}^{n} \operatorname{Re}\left(G_{2}^{n \pi^{+}}\right)\right]
$$

$$
\begin{array}{lll}
G_{M}^{n} \text { and } G_{E}^{n} & c_{\pi}=\sqrt{2} & f_{\pi}=93 \mathrm{MeV}
\end{array}
$$

Sachs form factors
isospin factor, pion decay constant
$g_{A}=1.267$
axial coupling

DTultipoles vs. F. F. for $\mathbf{n} \pi^{+}$channel

$$
\begin{aligned}
& G_{1}^{n \pi^{+}} \quad E_{0+}^{n \pi^{+}} \\
& \frac{E_{0+}^{n \pi^{+}}}{G_{D}}=\frac{\sqrt{4 \pi \alpha_{e m}}}{8 \pi} \frac{Q^{2} \sqrt{Q^{2}+4 m_{p}^{2}}}{m_{p}^{3} f_{\pi}} \frac{G_{1}^{n \pi^{+}}}{G_{D}} \\
& G_{D}=1 /\left(1+Q^{2} / \mu_{0}\right)^{2}, \mu_{0}=0.71
\end{aligned}
$$

$$
\begin{array}{rlrl}
\frac{Q^{2}}{m_{N}^{2}} G_{1}^{n \pi^{+}} & =\frac{g_{A}}{\sqrt{2}} \frac{Q^{2}}{Q^{2}+2 m_{N}^{2}} G_{M}^{n}+\frac{1}{\sqrt{2}} G_{A} \\
G_{2}^{n \pi^{+}} & =\frac{2 \sqrt{2} g_{A} m_{N}^{2}}{Q^{2}+2 m_{N}^{2}} G_{E}^{n} & G_{E}^{n} \sim 0 \\
G_{2}^{n \pi^{+}} \text {is negligible. }
\end{array}
$$

CLAS \& Divent display

Large-angle Calorimeter

Smap sloot of PIID

MC - CIDAN/B Sinnulation

Acceptances - AAO_RAD

Radiative correction [IDMCDURAD]

Various physics models

A sample of fit

E_{0+} sensitive !

MAID2003

(red bold dash) full multipoles (green bold dash) without S_{0+} (black dash-dot) without E_{0+} MAID2007
(blue bold dot)

Structure
Punction

σ
 TT

E_{0+} insensitive:

MAID2003

(red bold dash) full multipoles (green bold dash) without S_{0+} (black dash-dot) without E_{0+} MAID2007
(blue bold dot)

$\sigma_{t r}$

E_{0+} sensitive !

MAID2003

(red bold dash) full multipoles (green bold dash) without S_{0+} (black dash-dot) without E_{0+} MAID2007
(blue bold dot)

$$
\begin{gathered}
D_{0}^{T+L}+D_{1}^{T+L} P_{1}\left(\cos \theta_{\pi}^{*}\right) \\
\sigma_{T}+\varepsilon_{L} \sigma_{L}=D_{0}^{T+L}+D_{1}^{T+L} P_{1}\left(\cos \theta_{\pi}^{*}\right)
\end{gathered}
$$

Multipole extraction

Q^{2} dependence of the Normalized
E_{0+} Multipole by dipole F. F.

Form factors and Multipole for $n \pi^{+}$channel

$$
G_{1}^{\pi N}=G_{1}^{\pi^{+} n} G_{M}=G_{M}^{n} \approx \mu_{n} G_{D}\left(\Omega^{2}\right) \quad \begin{aligned}
& \text { P.E. Bosted } \\
& \text { Phys. Rev. C } 51 \text { (1995) }
\end{aligned}
$$

$$
\text { Nucl.Phys. A } 70 \text { (1990) }
$$

J.J. Kelly

Phys. Rev. C 70 (2004)

Form factors and Multipole for $n \pi^{+}$chanmel

$$
\begin{aligned}
& G_{1}^{\pi N}=G_{1}^{\pi^{\dagger} n} G_{M}=G_{M}^{n} \approx \mu_{n} G_{D}\left(Q^{2}\right) \\
& G_{2}^{\pi N}=G_{2}^{\pi^{\dagger}} G_{E}=G_{E}^{n} \approx 0 \quad G_{E}=G_{E}^{n} \neq 0
\end{aligned}
$$

P.E. Bosted Phys. Rev. C 51 (1995)
S. Platchekov
Nucl.Phys. A 70 (1990)

