High– Q^2 resonance production in QCD

C. Weiss (JLab), EmNN*2012 Workshop, U. South Carolina, 13-Aug-12

Correct high– Q^2 asymptotics QCD DOF, light–front formulation

Non-perturbative interactions Chiral symmetry-breaking forces \rightarrow SDE

Clean interface quarks—hadrons Wave functions, distribution amplitudes

Meson-baryon interactions parametrically controlled Large- N_{c} , χ EFT

• Transition form factors at high $Q^2\,$

Wave function description Selection of configurations Small–size vs. end–point configurations Dynamical origin: pQCD,

non-perturbative interactions

• Lessons from elastic form factors

Pion FF: Model-independent analysis LCWF \leftrightarrow large-x PDFs. Miller, Strikman, CW 11

Nucleon FF: Light-cone sum rules \rightarrow Talk Braun

 \bullet Toward N^* transition FFs in QCD

 πN near threshold: Chiral LETs N^* DAs from large- N_c limit (Δ) Dynamical resonances from χ EFT (S_{11}) Lattice QCD (N^* 1535)

Transition FF: Wave function description

• Wave function description

A) Infinite–momentum frame $P \to \infty$ Gribov, Feynman; Bjorken, Kogut

B) Light-front quantization time = x^+ WFs universal, frame-independent. Brodsky et al.

Momentum transfer transverse $t=-\pmb{\Delta}^2$ Frame appropriate for $t\to\infty$, masses fixed

Hadron resolved in pointlike constituents with momentum fraction x_i , transv. position r_i

Quantum-mechanical superposition: Configs with different particle number, spatial size

• Current operator sees transition density

$$F(t) = \int d^2 b \ e^{i\Delta b} \
ho(b)$$
 2D Fourier $ho(b) = \sum_{\text{configs}} \int dx \ \psi^*(x, \boldsymbol{r}, ..) \psi(x, \boldsymbol{r}, ..)$

• Selection of configurations

Large $|t| \longleftrightarrow \text{Small } b$ Singularity?

What kind of configurations contribute to density at small b?

Transition FF: Small-size configurations

• Two types of configurations contribute to small-b density

$x \sim \frac{1}{3}$	size $\ll R$	small-size	mostly qqq
$x \to 1$	size $\sim R$	end-point	multiparticle soft gluons

• Basic questions

What is their relative importance? Probability of end-point configurations constrained by quark PDF at $x \to 1$

How do they arise dynamically? Perturbative vs. non-perturbative interactions? Correlations in light-front wave function?

• Rest frame picture

Can be rigorously discussed in light—front quantization Intuition from non-relativistic systems: Angular momentum, orbital motion, etc.

Transition FF: Dynamical origin of small-size confs

• Perturbative interactions

High–momentum component of wave function built up by pQCD interactions

"Soft" wave function $k_T \sim R^{-1}$ as source

 $\Phi(x_i|\mu^2) = \int\limits_{\mu^2} d^2 k_{Ti} \; \psi(x_i, oldsymbol{k}_{Ti})$ distribution amplitude

Responsible for leading $|t| \rightarrow \infty$ asymptotics of pion FF Brodsky Lepage; Efremov, Radyushkin: pion

• Non-perturbative interactions

Chiral symmetry breaking in QCD induced by short-range non-perturbative forces

 $\begin{array}{l} \text{Range }\rho\sim 0.2-0.3\,\text{fm} \ \ll R \\ \text{Instanton vacuum model: Shuryak; Diakonov, Petrov} \\ \text{Schwinger-Dyson equations} \rightarrow \text{Talk Roberts} \end{array}$

Pion form factor: Transition density

- Pion form factor $F_{\pi}(t)$
- Transition density $\rho(b)$

Calculated from dispersion integral over timelike FF from e^+e^- data $_{\rm Miller,\ Strikman,\ CW\ 11}$

Model-independent, controlled accuracy

3

High density at center $b \rightarrow 0$

 ${\rm Im} F_{\pi}(t)$ from analysis of e^+e^- data. Bruch et al. 05

Pion form factor: Small-size configurations

- Is density in center due to small-size or end-point configurations?
- Model-independent assessment Miller, Strikman, CW 10

End-point contribution constrained by quark density in pion at $x\to 1_{\pi A \text{ Drell-Yan data}}$

Density in center of pion mostly from small-size configurations!

• Dynamical explanation

Small-size configurations in pion WF from chiral symmetry-breaking interactions

Nucleon FF: Configurations

uniform

diquark-like

- Transition densities known from FF data
- More complex system, more possibilities

Uniform squeezing or diquark–like configurations?

