Coupled channel dynamics in Λ and Σ production

S. Krewald

M. Döring, H. Haberzettl, J. Haidenbauer, C. Hanhart, F. Huang, U.-G. Meißner, K. Nakayama, D. Rönchen, Forschungszentrum Jülich, George Washington University, University of Georgia, Universität Bonn

The model

Athens-Bonn-Jülich-Washington collaboration

- Dynamical coupled-channels model for elastic & inelastic meson-baryon scattering up to and beyond 2 GeV
- Lagrangian of Wess & Zumino + additional channels(SU3)
- 12 Nucleon and 10 Delta Resonances with total spin up to J=9/2
- Simultaneous fit to πN , ηN , $K\Sigma$, and $K\Lambda$
- Used as input for a gauge invariant analysis of pion photoproduction
- respects unitarity(2-body) and analyticity; Resonance poles and residues

IÜLICH

The scattering equation

$$\begin{split} T^{I}_{\mu\nu}(\vec{k}',\lambda',\vec{k},\lambda) &= V^{I}_{\mu\nu}(\vec{k}',\lambda',\vec{k},\lambda) \\ &+ \sum_{\gamma,\lambda''} \int d^{3}q V^{I}_{\mu\gamma}(\vec{k}',\lambda',\vec{q},\lambda'') \frac{1}{Z - E_{\gamma}(q) + i\epsilon} T^{I}_{\gamma\nu}(\vec{q},\lambda'',\vec{k},\lambda) \end{split}$$

The model and results Resonance Analysis Perspectives

Analyticity

Not every bump is a resonance and not every resonance is a bump.

$\pi N \rightarrow \pi N$: Partial wave amplitudes I=1/2 (preliminary)

• $S_{11}(1535)$ and $S_{11}(1650)$

- dynamical Roper P₁₁(1440)
- genuine $P_{11}(1710)$

Detail P_{11} :

- Inclusion of $P_{11}(1710)$ necessary to improve $K\Lambda$
- Input in the fit: energy-dependent solution (black line)
- But: Our solution matches single-energy solution (data points)
- Coupled-channels essential
- Signal for a $N^*(17XX)P_{11}$
- Single-energy solutions are not data
 ⇒ Fit to πN observables required.

$\pi N \rightarrow \pi N$: Partial wave amplitudes I=1/2 (preliminary)

• $S_{11}(1535)$ and $S_{11}(1650)$

- dynamical Roper P₁₁(1440)
- genuine $P_{11}(1710)$

Detail P_{11} :

- Inclusion of $P_{11}(1710)$ necessary to improve $K\Lambda$
- Input in the fit: energy-dependent solution (black line)
- But: Our solution matches single-energy solution (data points)
- Coupled-channels essential
- Signal for a $N^*(17XX)P_{11}$
- Single-energy solutions are not data
 ⇒ Fit to πN observables required.

The model and results Resonance Analysis Perspectives

Importance of polarization measurements: The $P_{33}(1920)$

- Orange: Only $d\sigma/d\Omega$ in fit: no $P_{33}(1920)$ necessary
- Green: $d\sigma/d\Omega$ + P in fit: Need for $P_{33}(1920)!$

$\pi N \rightarrow \pi N$: Partial wave amplitudes I=1/2 (preliminary)

EmNN*, Columbia,SC, August 14, 2012

$\pi N \rightarrow \pi N$: Partial wave amplitudes I=3/2 (preliminary)

The model and results Resonance Analysis Perspectives

9/39

$\pi^- p \to \eta N \colon {\rm Cross\ section\ and\ Polarization\ (preliminary)\ Selected\ results}$

Coupled channel dynamics The model and results Resonance Analysis Perspectives

10/39

$\pi^- p \to K^0 \Lambda$: $d\sigma/d\Omega$, Polarization & Spinrotation angle (preliminary) Seclected results

IÜLICH

$\pi^- p \to K^0 \Sigma^0$: $d\sigma/d\Omega$ & Polarization (preliminary)

EmNN*, Columbia,SC, August 14, 2012

 $\pi^- p
ightarrow K^+ \Sigma^-$: $d\sigma/d\Omega$ (preliminary)

No polarization data

$\pi^+p \to K^+\Sigma^+$ (preliminary) Cross section, polarization and spinrotation parameter

Green dashed line: Jülich model solution from NPA 851, 58 (2011)

EmNN*, Columbia,SC, August 14, 2012

The model and results Resonance Analysis Perspectives

Photoproduction: $d\sigma/d\Omega$ and Σ_{γ} for $\gamma p \rightarrow \pi^+ n$ F. Huang, M. Döring, K. Nakayama *et al.*, Phys. Rev. C85 (2012) 054003

Differential cross section for $\gamma p \to \pi^+ n$

Data: CNS Data analysis center [CBELSA/TAPS, JLAB, MAMI,...]