J.J. Kelly

Phys. Rev. C 70 (2004)
J. J. Kelly et al., PRC 70:068202 (2004)

Form factors and Multipole for $n \pi^{+}$chanmel

© Blue: E_{0+} using
J.J.Kelly form

0 Red : E_{0+} using
S. Platchekov form

Form factors and Multipole for $n \pi^{+}$channel

$$
\begin{aligned}
& G_{1}^{\pi N}=G_{1}^{\pi^{+} n} \quad G_{M}=\text { CLAS DATA } \\
& \text { J. Lachniet (2009) } \\
& \text { Phys. Rev. Lett. } 102 \\
& G_{2}^{\pi N}=G_{2}^{\pi^{+} n} \quad G_{E}=G_{E}^{n} \neq 0 \Rightarrow \begin{array}{l}
\text { J.J. Kelly } \\
\text { Phys. Rev. C 70 (2004) }
\end{array}
\end{aligned}
$$

Form factors and Multipole for $\mathbf{n} \pi^{+}$channel

$G_{1}^{\pi N}=G_{1}^{\pi^{+} n} G_{M}=$ CLAS DATA \quad. Lachniet (2009) Phys. Rev. Lett. 102

$G_{2}^{\pi N}=G_{2}^{\pi \pi_{n}^{n}}$

$$
G_{E}=G_{E}^{n} \neq 0
$$

Form factors and Multipole for $n \pi^{+}$chanmel

© Blue: E_{0+} using CLAS
$\mathrm{G}_{\mathrm{M}}{ }^{\mathrm{n}}$ measurement
0 Red: E_{0+} using $\mathrm{G}_{\mathrm{M}}{ }^{\mathrm{n}}$ parameterization

Multipole extraction

Q^{2} dependence of
the Normalized
E_{0+} Multipole by dipole F. F.

Using....
(1) Measurement of differential cross sections
(2) Extract structure functions $\left(\sigma_{\mathrm{T}+\mathrm{L}}, \sigma_{\mathrm{TT}}, \sigma_{\mathrm{LT}}\right)$
(3) Extract Legendre moments
(4) Plug into LCSR...

Multipoles Analysis

Multipole amalysis

$$
\left[\begin{array}{rl}
f_{1} & =E_{0+}+3 \cos \theta_{\pi}^{*}\left(E_{1+}+M_{1+}\right) \\
f_{2} & =2 M_{1+}+M_{1-} \\
f_{3} & =3\left(E_{1+}-M_{1+}\right) \\
f_{4} & =0 \\
f_{5} & =S_{0+}+6 \cos \theta_{\pi}^{*} S_{1+} \\
f_{6} & =S_{1-}-2 S_{1+}
\end{array}\right.
$$

Multipoles Analysis

$$
\begin{aligned}
H_{1} & =\frac{-1}{\sqrt{2}} \cos \frac{\theta_{\pi}^{*}}{2} \sin \theta_{\pi}^{*}\left(f_{3}+f_{4}\right) \\
H_{2} & =-\sqrt{2} \cos \frac{\theta_{\pi}^{*}}{2}\left[f_{1}-f_{2}-\sin ^{2} \frac{\theta_{\pi}^{*}}{2}\left(f_{3}-f_{4}\right)\right] \\
H_{3} & =\frac{1}{\sqrt{2}} \sin \frac{\theta_{\pi}^{*}}{2} \sin \theta_{\pi}^{*}\left(f_{3}-f_{4}\right) \\
H_{4} & =\sqrt{2} \sin \frac{\theta_{\pi}^{*}}{2}\left[f_{1}+f_{2}+\cos ^{2} \frac{\theta_{\pi}^{*}}{2}\left(f_{3}+f_{4}\right)\right] \\
H_{5} & =\frac{-\sqrt{Q^{2}}}{\left|k_{\mathrm{c} . \mathrm{m} .}\right|} \cos \frac{\theta_{\pi}^{*}}{2}\left(f_{5}+f_{6}\right) \\
H_{6} & =\frac{\sqrt{Q^{2}}}{\left|k_{\mathrm{c} . \mathrm{m} . \mid}\right|} \sin \frac{\theta_{\pi}^{*}}{2}\left(f_{5}-f_{6}\right)
\end{aligned}
$$

