# Using the Covariant Spectator Theory© (CST) to extract N\* properties at high Q<sup>2</sup>

South Carolina, August 13 - 15, 2012

Franz Gross

JLab and W&M

- ★ Part I -- What is our goal?
  - Equivalence between quark-gluon and hadronic degrees of freedom
  - The goal is to determine the hadronic lagrangian
- Part II -- Using the CST to model hadronic vertices at high Q<sup>2</sup>
  - Compute BARE  $\gamma^* + N \rightarrow N^*$  vertices from the N and N\* wave functions and quark form factors
- ★ Part III -- Connection to DIS

Thanks to:

Yohanes Surya

Gilberto Ramalho Teresa Pena





# PART I: What is our goal?

# What is our goal?

- 1. Fundamental theoretical assumption (proved?):
  - If [quarks and gluons] ⇔ [baryons and mesons (hadrons)] are COMPLETELY EQUIVALENT descriptions of the physics, then
  - What are the REQUIRED hadronic fields in the Lagrangian (in order that equivalence will work)?
    - N, \Delta, \u03c6, \u03c6, \u03c6, \u03c6, \u03c6]
      ["elementary" baryons]
    - $\pi, \rho, \omega, \eta, \sigma(?)$ , •, ? ["elementary" mesons]
- 2. Using an accepted (dynamical and regularization) SCHEME compute

 $\gamma^{*} + N \rightarrow \pi + N;$   $\gamma^{*} + N \rightarrow \rho + N,$   $\gamma^{*} + N \rightarrow \pi + \pi + N,$  $\gamma^{*} + N \rightarrow \bullet, \bullet, \bullet.$ 

2. The goal is to use the accepted SCHEME to find the bare baryon poles corresponding to the "elementary" baryons that appear in the hadronic Lagrangian: -- and to DETERMINE THE HADRONIC LAGRANGIAN

#### Lessons from the history of the $\Delta$

★ Chew-Low theory (1955)



- NO elementary  $\Delta$  pole
- $\Delta$  resonance generated by N exchange diagram (u channel pole)
- ★ Bootstrap: resonance feedback (1960's)
- $\star$  Discovery of quarks and recognition that the  $\Delta$  is "elementary"
  - (i.e. it is REQUIRED for equivalence between hadronic and quark degrees of freedom)
- **\star** The  $\Delta$  N mass difference enters into many estimates. Is it the "bare" mass difference or the "dressed" mass difference?
- ★ Conclusion: The existence of a bare delta pole is crucial to our understanding

# Bare poles from various models (incomplete survey!)

| Reference                    | $\Delta$ (1232) bare mass | D <sub>13</sub> (1520) bare mass | P <sub>11</sub> (1440) bare mass |  |
|------------------------------|---------------------------|----------------------------------|----------------------------------|--|
| Surya & Gross<br>(1993&1996) | 1318.6 (1993)             | 1513.5 (1993)                    | 1431.8 (1993)                    |  |
|                              | 1301.8 (1996)             | 1520.4 (1996)                    | 1431.8 (1996)                    |  |
| Sato & Lee (1996)            | 1299.07 (model L)         |                                  |                                  |  |
|                              | 1318.52 (model H)         |                                  |                                  |  |
| Suzuki, et.al. (2010)        | 1391 (2010)               | 1899 (2010)                      | 1763 (2010)                      |  |
| Döring, et al. (2011)        | 1535 (2011)               |                                  |                                  |  |
| Gasparyan, et.al. (2003)     | 1459 (2003)               | 2236 (2003)                      | NO POLE                          |  |
|                              |                           |                                  |                                  |  |
|                              |                           |                                  |                                  |  |
|                              |                           |                                  |                                  |  |
|                              |                           |                                  |                                  |  |

#### WARNING:

Our physical insight and understanding depends on our computational scheme

EXAMPLE: the "angular momentum theorem"

\* Answer to this question depends on the formalism. There are two points of view:

★ Answer to this question depends on the formalism. There are two points of view:

(b)

CST view: All interactions involving gluon exchange between the  $q\overline{q}$  pair coupled to the photon are included in quark form factors; these produce the quark anomalous moments

(a)

★ Answer to this question depends on the formalism. There are two points of view:

CST view: All interactions involving gluon exchange between the  $q\overline{q}$  pair coupled to the photon are included in quark form factors; these produce the quark anomalous moments

(a)



Light-front view: nucleon wave function is a sum over Fock components; quark "structure" comes from higher Fock components of the hadronic wave function.