Photon spin asymmetry for $\gamma p \to \pi^+ \, n$

FORSCHUNGSZENTRUM

15/39

Resonance content: I = 1/2 (preliminary)

	$Re(z_0)$, -2 $Im(z_0)$	r , heta	$\Gamma_{\pi N}/\Gamma_{\rm tot}$	$(\Gamma_{\pi N}^{1/2}\Gamma_{nN}^{1/2})/\Gamma_{\text{tot}}$	$(\Gamma_{\pi N}^{1/2}\Gamma_{K\Lambda}^{1/2})/\Gamma_{tot}$	$(\Gamma_{\pi N}^{1/2}\Gamma_{K}^{1}$
$N(1440)P_{11}$	1343	69.5	48.7			
$1/2^+$ **** $^{(a)}$	266	-113				
$N(1520)D_{13}$	1523	37.8	75.78			
3/2 ****	100	-357.1				
$N(1535)S_{11}$	1496	13	38.13	43.9		
$1/2^{-}$ ****	66	-40				
$N(1650)S_{11}$	1677	30.2	44.95	15.69	18.82	
$1/2^{-}$ ****	134	36				
$N(1710)P_{11}$	1678	8.8	15.25	22.93	21.20	
$1/2^+$ ***	116	-321.2				
$N(1675)D_{15}$	1643	33.4	36.63	2.85	1.95	
5/2 ****	180	-32.7				
$N(1680)F_{15}$	1664	40.6	65.44	1.59	0.1	
5/2 ⁺ ****	124	-20.7				
$N(1720)P_{13}$	1742	16.7	12.8	4.91	4.11	2.
3/2+ ****	258	-32.6				
$N(1990)F_{17}$	1851	4	3.02	0.46	1.32	0.
7/2+ **	260	-99.8				
$N(2190)G_{17}$	2049	31.8	17.65	0.32	1.27	0.
7/2 ⁻ ****	356	-23.3				
$N(2220)H_{19}$	2146	38	15.82	0.06	1.79	0.
9/2+ ****	470	-65.7				
$N(2250)G_{19}$	2117	15.6	6.27	0.13	1.36	0.
9/2 ****	488	-63.4			 • 11	

Coupled	channel	dynamics
---------	---------	----------

Resonance content: I = 3/2 (preliminary)

	${\sf Re}(z_0)$, -2 ${\sf Im}(z_0)$	r , heta	$\Gamma_{\pi N}/\Gamma_{\rm tot}$	$(\Gamma_{\pi N}^{1/2}\Gamma_{K\Sigma}^{1/2})/\Gamma_{\text{tot}}$
$\Delta(1232)P_{33}$	1216	51	100	
3/2+ ****	96	-39.3		
$\Delta(1620)S_{31}$	1598	16	41.63	
$1/2^{-}$ ****	76	-106		
$\Delta(1700)D_{33}$	1636	32.1	16.72	
3/2 ****	370	-25.7		
$\Delta(1905)F_{35}$	1757	10.6	10.65	0.2
5/2+ ****	198	-56.8		
$\Delta(1910)P_{31}$	1797	47.8	24.62	2.32
1/2+ ****	378	-125.4		
$\Delta(1920)P_{33}$	1848	28	6.24	15.28
3/2+ ***	818	-351.6		
$\Delta(1930)D_{35}$	1767	16.9	7.18	2.93
5/2 ***	452	-100.7		
$\Delta(1950)F_{37}$	1892	55.2	50.74	3.89
7/2 ⁺ ****	216	-20.5		
$\Delta(2200X)G_{37}$	2133	16.8	7.56	0.56
$7/2^{-}$ *	438	-64		
$\Delta(2400)G_{39}$	1933	16.5	5.76	0.89
9/2 **	552	-116.7		

Summary and outlook

- Lagrangian based, field theoretical description of meson-baryon interaction
- Unitarity and analyticity are ensured; branch points in the complex plane included

 \rightarrow precise, model independent determination of resonance parameters

- Coupled channel formalism links different reactions in one combined description:
 - $\pi N \to \pi N$, $\pi^+ p \to K^+ \Sigma^+$,..., $\gamma N \to \pi N$,....
- Extension to kaon photoproduction

Matching with lattice

The lattice results depend on a finite volume V and a pion mass $M_{pion}^{lattice} >= M_{pion}^{exp}$. The dynamical coupled channel approach is based on a Lagrangian and therefore can vary V and M_{pion} .