I. G. Aznauryan, PRD 57, 2727 (1998)

Multipoles Analysis

Structure functions vs. Helicity amplitudes $\left(\boldsymbol{H}_{\boldsymbol{i}}\right)$:

$$
\begin{gathered}
\sigma_{T}+\epsilon \sigma_{L}=\frac{1}{2} \sum_{i=1}^{4}\left|H_{i}\right|^{2}+\epsilon\left(\left|H_{5}\right|^{2}+\left|H_{6}\right|^{2}\right) \\
\sigma_{T T}=\operatorname{Re}\left(H_{2}^{*} H_{3}-H_{1}^{*} H_{4}\right) \\
\sigma_{L T}=\frac{-1}{\sqrt{2}} \operatorname{Re}\left[H_{5}^{*}\left(H_{1}-H_{4}\right)+H_{6}^{*}\left(H_{2}+H_{3}\right)\right]
\end{gathered}
$$

Multipoles Analysis

Constraints :

* $\mathrm{E}_{0^{+}} \mathrm{S}_{\mathrm{O}_{+}}$are dominated in this regime.
** $M_{1-} S_{1-}$ were used from MAID2007 model prediction.
*** for $I=3 / 2$ case, following correlation functions are acceptable.
$\rightarrow G_{D^{\prime}}=\left(1+Q^{2} / \mu_{02}\right)^{2}$
$\rightarrow G_{M}=3 .{ }^{\star} \exp \left(-0.21^{*} Q^{2}\right) /\left(1 .+0.0273^{*} Q^{2}-0.0086^{*} Q^{4}\right) / G_{D^{\prime}}$
$\rightarrow M_{1+}=\left(Y_{0} / 52.437\right)^{*} G_{M} * \operatorname{sqrt}\left(\left(\left(2.3933+Q^{2}\right) / 2.46\right)^{2}-0.88\right) * 6.786$
$\rightarrow E_{1_{+}}=-0.02$ * $M_{1^{+}}$
$\rightarrow R_{S M}=-6.066-8.5639^{\star} Q^{2}+2.3706^{*} Q^{4}+5.807^{\star} \operatorname{sqrt}\left(Q^{2}\right)-0.75445^{\star} Q^{4 \star} \operatorname{sqrt}\left(Q^{2}\right)$
$\rightarrow S_{1_{+}}=R_{S M}{ }^{*} M_{1+} / 100$.
where, $\mu_{02}=0.71, Y_{0}$ is the interpolation value from SAID model.
I. G. Aznauryan, PRD 57, 2727 (1998)

Multipoles extraction

Q^{2} dependence of the Normalized E_{0+} Multipole by dipole F. F.

Results of multipole
LCSR w/o pion-mass

Results of multipole

Multipoles extraction

Q^{2} dependence of the Normalized E_{0+} Multipole by dipole F. F.

LCSR w/o pion-mass

Results of multipole

$$
W \text { - dependence }
$$

G_{1} and Axial form factor

- As first time, E_{0+} multipole extraction and comparison near pion threshold $\mathrm{W}=1.11-1.15 \mathrm{GeV}$ at high $\mathrm{Q}^{2}=2.12-4.16$ GeV^{2} with two methods (LCSR, multipole fit) was performed.
- Multipole analysis gives us similar answer for extracting, \mathbf{E}_{0+} multipole with LCSR method and showing $0.3 \mathrm{GeV}^{-1}$ and almost Q^{2} independent at threshold.
- Independent of pion mass and \mathbf{G}^{E} parameterization considerations, the $\mathbf{n} \pi^{+}$channel is dominated by the transverse s-wave multipole \mathbf{E}_{0+}.
- These data give strong constraints on theoretical developments, especially on the extrapolation away from threshold and away from the chiral limit.

'Thank you for your attention ~!

Legendre-moment vs. F. F. for $n \pi^{+}$channel

$$
\begin{array}{ll}
G_{1}^{\pi N}=G_{1}^{\pi^{+} n} & G_{M}=G_{M}^{n} \approx \mu_{n} G_{D}\left(Q^{2}\right) \\
G_{2}^{\pi N}=G_{2}^{\pi^{+} n} & G_{E}=G_{E}^{n} \approx 0
\end{array}
$$

Due to low-energy theorem(LET) relates the S-wave multipoles or equivalently, the form factor $\mathrm{G}_{1}, \mathrm{G}_{2}$ @ threshold $m_{M_{\pi}} \equiv(0)$

$$
\begin{aligned}
\frac{Q^{2}}{m_{N}^{2}} G_{1}^{\pi^{+} n} & =\frac{g_{A}}{\sqrt{2}} \frac{Q^{2}}{Q^{2}+2 m_{N}^{2}} G_{M}^{n}+\frac{1}{2} G_{A} \\
G_{2}^{\pi^{+} n} & =\frac{2 \sqrt{2} g_{A} m_{N}^{2}}{Q^{2}+2 m_{N}^{2}} G_{E}^{n}=0
\end{aligned}
$$