Answer to this question depends on the formalism. There are two points of view:

CST view: All interactions involving gluon exchange between the  $q\overline{q}$  pair coupled to the photon are included in quark form factors; these produce the quark anomalous moments

(a)



The light-front view requires  $\ell > 0$  components just to give  $\kappa_{\pm} \neq 0$ 

PART II: Using the Covariant Spectator Theory© (CST) to model the high Q<sup>2</sup> behavior of  $\gamma^* + N \rightarrow N^*$  hadronic vertices

- ★ The nucleon consists of 3 constituent quarks (CQ) with a size, mass, and form factor given by the dressing of the quark in the sea of gluons and qq pairs. The sea quarks can be neglected.
- ★ Using the Covariant Spectator<sup>©</sup> theory, the nucleon and  $\Delta$  is described by a 3-CQ vertex function with two of the CQ on shell

★ Confinement insures that this vertex function is zero when all three quarks are on shell (i.e. there is no 3q scattering)



Hence, model  $\Psi$  directly (with no singularities at  $p^2 = m^2$ )

How should the wave function be modeled? Ockham's razor: Start with the simplest case -- pure S-state with same spin-isospin structure as the nonrelativistic wave function. See if it works!

#### Structure of the model baryon wave functions

- \* For non-strange systems (u and d quarks only) fermion antisymmetry comes from the color factor  $\mathcal{E}_{\alpha\beta\gamma}$ . The rest of the wf must be symmetric.
- ★ Construct nonrelativistic wave functions first; then generalize by replacing (for example)  $(k \cdot P)P^{\mu}$

$$\mathbf{k} \to k^{\mu} - \frac{\gamma}{P^{2}}$$
$$\delta^{ij} \to -g^{\mu\nu} - \frac{P^{\mu}P^{\nu}}{P^{2}}$$

★ Starting from a simple S state spatial wave function, spin-isospin structure must be symmetric. Spin-isospin 1/2 requires superposition of mixed symmetry states

Spin-isospin 3/2 requires pure symmetric states

 $\left| \Delta \uparrow \right\rangle = \overline{\Phi}_{F}^{1} \overline{\Phi}_{S}^{1}$ 

|  | 1 |  |  |  |
|--|---|--|--|--|
|  | _ |  |  |  |
|  | - |  |  |  |

★ When angular momentum components are added, F no longer necessarily equal to S.

$$P_{\pm} = P \pm \frac{1}{2}q \quad Q^{2} = -q^{2}$$





#### Historical overview of our work

- ★ Pure S-wave nucleon wave function shown to fit the nucleon form factors
  - Assumes constituent quarks with form factors
  - Does not violate of the "angular momentum theorem" because quarks have structure (recall previous slide)
- ★ This wave function used to explain (or predict) transition form factors for  $\gamma^* + N \rightarrow N^*$  where N<sup>\*</sup> =  $\Delta$ (1236), P<sub>11</sub>(1440), S<sub>11</sub>(1535), and  $\Delta$ (1600)
- ★ Calculations have been extended to the strange sector.
- Recently, we extracted a new N wave function (without any pion cloud contributions) directly from DIS. Best model gives 35% D-state!!
- Next generation of calculations:
  - Use N wave function extracted from DIS
  - Calculate pion cloud using constraints obtained from octet magnetic moments
  - Revise the  $\gamma^* + N \rightarrow N^*$  calculations

#### Nucleon form factors with S-wave nucleons (2008)\*



\*FG, Ramalho, Pena, PRC 77, 015202 (2008)

#### Results: $\gamma^* + N \rightarrow \Delta$ transition with PURE S-wave states\*

- \* Three form factors, but ONLY  $G_{M}^{*} \neq 0$  if BOTH the N and  $\Delta$  wave functions are pure S-wave.  $\Delta$  wave function has two new range parametrs.
- The value G\*<sub>M</sub>(0) cannot equal the correct value unless a separate pion cloud term is added, because of the Schwartz inequality

$$G_M^*(0) = \frac{8}{3\sqrt{3}} \left(\frac{m}{M+m}\right) j_- \int \psi_\Lambda \psi_N$$
$$= 2.07 \int \psi_\Lambda \psi_N, \text{ and }$$

$$\int \boldsymbol{\psi}_{\Lambda} \boldsymbol{\psi}_{N} \leq \sqrt{\int \left|\boldsymbol{\psi}_{N}\right|^{2}} \sqrt{\int \left|\boldsymbol{\psi}_{\Delta}\right|^{2}} \leq 1$$