Contribution of end-point configurations $x \to 1$? Related to large-x parton densities JLab 12 GeV

Mean-field picture generally successful: Quark model, chiral soliton $N_c \rightarrow \infty$ Nature of dynamical correlations?

Spin and orbital angular momentum

 Q^2F_2/F_1 suggests important role of orbital angular momentum Belitsky, Ji, Yuan 03

• Systematic approach: Light-cone sum rules Balitsky, Braun, Kolesnichenko 89; Braun et al. 02+

pQCD-generated small-size configurations give leading asymptotic contribution

End-point contributions reformulated as higher twist

Can results be explained/reproduced in simple terms?

Nucleon FF: Key issues

• What is the relative importance of small–size and end–point configurations?

Can be investigated in quasi-model independent manner!

• What is the role of non–perturbative short–distance interactions responsible for $\chi {\rm SB}$ in QCD

Think of them as *correlations* between elementary QCD degrees of freedom

Correlation length $\rho \sim 0.2 - 0.3\,{\rm fm}~\ll$ hadronic size

Express in language of light–front wave function Schweitzer, Strikman, CW 12: $q\bar{q}$ correlations

Toward N^* : Near-threshold πN

• Same picture applies to high– Q^2 production of πN near threshold $W = M_N + M_\pi + \epsilon$

 $\Phi_{\pi N}(x_1x_2x_3;\zeta,W)$ distribution amplitude,

 $\zeta\leftrightarrow\cos\theta_{\rm CM}$, partial wave expansion possible

• Soft-pion theorem for πN DA

 $\begin{array}{l} \langle \pi N | \psi \psi \psi | 0 \rangle \ \leftrightarrow \ \langle N | [Q_{\mathrm{axial}}, \psi \psi \psi] | 0 \rangle \\ \text{chiral rotation of QCD quark operator} \end{array}$

• CLAS 6 GeV data \rightarrow Talk K. Park LC sum rule calculations \rightarrow Talk Braun

Toward N^* : Resonances in QCD

Rest frame

• QCD description of high– $Q^2 N^*$ production

 $\Phi_{N*}(x_1x_2x_3)$ resonance distribution amplitude

How to define "resonance" in QCD?

Need parametric control of hadronic FSI! Several possibilities

• Large– N_c limit of QCD Semiclassical limit. 'tHooft, Witten

 N,Δ degenerate, mass splitting $\sim 1/N_c$

 N, Δ wave functions related: Rotational states

 $\begin{array}{ll} \text{Meson-meson interactions suppressed,} \\ \text{meson-baryon interactions strong:} \\ g_{MM} \sim 1/\sqrt{N_c} & \ll & g_{MBB} \sim \sqrt{N_c} \end{array}$

Guidance for phenomenology of ${\cal MB}$ and ${\cal MM}$ interactions

Should be explored further!

Toward N^* : Dynamical generation of resonances

Bruns, Mai, Meissner, PLB697 (2011) 254

- Can one generate resonances dynamically through hadronic FSI? ... at least some?
- Chiral effective field theory

Unitarized χEFT interactions, Bethe–Salpeter equation

Constrained by chiral low-energy theorems

Reasonable results for $S_{11}(1535, 1650)$ Bruns, Mai, Meissner 11

Could it be extended to πN DAs with near-threshold DAs as input?

 $\chi {\rm EFT}$ guarantees universality, controlled accuracy

• Alt: Empirical phase shifts

 ρ,ρ' DAs from $\pi\pi$ near threshold M. Polyakov, NPB555 (1999) 231; applied at HERA

Toward $N^{\ast}:$ DAs from Lattice QCD

V. Braun et al., PRL 103 (2009) 072001.

• N^* distribution amplitudes from lattice ${}_{\rightarrow {\rm Talk \; Braun}}$

 $N^{\ast}(1535)$ parity–partner of N, by–product of nucleon calculation

First non-trivial moment determines distribution of bulk strength

• Transition FFs from light-cone sum rules

Power corrections estimated using asymptotic DAs

Promising "hybrid" approach

Higher moments and "shape" of DA from Lattice? Higher-twist DAs for power corrections?

Toward N^* : Key issues

• Explore regions where hadronic FSI is parametrically controlled

Large– N_c limit of QCD

Chiral near-threshold region \rightarrow dynamically generated resonances

• Assess ratio non-resonant/resonant production in QCD

Information from quark-hadron duality