Scherer, Koch, NPA534(1991) Vainshtein, Zakharov NPB36(1972)

Legendre moments vs. Form Factors

$$
G_{1}^{\pi^{\tau^{\star} n}} G_{2}^{\pi^{\star} n}
$$

$$
\begin{aligned}
G_{1}^{\tau^{+} n} & =x_{1}+i y_{1} \\
G_{2}^{\pi^{+} n} & =x_{2}+i y_{2}
\end{aligned}
$$

$$
A_{0}=D_{0}^{T+L}=\frac{1}{f_{\pi}^{2}}\left[\frac{4 \vec{k}_{Q}^{2} Q^{2}}{m_{p}^{2}}\left|G_{1}^{\tau^{\tau}+n^{2}}\right|^{2}+\frac{c_{\pi}^{2} g_{A}^{2} \vec{k}_{f}^{2}}{W^{2}-m_{p}^{2}} Q^{2} m_{p}^{2} G_{M}^{n_{2}^{2}}\right]
$$

$$
8=11.26 \pi
$$

$$
a_{\pi \pi^{2}} \equiv \sqrt{2}
$$

$$
C_{0}=C_{0}^{T T}=0
$$

$$
f_{j \pi}=93 \mathrm{M} \times \mathrm{V}
$$

$$
D_{0}=D_{0}^{L T}=0
$$

l-moments vs. If. If. for $n \pi^{+}$channel

$$
\begin{array}{ll}
G_{1}^{\pi N}=G_{1}^{\pi^{+} n} \quad G_{M}=G_{M}^{n} \approx \mu_{n} G_{D}\left(Q^{2}\right) \\
G_{2}^{\pi N}=G_{2}^{\pi^{+} n} \quad G_{E}=G_{E}^{n} \neq 0 & \begin{array}{l}
\text { P.E. Bosted } \\
\text { Phys. Rev. C 51 } \\
(1995)
\end{array}
\end{array}
$$

Due to low-energy theorem(LET) relates the S-wave multipoles or equivalently, the form factor $\mathrm{G}_{1}, \mathrm{G}_{2}$ @ threshold $m_{m_{\pi / 2}} \equiv(0)$

$$
\begin{aligned}
\frac{Q^{2}}{m_{N}^{2}} G_{1}^{\pi^{+} n} & =\frac{g_{A}}{\sqrt{2}} \frac{Q^{2}}{Q^{2}+2 m_{N}^{2}} G_{M}^{n}+\frac{1}{2} G_{A} \\
G_{2}^{\pi^{+} n} & =\frac{2 \sqrt{2} g_{A} m_{N}^{2}}{Q^{2}+2 m_{N}^{2}} G_{E}^{n}
\end{aligned}
$$

Legendre-moments vs. F. F.

$G_{1}^{\pi^{+} n} G_{2}^{\pi^{+} n}$

$$
\begin{aligned}
G_{1}^{\pi^{+} n} & =x_{1}+i y_{1} \\
G_{2}^{\pi^{+} n} & =x_{2}+i y_{2}
\end{aligned}
$$

$$
A_{0}=D_{0}^{T+L}=\frac{1}{f_{\pi}^{2}}\left[\frac{4 \vec{k}_{i}^{2} Q^{2}}{m_{N}^{2}}\left|G_{1}^{\pi N}\right|^{2}+\frac{c_{\pi}^{2} g_{A}^{2} \vec{k}_{f}^{2}}{W^{2}-m_{N}^{2}} Q^{2} m_{N}^{2} G_{M}^{2}+\varepsilon_{L}\left(\vec{k}_{i}^{2}\left|G_{2}^{\pi N}\right|^{2}+\frac{4 c_{\pi}^{2} g_{A}^{2} \vec{k}_{f}^{2}}{W^{2}-m_{N}^{2}} m_{N}^{4} G_{E}^{2}\right)\right]
$$

$$
A_{1}=D_{1}^{T+L}=\frac{1}{f_{\pi}^{2}} \frac{4 c_{\pi} g_{A}\left|k_{i}\right| \mid k_{f}}{W^{2}-m_{N}^{2}}\left(Q^{2} G_{M} \operatorname{Re}\left(G_{1}^{\pi N}\right)-\varepsilon_{L} m_{N}^{2} G_{E} \operatorname{Re}\left(G_{2}^{\pi N}\right)\right)
$$

$$
8=11.2677
$$

$$
C_{0}=C_{0}^{I T}=0
$$

$$
a_{\pi^{2}}=\sqrt{2}
$$

Legendre moments vs. Form Factors

$$
\begin{aligned}
G_{1}^{\pi^{+} n} & =x_{1}+i y_{1} \\
G_{2}^{\pi^{+} n} & =x_{2}+i y_{2}
\end{aligned}
$$