 Fit done with an empirical pion cloud term of the form

$$\frac{G_M^{\pi}}{3G_D} = \lambda_{\pi} \left(\frac{\Lambda_{\pi}^2}{\Lambda_{\pi}^2 + Q^2}\right)^2$$

- ★ Lessons:
  - quark core dominates large Q<sup>2</sup> region
  - Bare contributions agree with EBAC analysis



\*Ramalho, Pena, FG, EPJA 36, 329 (2008)

#### Results: $\gamma^* + N \rightarrow \Delta$ transition with D-waves\*

- **★** Determine core D-wave admixtures by fitting  $G_c^*$  and  $G_E^*$  (0 for pure S-waves) to lattice data.
- ★ Then add pion cloud to fit experimental data
- Lesson: lattice data can be used to fix quark core when both the core and the pion cloud are important



\*Ramalho and Pena, PRD 80, 013008 (2009)

#### Results: γ\* + N -> P<sub>11</sub> (1440)\*

- ★ One extra parameter in N\* wave function fixed by orthogonality condition (N\* is a radial excitation of N)
- ★ Quark core transition amplitude fits high Q<sup>2</sup> data
- ★ Pion cloud is estimated to be the difference between the MAID fit and the quark core (with error bands taken from the error bars in the data)



\*Ramalho & Tsushima, PRD 81, 074020 (2010)

#### Results: γ\* + N -> P<sub>11</sub> (1440)\*

- ★ Results for the helicity amplitudes
- **\star** Zero crossing for P<sub>11</sub> must come from the pion cloud



\*Ramalho & Tsushima, PRD 81, 074020 (2010)

![](_page_22_Figure_0.jpeg)

\*Ramalho & Tsushima, PRD 82, 073007 (2010)

# Results: γ\* + p -> S<sub>11</sub>(1535)\*

- Chose a radial wave function identical to the nucleon; only angular (P-wave) part is different. No free parameters
- Bare contribution is close to the bare contribution extracted from the EBAC analysis
- Meson cloud (pion+eta) is predicted to be large and of opposite sign

![](_page_23_Figure_4.jpeg)

\*Ramalho & Pena, PRD 84, 033007 (2011)

# PART III:

# Lessons from the study of DIS

#### The core wave functions can be determined from DIS (1)\*

- DIS structure functions calculated from the handbag diagram
- Model nucleon wave functions depend on k = Mκ only through the covariant variable

$$\chi = \frac{2P \cdot k}{Mm_s} - 2 = 2\sqrt{1 + \frac{\kappa^2}{r^2}} - 2 \qquad r = \frac{m_s}{M}$$

 For S-wave nucleons, the structure function is

$$f_q(x) = \frac{Mm_s\lambda^2}{16\pi^2} \int_{\xi}^{\infty} d\chi \left[\psi_q(\chi)\right]^2 \quad \text{with} \quad \xi = \frac{(r+x-1)^2}{r(1-x)}$$

- \*FG, Ramalho, Pena, PRC 77, 015202 (2008)
- \*FG, Ramalho, and Pena, PRD 85,093006 (2012)
- FG, Ramalho, and Pena, PRD 85,093005 (2012)

![](_page_25_Picture_9.jpeg)

#### The core wave functions can be determined from DIS (2)

![](_page_26_Figure_1.jpeg)

#### The core wave functions can be determined from DIS (2)

![](_page_27_Figure_1.jpeg)

 New choice (2012) using wave function fit directly to structure function

$$\psi(\chi) = N \frac{\beta \cos \theta + \chi \sin \theta}{\chi^{\alpha} (\beta + \chi)^{n-\alpha}}$$

![](_page_27_Figure_4.jpeg)

#### The core wave functions can be determined from DIS (2)

![](_page_28_Figure_1.jpeg)