May we hope to interpolate between experiment and the state-of-the-art lattice?

Matching with quark dynamics

Question:

Do the towers of excited baryons predicted by quark models merge into a continuum after coupling to meson-baryon dynamics is considered?

Why not a pragmatic approach? Quark model $\rightarrow M_{N^*}$ couplings $N^* \rightarrow N\pi, N\eta, \Lambda K, \Sigma K$. Match: $\langle N^* \mid H_{quark} \mid N\pi \rangle = \langle \psi_{N^*} \mid -\mathcal{L}_{int} \mid \psi_N \pi \rangle$ for $q_{on-shell} = \frac{\sqrt{M_{N^*}}}{2} (1 - (\frac{m_N + m_\pi}{M_{N^*}})^2)^{\frac{1}{2}} (1 - (\frac{m_N - m_\pi}{M_{N^*}})^2)^{\frac{1}{2}}$.

Use as input in time-ordered perturbation theory!

This might be the first step for a generalization to electroproduction.

Analogy: quasielastic bump in nuclear physics

= superposition of nuclear modes coupled to continuum.

The model and results Resonance Analysis Perspectives

$\pi^- p ightarrow K^0 \Lambda$: Total cross section (preliminary)

The model and results Resonance Analysis Perspectives

$\pi^- p \to K^0 \Lambda$: Total cross section (preliminary)

The model and results Resonance Analysis Perspectives

$\pi^- p ightarrow K^0 \Sigma^0$: Total cross section (preliminary)

The model and results Resonance Analysis Perspectives

$\pi^- p \to K^0 \Sigma^0$: Total cross section (preliminary)

The model and results Resonance Analysis Perspectives

$\pi^- p \to K^0 \Sigma^0$: Total cross section (preliminary)

$\pi^- p \to K^+ \Sigma^-$: Total cross section (preliminary)

The model and results Resonance Analysis Perspectives

$\pi^- p \to K^+ \Sigma^-$: Total cross section (preliminary)

The model and results Resonance Analysis Perspectives

$\pi^- p \to K^+ \Sigma^-$: Total cross section (preliminary)

$\pi^+ p \to K^+ \Sigma^+$: Total cross section (preliminary)

EmNN*, Columbia,SC, August 14, 2012

The model and results Resonance Analysis Perspectives

$\pi^+ p \to K^+ \Sigma^+$: Total cross section (preliminary)

$\pi^- p \rightarrow \eta N$: Total cross section (preliminary)

$\pi^- p \rightarrow \eta N$: Total cross section (preliminary)

The model and result Resonance Analysis Perspectives

Photoproduction: Coupled channels and gauge invariance Haberzettl, PRC56 (1997), Haberzettl, Nakayama, Krewald, PRC74 (2006)

Gauge invariance: Generalized Ward-Takahashi identity (WTI)

 $k_{\mu}M^{\mu} = -|F_{s}\tau\rangle S_{p+k}Q_{i}S_{p}^{-1} + S_{p'}^{-1}Q_{f}S_{p'-k}|F_{u}\tau\rangle + \Delta_{p-p'+k}^{-1}Q_{pi}\Delta_{p-p'}|F_{t}\tau\rangle$

The model and result Resonance Analysis Perspectives

Photoproduction: $d\sigma/d\Omega$ and Σ_{γ} for $\gamma n \rightarrow \pi^{-}p$ F. Huang, M. Döring, K. Nakayama *et al.*, Phys. Rev. C85 (2012) 054003

Differential cross section for $\gamma n \rightarrow \pi^- p$

Data: CNS Data analysis center [CBELSA/TAPS, JLAB, MAMI,...]

Photon spin asymmetry for $\gamma n \to \pi^- p$

The model and result Resonance Analysis Perspectives

Photoproduction: $d\sigma/d\Omega$ and Σ_{γ} for $\gamma p \rightarrow \pi^0 p$ F. Huang, M. Döring., K. Nakayama *et al.*, Phys. Rev. C85 (2012) 054003

Data: CNS Data analysis center [CBELSA/TAPS, JLAB, MAMI,...]

