Exotic baryons from a heavy (\bar{c}, \bar{b}) meson and a nucleon

Yasuhiro Yamaguchi¹

in collaboration with

Shunsuke Ohkoda², Shigehiro Yasui², Atsushi Hosaka³

¹INFN Genova, Italy
 ²Tokyo Institute of Technology, Japan
 ³RCNP Osaka University, Japan

Nucleon Resonances: From Photoproduction to High Photon Virtualities 15 Oct. 2015, ECT*

Outline

Meson-Nucleon molecules with a heavy quark

Introduction

- Hadronic molecule
- Heavy Quark Spin Symmetry and one pion exchange potential
- Meson-Nucleon molecules: D
 N and BN
- JNN and BNN

④ Summary

2-body system

Exotic hadrons in the heavy quark region Introduction

- Constituent quark model (baryon(qqq), meson (qq̄))
- \Rightarrow successfully applied to hadron spectra.

Exotic hadrons in the heavy quark region Introduction

 ▷ Constituent quark model (baryon(qqq), meson (qq̄))
 ⇒ successfully applied to hadron spectra.

Exotic hadrons in the heavy quark region Introduction

- Constituent quark model (baryon(qqq), meson (qq̄))
- ⇒ successfully applied to hadron spectra.

New Exotic hadrons X, Y, Z in the heavy quark (c, b) sector

N. Brambilla, et al. Eur. Phys. J.C **71**(2011)1534 S. Godfrey and N. Isgur, PRD**32**(1985)189

▷ What is the structure of exotic hadrons? (□) (□)

15 Oct. 2015

Yasuhiro Yamaguchi(INFN Genova)

Nucleon Resonances@ECT*

Exotic structure: Hadronic molecules

Exotic structure: Hadronic molecules

- Loosely bound states (resonances) of hadrons
 - \rightarrow Appearing near the thresholds (M-M, M-B,...)
- Molecules are formed by the Hadron-Hadron interaction dynamically.

Exotic structure: Hadronic molecules

- Loosely bound states (resonances) of hadrons
 - \rightarrow Appearing near the thresholds (M-M, M-B,...)
- Molecules are formed by **the Hadron-Hadron interaction** dynamically.

In the Heavy-hadron interaction, the Heavy Quark Spin Symmetry plays an important role!

Mass degeneracy of heavy hadrons Introduction

 Mass difference between vector and pseudoscalar mesons. $(Q\bar{q}, q = u, d)$

- $\triangleright \Delta m$ decreases when the quark mass increases.
- ▷ Masses of $\{B, B^*\}$ ($\{D, D^*\}$) are almost degenerate.

Mass degeneracy of heavy hadrons

• Mass difference between vector and pseudoscalar mesons. $(Q\bar{q}, q = u, d)$

- $\triangleright \Delta m$ decreases when the quark mass increases.
- ▷ Masses of $\{B, B^*\}$ ($\{D, D^*\}$) are almost degenerate. → Heavy Quark Spin Symmetry!

Heavy Quark Spin Symmetry and Mass degeneracy Introduction

Heavy Quark Spin Symmetry (HQS) N.Isgur, M.B.Wise, PLB232(1989)113

- Spin-spin force between quarks is suppressed in $m_Q \rightarrow \infty$.
- e.g. Heavy-light mesons

 Δm_{P^*P} caused by the spin-spin force is small.

 \Rightarrow Mass degeneracy of hadrons with the different spins.

- Mass degeneracy of $\{D, D^*\}(Q\bar{q})$, $\{\eta_c, J/\psi\}(Q\bar{Q})$, $\{\Sigma_c, \Sigma_c^*\}(Qqq)$ (baryons)...
- New symmetry appearing in the heavy quark region!

KN and DN Interactions

- Interaction between K (light meson) and N
 - \Rightarrow Short range force (ρ , ω exchanges...) dominates.

KN and DN Interactions

• Interaction between K (light meson) and N \Rightarrow Short range force (ρ , ω exchanges...) dominates.

Strange (Light)(KK
$$\pi \times$$
)Charm (Heavy) K N \bar{D} $\pi, \rho, \omega...$ N $\rho, \omega, ...$ N \bar{D}^* $\pi, \rho, \omega...$ N K N \bar{D} N N

- In the heavy (c, b) sector, the small Δm_{DD^*} due to the Heavy Quark Spin Symmetry induces the $\overline{D} - \overline{D}^*$ mixing. $m_{K^*} - m_K \sim 400 \text{ MeV} \Leftrightarrow m_{D^*} - m_D \sim 140 \text{ MeV}$
- The mixing enhances the one π exchange potential (OPEP).