 New choice (2012) using wave function fit directly to structure function

$$\psi(\chi) = N \frac{\beta \cos \theta + \chi \sin \theta}{\chi^{\alpha} (\beta + \chi)^{n-\alpha}}$$

★ Then add P and D-states

![](_page_28_Figure_5.jpeg)

# Solution 1 (18.5% P-state; 3.2% D-state): f(x) and $g_1(x)$

![](_page_29_Figure_1.jpeg)

# Solution 2 (0.6% P-state; 34.8% D-state): f(x) and $g_1(x)$

![](_page_30_Figure_1.jpeg)

# Prediction for $g_2(x)$

★ Only Solution 2 (35% D state) gives a good result

![](_page_31_Figure_2.jpeg)

#### **Discussion and Implications**

- ★ Existence and positions of "bare" N\* poles are needed to construct the hadronic lagrangian -- the goal of this program (??)
- High Q<sup>2</sup> vertex functions determined from CST modeled N and N\* wave functions unify our understanding of
  - experimental data at high Q<sup>2</sup>
  - LQCD (at larger pion masses)
  - coupled channel calculations
- ★ CST allows the nucleon wave function to be fixed directly from the experimental DIS data. The nucleon is expected to have a large D-state.
- \star 🛛 To do:
  - Calculate pion cloud contributions within the CST framework
  - Fix the quark form factors by refitting the nucleon form factors using new DIS determined wave function and new (theoretical) pion cloud contributions
  - Develop a covariant, gauge invariant, coupled-channel scheme for fitting photoproduction data that uses CST vertex functions, parameterized quark form factors, and meson interactions consistent with pion cloud calculations.

![](_page_33_Picture_0.jpeg)

# Theoretical issues to address when building a coupled channel SCHEME

- \* What form of relativistic dynamics, and what degrees of freedom?
  - Hadronic d.o.f.: hamiltonian instant form (Sato and Lee)
  - Hadronic d.o.f.: manifestly covariant (Bethe-Salpeter or Covariant spectator theory)
  - Point-like (current) quark d.o.f.: front form (Brodsky)
- ★ Electromagnetic Gauge invariance (use Gross&Riska?)
- $\star$  Orthogonality of the P<sub>11</sub> states (including the nucleon)
- ★ Consistent treatment of
  - s and u channels,
  - two and three body final states
  - pion cloud physics
- ★ Beware! Interpretation of angular momentum depends on the form of dynamics and the degrees of freedom

#### Two differing pictures -- with equivalent physics

- ★ Light front field theory (or quantum mechanics)
- ★ Covariant Spectator Theory (CST)

How do they describe a "typical" QCD diagram? (For the N  $\rightarrow \Delta$  transition, for example)

![](_page_35_Picture_4.jpeg)

#### "Typical QCD diagram" : Light-Front interpretation

![](_page_36_Figure_1.jpeg)

#### "Typical QCD diagram": CST interpretation

![](_page_37_Figure_1.jpeg)

#### Angular momentum content depends on your point of view

![](_page_38_Figure_1.jpeg)

#### Spin-isospin structure (2): nucleon

★ Spin-isospin structure of the NR nucleon wave function (cont'd)

introduce a mathematically compact form; suppress name of scalar diquark

$$|sf\rangle = \frac{1}{\sqrt{2}} \left\{ \chi^s \chi^f - \frac{1}{3} \right\}$$

(0,0) diquark scalar spin scalar flavor

 $\frac{1}{3} \left[ \boldsymbol{\sigma} \cdot \boldsymbol{\xi}_m^* \, \boldsymbol{\chi}^s \right] \left[ \boldsymbol{\tau} \cdot \boldsymbol{\xi}_F^* \, \boldsymbol{\chi}^f \right] \right\}$ 

(1,1) diquark axial vector spin vector flavor

![](_page_39_Picture_7.jpeg)

**★** Relativistic wave function, including spin-flavor structure

$$\Psi_{N}(sf) = \frac{1}{\sqrt{2}} \left\{ u(P,s)\chi^{f} + \frac{1}{3}(\gamma^{5}\boldsymbol{\mathscr{E}}_{m}^{*})u(P,s)[\boldsymbol{\xi}_{F}^{*}\cdot\boldsymbol{\tau}\chi^{f}] \right\} \phi(P,p_{s}) \qquad u(P,s) = N \begin{bmatrix} 1\\ \boldsymbol{\sigma}\cdot\mathbf{P}\\ \boldsymbol{E}_{P}+\boldsymbol{M} \end{bmatrix} \chi^{s}$$