The model and result Resonance Analysis Perspectives

Photoproduction: $d\sigma/d\Omega$ and Σ_{γ} for $\gamma p \rightarrow \pi^+ n$ F. Huang, M. Döring, K. Nakayama *et al.*, Phys. Rev. C85 (2012) 054003

Differential cross section for $\gamma p \to \pi^+ n$

Data: CNS Data analysis center [CBELSA/TAPS, JLAB, MAMI,...]

Photon spin asymmetry for $\gamma p \to \pi^+ \, n$

	The model and results
Coupled channel dynamics	Resonance Analysis
	Perspectives

/appendix

Error estimates for masses: $\Delta(1905)F_{35}$

Table: Error estimates of bare mass m_b and bare coupling f for the $\Delta(1905)F_{35}$ resonance.

m_b [MeV]	πN	ρN	$\pi\Delta$	ΣK
2258^{+44}_{-43}	$0.0500\substack{+0.0011\\-0.0012}$	$-1.62^{+1.29}_{-1.61}$	$-1.15\substack{+0.030\\-0.022}$	$0.120\substack{+0.0065\\-0.0059}$

Motivation: Baryon spectrum, πN scattering

- Higher energies: more states are predicted than seen in elastic πN scattering ("misssing resonance problem")
 - ightarrow coupling to other channels like multi-pion and KY
- Predicted resonances from recent lattice calculations [Edwards *et al.*, Phys.Rev. D84 (2011)]:

$$m_{\pi} = 396 MeV$$

The scattering equation

$$\begin{split} T^{I}_{\mu\nu}(\vec{k}',\lambda',\vec{k},\lambda) &= V^{I}_{\mu\nu}(\vec{k}',\lambda',\vec{k},\lambda) \\ &+ \sum_{\gamma,\lambda''} \int d^{3}q V^{I}_{\mu\gamma}(\vec{k}',\lambda',\vec{q},\lambda'') \frac{1}{Z - E_{\gamma}(q) + i\epsilon} T^{I}_{\gamma\nu}(\vec{q},\lambda'',\vec{k},\lambda) \end{split}$$

IÜLICH

The scattering equation

$$\begin{split} T^{I}_{\mu\nu}(\vec{k}',\lambda',\vec{k},\lambda) &= V^{I}_{\mu\nu}(\vec{k}',\lambda',\vec{k},\lambda) \\ &+ \sum_{\gamma,\lambda''} \int d^{3}q V^{I}_{\mu\gamma}(\vec{k}',\lambda',\vec{q},\lambda'') \frac{1}{Z - E_{\gamma}(q) + i\epsilon} T^{I}_{\gamma\nu}(\vec{q},\lambda'',\vec{k},\lambda) \end{split}$$

Features:

- Coupled channels πN , ηN , $K\Lambda$, $K\Sigma$, $\pi\pi N$ [$\pi\Delta$, σN , ρN]
- Hadron exchange: relevant degrees of freedom in 2nd and 3rd resonance region
- t- and u-channel processes: "background", all channels are linked
- s-channel processes: genuine resonances (only a minimum)
- Channels/reactions linked (SU(3) symmetry in Lagrangian framework)
- No on-shell factorization, full analyticity (dispersive parts)

s-, t- and u-channel exchanges

- s-channel states coupling to πN , ηN , $K\Lambda$, $K\Sigma$, $\pi\Delta$, ρN .
- *t* and *u*-channel exchanges:

	πΝ	ρΝ	ηΝ	$\pi\Delta$	σΝ	KΛ	ΚΣ
πΝ	$\begin{array}{l} \mathrm{N,}\Delta,\!(\pi\pi)_{\sigma},\\ (\pi\pi)_{\rho} \end{array}$	N, Δ, Ct., π, ω, a ₁	N, a ₀	Ν, Δ, ρ	Ν, π	Σ, Σ*, Κ*	Λ, Σ, Σ*, Κ*
ρΝ		$N,\Delta,Ct.,\rho$	-	Ν, π	-	-	-
ηΝ			N, f ₀	-	-	Κ*, Λ	$\Sigma, \Sigma^*, \mathrm{K}^*$
$\pi\Delta$				Ν, Δ, ρ	π	-	-
σΝ					Ν, σ	-	-
ΚΛ						Ξ, Ξ*, f ₀ , ω, φ	Ξ, Ξ*, ρ
ΚΣ							Ξ, Ξ*, f ₀ , ω, φ, ρ

н

32/ 39

$\pi\pi N$ states: $\pi\Delta$, σN , ρN

- $\pi\pi/\pi N$ subsystems fit the respective phase shifts.
- Towards a consistent inclusion of 3-body cuts.
- Allow for *a-priori* 3-body unitarity per construction [Aaron, Almado, Young, PR 174 (1968) 2022].