* 3 Eqs. 4 parameter should be determined
* Real parts x1, x2 can be determined by A1, D0 legendre coeff.
* Imaginary parts y1, y2 can be determined in 2cases
* Asymmetry helps to determine complete form factor

$$
D_{0}^{\prime}=D_{0}^{L T /}=-\frac{1}{f_{\pi}^{2}} \frac{c_{\pi} g_{A}\left|k_{i}\right|\left|k_{f}\right|}{W^{2}-m_{N}^{2}} Q m_{N}\left(G_{M} \operatorname{Im}\left(G_{2}^{\pi N}\right)-4 G_{E} \operatorname{Im}\left(G_{1}^{\pi N}\right)\right)
$$

SU(6)xO(3) Classification of Baryons

* Study of transition from ground state allows make more definite statement about the nature

There are questions about underlying degrees-af-freedom of some well known state like PII, SII, D13

0

Multipoles Analysis

Allemantioe chrecll!
Using six amplitudes $\left(\boldsymbol{f}_{\boldsymbol{i}}\right)$ ** if $l_{\pi}=1$

$$
\left[\begin{array}{ll}
f_{1}= & E_{0+}+3^{\star} \cos (\theta)^{\star}\left(E_{1+}+M_{1+}\right) \\
f_{2}= & 2^{*} M_{1+}+M_{1-} \\
f_{3}= & 3^{*}\left(E_{1+}-M_{1+}\right) \\
f_{4}= & 0 \\
f_{5}= & S_{0+}+6^{*} \cos (\theta)^{\star} S_{1+} \\
f_{6}= & S_{1-}-2^{*} S_{1+}
\end{array}\right.
$$

Helicity amplitudes ($\boldsymbol{H}_{\boldsymbol{i}}$)
$\left[\begin{array}{ll}H_{1}= & (-1 / \operatorname{sqrt}(2))^{\star} \cos (\theta / 2)^{\star} \sin (\theta)^{\star}\left(f_{3}+f_{4}\right) \\ H_{2}= & -1^{\star} \operatorname{sqrt}(2)^{\star} \cos (\theta / 2)^{\star}\left(f_{1}-f_{2}-\sin (\theta)^{\star}\left(f_{3}-f_{4}\right)\right) \\ H_{3}= & (1 / \operatorname{sqrt}(2))^{\star} \sin (\theta / 2)^{\star} \sin (\theta)^{\star}\left(f_{3}-f_{4}\right) \\ H_{4}= & \operatorname{sqrt}(2)^{\star} \sin (\theta / 2)^{\star}\left(f_{1}+f_{2}+(\cos (\theta / 2))^{\star \star} 2^{\star}\left(f_{3}+f_{4}\right)\right) \\ H_{5}= & -1^{\star}\left(\operatorname{sqrt}\left(Q^{2}\right) / \operatorname{abs}\left(k_{2} c m\right)\right)^{\star} \cos (\theta / 2)^{\star}\left(f_{5}+f_{6}\right) \\ H_{6}= & \left(\operatorname{sqrt}\left(Q^{2}\right) / \operatorname{abs}(\text { k_cm })\right)^{\star} \sin (\theta / 2)^{\star}\left(f_{5}-f_{6}\right)\end{array}\right.$
I. G. Aznauryan, PRD 57, 2727 (1998)

Jhalb of CLAAS

Large-angle Calorimeter

- Experiment (Oct. 2001 - Jan.2002)
 $\mathrm{E}_{\mathrm{o}}=5.754 \mathrm{GeV}$
 $\mathrm{B}_{\mathrm{I}}=3375 \mathrm{~A}$
 LH2 target
 Almost 4π angular coverage

Single and double pion clectroproduction

- Provides information that is complementary to the $\mathbf{N} \pi$ channel

Single and double pion clectroproduction

- Provides information that is complementary to the $\mathbf{N} \pi$ chanmel