When P = 0, the lower component is 0 and this reduces exactly to the nonrelativistic form

This is a fixed-axis state

#### Spin-isospin structure (3): Delta

 ★ Spin-isospin structure of the Delta wave function is pure (1,1); diquark with axial-vector spin and vector flavor

$$\Psi_{\Delta}(sf) = -\left[\xi_{F}^{*} \cdot T \,\tilde{\chi}^{f}\right] \underbrace{\varepsilon_{m}^{\mu^{*}}}_{m} w_{\mu}(P,s) \phi(P,p_{s})$$

- where  $\mathcal{E}_m^{\mu^*}$  is a fixed-axis axial-vector polarization
- $w_{\mu}(P,s)$  is a Rarita-Schwinger wave function satisfying  $\gamma^{\mu}w_{\mu} = 0; P^{\mu}w_{\mu} = 0$
- $T^i$  is an isospin 3/2 -> 1/2 transition operator
- $ilde{\boldsymbol{\chi}}^f$  is the isospin state of the  ${\scriptscriptstyle\Delta}$
- when P = 0, the lower component is zero and this reduces exactly to the nonrelativistic form

$$\phi(P \cdot p) = \frac{N_{+}}{(\alpha_{1} + \chi(P \cdot p))(\alpha_{2} + \chi(P \cdot p))} \sim 3$$

#### Quark form factors (based on vector meson dominance)

![](_page_42_Figure_1.jpeg)

#### The sum over the diquark polarization is tricky

- ★ First, must be in a collinear frame so that the fixed-axes (tied to the nucleon and  $\Delta$  momentum) are identical
- ★ Then, the most general form is

$$D^{\mu\nu} = \sum_{\lambda} \varepsilon_{+}^{\mu} \varepsilon_{-}^{\nu*} = \left( -g^{\mu\nu} + \frac{P_{-}^{\mu}P_{+}^{\nu}}{M} \right) + a_{1} \left( P_{-} - \frac{bP_{+}}{M_{+}^{2}} \right)^{\mu} \left( P_{+} - \frac{bP_{-}}{M_{-}^{2}} \right)^{\nu}$$
  
with  $b = (P_{+} \cdot P_{-})$  and  $a = \frac{M_{+}M_{-}}{b(M_{+}M_{-} + b)}$ 

★ For equal masses this becomes

$$D^{\mu\nu} = -g^{\mu\nu} - \frac{P_{+}^{\mu}P_{-}^{\nu}}{M^{2}} + 2\frac{P^{\mu}P^{\nu}}{P^{2}} \quad \text{where } P = \frac{1}{2}(P_{+} + P_{-})$$

![](_page_44_Figure_0.jpeg)

#### Quark distribution function from DIS\*

![](_page_45_Figure_1.jpeg)

$$\frac{\langle xf \rangle}{\langle f \rangle} = \frac{\int_{0}^{0} dx \, xf(x)}{\int_{0}^{1} dx f(x)} = 0.171$$

#### The core wave functions can be determined from DIS\*

- DIS structure functions calculated from the handbag diagram
- \* Model nucleon wave functions depend on  $k = M\kappa$ only through the covariant variable

$$\chi = \frac{2P \cdot k}{Mm_s} - 2 = 2\sqrt{1 + \frac{\kappa^2}{r^2} - 2} \qquad r = \frac{m_s}{M}$$

In DIS limit, x dependence emerges naturally.
 We chose m<sub>s</sub> = M to map k = 0 to x = 0

$$\kappa \ge \left|\kappa_{\min}\right| \qquad \kappa_{\min} \equiv \frac{r^2 - (1 - x)^2}{2(1 - x)}$$

- Choose functional form of wave function and adjust parameters to fit xf(x)
- ★ DIS choice is

$$\psi(\chi) = N \frac{\beta \cos \theta + \chi \sin \theta}{\chi^{\alpha} (\beta + \chi)^{n-\alpha}}$$

![](_page_46_Picture_9.jpeg)

![](_page_46_Figure_10.jpeg)

\*FG, Ramalho, and Pena, PRD 85,093006 (2012) FG, Ramalho, and Pena, PRD 85,093005 (2012)