Crossing symmetry at the level of the potential (not the amplitude)

- For $\sigma(600)$ and $\rho(770)$ quantum numbers: $\pi N \ t$ -channel interaction from $\bar{N}N \rightarrow \pi \pi$ (analytically continued) data.
- Use of crossing symmetry and dispersion techniques

[Schütz et al. PRC 49 (1994) 2671].

Scattering equation: partial wave decomposition

Expand $T(\vec{k}', \lambda', \vec{k}, \lambda)$ in terms of the eigenstates of the total angular momentum J:

$$\langle \lambda' \vec{k}' | T | \lambda \vec{k} \rangle = \frac{1}{4\pi} \sum_{J} (2J+1) D^{J}_{\lambda\lambda'} (\Omega_{k'k}, 0)^* \langle \lambda' \vec{k}' | T^{J} | \lambda \vec{k} \rangle$$

Scattering equation:

$$\frac{1}{4\pi} \sum_{J} (2J+1) D^{J}_{\lambda\lambda'}(\Omega_{k'k}, 0)^{*} \langle \lambda_{3}\lambda_{4}\vec{k}' | \mathbf{T}^{J} | \lambda_{1}\lambda_{2}\vec{k} \rangle = \langle \lambda_{3}\lambda_{4}\vec{k}' | \mathbf{V}^{J'} | \lambda_{1}\lambda_{2}\vec{k} \rangle + \\
+ \frac{1}{4\pi} \sum_{\gamma_{1},\gamma_{2}} \sum_{J',J''} \int dq d\Omega_{qk} q^{2} (2J'+1) (2J''+1) D^{J'}_{\gamma\lambda'}(\Omega_{k'q}, 0)^{*} D^{J''}_{\lambda\gamma}(\Omega_{qk}, 0)^{*} \\
\times \langle \lambda_{3}\lambda_{4}\vec{k}' | \mathbf{V}^{J'} | \gamma_{1}\gamma_{2}\vec{q} \rangle \mathbf{G}(q) \langle \gamma_{1}\gamma_{2}\vec{q} | \mathbf{T}^{J''} | \lambda_{1}\lambda_{1}\vec{k} \rangle$$

$$\int d\Omega_{qk} D_{\gamma\lambda'}^{J'}(\Omega_{k'q}, 0)^* D_{\lambda\gamma'}^{J''}(\Omega_{qk}, 0)^* = D_{\lambda\lambda'}^{J'}(\Omega_{k'k}, 0)^* \frac{4\pi}{2J' + 1} \delta_{J'J''}$$

Scattering equation: partial wave decomposition

Expand $T(\vec{k}', \lambda', \vec{k}, \lambda)$ in terms of the eigenstates of the total angular momentum J:

$$\langle \lambda' \vec{k}' | T | \lambda \vec{k} \rangle = \frac{1}{4\pi} \sum_{J} (2J+1) D^{J}_{\lambda\lambda'} (\Omega_{k'k}, 0)^* \langle \lambda' \vec{k}' | T^{J} | \lambda \vec{k} \rangle$$

Scattering equation:

$$\frac{1}{4\pi} \sum_{J} (2J+1) D^{J}_{\lambda\lambda'} (\Omega_{k'k}, 0)^* \langle \lambda_3 \lambda_4 \vec{k}' | T^J | \lambda_1 \lambda_2 \vec{k} \rangle = \langle \lambda_3 \lambda_4 \vec{k}' | V^{J'} | \lambda_1 \lambda_2 \vec{k} \rangle + \\ + \frac{1}{4\pi} \sum_{\gamma_1, \gamma_2} \sum_{J', J''} \int dq d\Omega_{qk} q^2 (2J'+1) (2J''+1) D^{J'}_{\gamma\lambda'} (\Omega_{k'q}, 0)^* D^{J''}_{\lambda\gamma} (\Omega_{qk}, 0)^* \\ \times \langle \lambda_3 \lambda_4 \vec{k}' | V^{J'} | \gamma_1 \gamma_2 \vec{q} \rangle G(q) \langle \gamma_1 \gamma_2 \vec{q} | T^{J''} | \lambda_1 \lambda_1 \vec{k} \rangle$$

$$\int d\Omega_{qk} D_{\gamma\lambda'}^{J'}(\Omega_{k'q}, 0)^* D_{\lambda\gamma}^{J''}(\Omega_{qk}, 0)^* = D_{\lambda\lambda'}^{J'}(\Omega_{k'k}, 0)^* \frac{4\pi}{2J'+1} \delta_{J'J''}$$

Scattering equation: partial wave decomposition

Expand $T(\vec{k}', \lambda', \vec{k}, \lambda)$ in terms of the eigenstates of the total angular momentum J:

$$\langle \lambda' \vec{k}' | T | \lambda \vec{k} \rangle = \frac{1}{4\pi} \sum_{J} (2J+1) D^{J}_{\lambda\lambda'}(\Omega_{k'k}, 0)^* \langle \lambda' \vec{k}' | T^{J} | \lambda \vec{k} \rangle$$

$$\frac{1}{4\pi} \sum_{J} (2J+1) D^{J}_{\lambda\lambda'}(\Omega_{k'k}, 0)^* \langle \lambda_3 \lambda_4 \vec{k}' | T^J | \lambda_1 \lambda_2 \vec{k} \rangle = \langle \lambda_3 \lambda_4 \vec{k}' | V^{J'} | \lambda_1 \lambda_2 \vec{k} \rangle + \\ + \frac{1}{4\pi} \sum_{\gamma_1, \gamma_2} \sum_{J', J''} \int dq d\Omega_{qk} q^2 (2J'+1) (2J''+1) D^{J'}_{\gamma\lambda'}(\Omega_{k'q}, 0)^* D^{J''}_{\lambda\gamma}(\Omega_{qk}, 0)^* \\ \times \langle \lambda_3 \lambda_4 \vec{k}' | V^{J'} | \gamma_1 \gamma_2 \vec{a} \rangle G(q) \langle \gamma_1 \gamma_2 \vec{q} | T^{J''} | \lambda_1 \lambda_1 \vec{k} \rangle$$

Scattering equation:

$$\begin{split} \langle \lambda_3 \lambda_4 \vec{k}' | \, T^J | \lambda_1 \lambda_2 \vec{k} \rangle &= \langle \lambda_3 \lambda_4 \vec{k}' | \, V^J | \lambda_1 \lambda_2 \vec{k} \rangle + \\ & \sum_{\gamma_1, \gamma_2} \int dq q^2 \langle \lambda_3 \lambda_4 \vec{k}' | \, V^J | \gamma_1 \gamma_2 \vec{q} \rangle G(q) \langle \gamma_1 \gamma_2 \vec{q} | \, T^J | \lambda_1 \lambda_1 \vec{k} \rangle. \end{split}$$

 $\bullet\,$ 1-dim. integral equation \rightarrow sizable reduction of numerical effort

Scattering equation in JLS basis

experimental data (partial wave analyses) usually in $J\!LS$ basis \rightarrow switch from helicity to $J\!LS$ basis:

$$|JM\lambda_1\lambda_2k
angle = \sum_{LS} \langle JMLS|JM\lambda_1\lambda_2
angle |JMLS
angle$$

- $J{:}$ total angular momentum
- M: z-projection of J
- L: orbital angular momentum

СН

36/39

S: total spin

 λ_i : helicity, $\lambda := \lambda_1 - \lambda_2$

$$\langle JMLS|JM\lambda_1\lambda_2\rangle = \left(\frac{2L+1}{2J+1}\right)^{\frac{1}{2}} \underbrace{\langle LOS\lambda|J\lambda\rangle\langle S_1\lambda_1S_2\lambda_2|S\lambda\rangle}_{\bullet}$$

Clebsch-Gordan coefficients

$$\langle L'S'k'|V^{J}|LSk\rangle = \sum_{\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}} \langle JML'S'|JM\lambda_{3}\lambda_{4}\rangle \langle \lambda_{3}\lambda_{4}k'|V^{J}|\lambda_{1}\lambda_{2}k\rangle \langle JM\lambda_{1}\lambda_{2}|JMLS\rangle$$

Scattering equation in JLS basis:

$$\begin{split} \langle L'S'k'|T^{IJ}_{\mu\nu}|LSk\rangle &= \langle L'S'k'|V^{IJ}_{\mu\nu}|LSk\rangle + \\ &\sum_{\gamma,L''S''} \int_{0}^{\infty} q^2 \; dq \langle L'S'k'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \; G(q) \; \langle L''S''q|T^{IJ}_{\gamma\nu}|LSk\rangle \end{split}$$

The model and results Resonance Analysis Perspectives

Scattering equation in JLS basis

experimental data (partial wave analyses) usually in $J\!LS$ basis \rightarrow switch from helicity to $J\!LS$ basis:

$$|JM\lambda_1\lambda_2k\rangle = \sum_{LS} \langle JMLS|JM\lambda_1\lambda_2\rangle |JMLS\rangle$$

- J: total angular momentum
- M: z-projection of J
- L: orbital angular momentum

СН

36/39

S: total spin

 λ_i : helicity, $\lambda := \lambda_1 - \lambda_2$

$$\langle JMLS | JM\lambda_1\lambda_2 \rangle = \left(\frac{2L+1}{2J+1}\right)^{\frac{1}{2}} \underbrace{\langle LOS\lambda | J\lambda \rangle \langle S_1\lambda_1S_2\lambda_2 | S\lambda \rangle}_{\langle S_1\lambda_1S_2\lambda_2 | S\lambda \rangle}$$

Clebsch-Gordan coefficients

$$\langle L'S'k'|V^{J}|LSk\rangle = \sum_{\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}} \langle JML'S'|JM\lambda_{3}\lambda_{4}\rangle \langle \lambda_{3}\lambda_{4}k'|V^{J}|\lambda_{1}\lambda_{2}k\rangle \langle JM\lambda_{1}\lambda_{2}|JMLS\rangle$$

Scattering equation in JLS basis:

$$\begin{split} \langle L'S'k'|T^{IJ}_{\mu\nu}|LSk\rangle &= \langle L'S'k'|V^{IJ}_{\mu\nu}|LSk\rangle + \\ &\sum_{\gamma,L''S''} \int_{0}^{\infty} q^2 \; dq \langle L'S'k'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \; G(q) \; \langle L''S''q|T^{IJ}_{\gamma\nu}|LSk\rangle \end{split}$$

The model and results Resonance Analysis Perspectives

Scattering equation in JLS basis

experimental data (partial wave analyses) usually in $J\!LS$ basis \rightarrow switch from helicity to $J\!LS$ basis:

$$|JM\lambda_1\lambda_2k
angle = \sum_{LS} \langle JMLS|JM\lambda_1\lambda_2
angle |JMLS
angle$$

$$J$$
: total angular momentum

- M: z-projection of J
- L: orbital angular momentum

СН

36/39

S: total spin

 λ_i : helicity, $\lambda := \lambda_1 - \lambda_2$

$$\langle JMLS | JM\lambda_1\lambda_2 \rangle = \left(\frac{2L+1}{2J+1}\right)^{\frac{1}{2}} \underbrace{\langle LOS\lambda | J\lambda \rangle \langle S_1\lambda_1S_2\lambda_2 | S\lambda \rangle}_{\langle S_1\lambda_1S_2\lambda_2 | S\lambda \rangle}$$

Clebsch-Gordan coefficients

$$\langle L'S'k'|V^{J}|LSk\rangle = \sum_{\lambda_{1}\lambda_{2}\lambda_{3}\lambda_{4}} \langle JML'S'|JM\lambda_{3}\lambda_{4}\rangle \langle \lambda_{3}\lambda_{4}k'|V^{J}|\lambda_{1}\lambda_{2}k\rangle \langle JM\lambda_{1}\lambda_{2}|JMLS\rangle$$

Scattering equation in JLS basis:

$$\begin{split} \langle L'S'k'|\,T^{IJ}_{\mu\nu}|LSk\rangle &= \langle L'S'k'|\,V^{IJ}_{\mu\nu}|LSk\rangle + \\ &\sum_{\gamma,L''S''} \int_{0}^{\infty} q^2 \; dq \langle L'S'k'|\,V^{IJ}_{\mu\gamma}|L''S''q\rangle \; G(q) \; \langle L''S''q|\,T^{IJ}_{\gamma\nu}|LSk\rangle \end{split}$$

Analytic structure of the scattering amplitude

Analytic properties of the amplitude \Rightarrow important information:

- cuts, poles and zeros on different Riemann sheets determine global behaviour of the amplitude on the physical axis
- parameterization of resonances in a well defined way
- poles and residues: relevant quantities for comparison of different experiments

Jülich model:

- derived within a field theoretical approach
- analyticity is respected
- \Rightarrow reliable extraction of resonance properties

Extraction of resonance parameters, pole search on 2nd sheet:

 $\rightarrow~\mbox{Analytic continuation}$

The model and result Resonance Analysis Perspectives

Analytic continuation via Contour deformation

...enables access to all Riemann sheets

[Nucl.Phys.A829:170-209,2009]

Propagator for a particle with width:

$$G_{\sigma}(z,k) = \frac{1}{z - \sqrt{k^2 + (m_{\sigma}^0)^2} - \Pi_{\sigma}(z',k)}$$

Example: Selfenergy

$$\Pi_{\sigma}(z) = \int_{0}^{\infty} q^{2} dq \frac{(v^{\sigma \pi \pi}(q,k))^{2}}{z - 2\sqrt{q^{2} + m_{\pi}^{2}} + i\epsilon}$$

- righthand cut along positive real axis, starting at $z_{thresh}=2m_{\pi}$
 - analytic continuation along the cut to the 2nd sheet:

$$\begin{split} \Pi_{\sigma}^{(2)} &= & \Pi_{\sigma}^{(1)} - 2 \mathrm{Im} \Pi_{\sigma}^{(1)} \\ &= & \Pi_{\sigma}^{(1)} + \frac{2 \pi i q_{on} E_{on}^{(1)} E_{on}^{(2)}}{z} v^2(q_{on}, k) \end{split}$$

EmNN*, Columbia,SC, August 14, 2012

- case (a), Im z > 0: straight integration from q = 0 to q = ∞.
- case (b), Im z = 0: Pole is on real q axis.
- case (c), Im z < 0: Deformation gives analytic continuation.
- Special case: Pole at q = 0 \Leftrightarrow branch point at $z = m_1 + m_2$ (= threshold) JÜLICH

38/39

The model and result Resonance Analysis Perspectives

Analytic continuation via Contour deformation

...enables access to all Riemann sheets

[Nucl.Phys.A829:170-209,2009]

СН

38/39

Propagator for a particle with width:

$$G_{\sigma}(z,k) = \frac{1}{z - \sqrt{k^2 + (m_{\sigma}^0)^2} - \Pi_{\sigma}(z',k)}$$

Example: Selfenergy

$$\Pi_{\sigma}(z) = \int_{0}^{\infty} q^{2} dq \frac{(v^{\sigma \pi \pi}(q,k))^{2}}{z - 2\sqrt{q^{2} + m_{\pi}^{2}} + i\epsilon}$$

• righthand cut along positive real axis, starting at $z_{thresh}=2m_{\pi}$

analytic continuation along the cut to the 2nd sheet:

$$\begin{split} \Pi_{\sigma}^{(2)} &= \Pi_{\sigma}^{(1)} - 2 \mathrm{Im} \Pi_{\sigma}^{(1)} \\ &= \Pi_{\sigma}^{(1)} + \frac{2 \pi i q_{on} E_{on}^{(1)} E_{on}^{(2)}}{z} v^2(q_{on},k) \end{split}$$

Scattering equation on the 2nd sheet:

$$\langle q_{cd} | T^{(2)} - V | q_{ab} \rangle = \delta G + \int dq_{mn} q_{mn}^2 \frac{\langle q_{cd} | V | q_{mn} \rangle \langle q_{mn} | T^{(2)} | q_{ab} \rangle}{z - E_{mn} + i\epsilon}$$

with

$$\delta G = \frac{2\pi i q_{on} E_{on}^{(1)} E_{on}^{(2)}}{z} \langle q_{cd} | V | q_{mn}^{on} \rangle \langle q_{mn}^{on} | T^{(2)} | q_{ab} \rangle$$

Effective $\pi\pi N$ channels: Analytic structure

new structure, induced by addititonal branch points

- The cut along Im z = 0 is induced by the cut of the self energy of the unstable particle.
- The poles of the unstable particle (σ) induce branch points (b_2, b'_2) in the σN propagator at

$$z_{b_2} = m_N + z_0, \, z_{b'_2} = m_N + z_0^*$$

ICH

39/39

3 branch points and 4 sheets for each of the σN , ρN , and $\pi \Delta$ propagators.