π exchange potential (OPEP) and Mass degeneracy

- > OPEP is important to bind atomic nuclei.
- **Tensor force** of the OPEP generates a strong attraction.

π exchange potential (OPEP) and Mass degeneracy Introduction

- > OPEP is important to bind atomic nuclei.
- **Tensor force** of the OPEP generates a strong attraction.

Hadronic molecule \Rightarrow Nucleus-like state?

 Additional π exchange ⇒ Meson-Meson (X, Y, Z), Meson-Baryon molecules (Meson Nuclei)

э

・ 同 ト ・ ヨ ト ・ ヨ ト ・

• Additional π exchange \Rightarrow Meson-Meson (X, Y, Z), Meson-Baryon molecules (Meson Nuclei)

Main Subject

• Hadronic molecules formed by Heavy meson-Nucleon with the π exchange potential.

- $P = \overline{D}(\overline{c}q), B(\overline{b}q) \rightarrow \text{No } q\overline{q} \text{ annihilation}!$
- ⇒ Bound states of $\overline{D}(B)$ nuclei are stable against the strong decay! (Genuinely exotic states!)
 - \Leftrightarrow K(s̄q) nuclei (Light sector) have not been found.

(KN interaction is repulsion.)

< 回 > < 回 > < 回 >

$P^{(*)}N$ Interaction $(P^{(*)} = \bar{D}^{(*)}, B^{(*)})$: OPEP

$$V_{PN-P^*N}^{\pi} = -\frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_N f_{\pi}} \frac{1}{3} \left[\vec{\varepsilon}^{\dagger} \cdot \vec{\sigma} C(r) + S_{\varepsilon} T(r) \right] \vec{\tau}_P \cdot \vec{\tau}_N$$
$$V_{P^*N-P^*N}^{\pi} = \frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_N f_{\pi}} \frac{1}{3} \left[\vec{T} \cdot \vec{\sigma} C(r) + S_T T(r) \right] \vec{\tau}_P \cdot \vec{\tau}_N$$
S.Yasui and K.Sudoh PRD**80**(2009)034008

C(r): Central force, T(r): Tensor force \triangleright T(r) generates a strong attraction! \Leftrightarrow Deuteron

$P^{(*)}N$ Interaction ($P^{(*)} = \bar{D}^{(*)}, B^{(*)}$): OPEP

$$V_{PN-P^*N}^{\pi} = -\frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_N f_{\pi}} \frac{1}{3} \left[\vec{\varepsilon}^{\dagger} \cdot \vec{\sigma} C(r) + S_{\varepsilon} \mathbf{T}(\mathbf{r}) \right] \vec{\tau}_P \cdot \vec{\tau}_N$$
$$V_{P^*N-P^*N}^{\pi} = \frac{g_{\pi}g_{\pi NN}}{\sqrt{2}m_N f_{\pi}} \frac{1}{3} \left[\vec{T} \cdot \vec{\sigma} C(r) + S_T \mathbf{T}(\mathbf{r}) \right] \vec{\tau}_P \cdot \vec{\tau}_N$$
S.Yasui and K.Sudoh PRD**80**(2009)034008

C(r): Central force, T(r): Tensor force \triangleright T(r) generates a strong attraction! \Leftrightarrow Deuteron

Results of $P^{(*)}N$ states (2-body)

 $ar{D}^{(*)} ext{ or } B^{(*)} extsf{N} extbf{q} \ ar{Q} extbf{q} \ ar{\mathcal{Q}} extbf{q} \ ar{\mathcal{T}} extsf{P}^{(*)} ex$

 $ar{D}N, BN$ Exotic states $(ar{Q}q + qqq)$

Bound state and Resonance

- We solve the coupled-channel Schrödinger equations for PN and P*N channels.
- Interaction: π , ρ , ω exchange potentials

•
$$J^P = 1/2^{\pm}, 3/2^{\pm}, 5/2^{\pm}$$
 with $I = 0$

Unit: MeV

Y.Y., S.Ohkoda, S.Yasui and A.Hosaka, PRD84 014032 (2011) and PRD85 054003 (2012)

< ロ > < 同 > < 回 > < 回 > .

э

•
$$J^P = 1/2^{\pm}, 3/2^{\pm}, 5/2^{\pm}$$
 with $I = 0$

One bound state

Y.Y., S.Ohkoda, S.Yasui and A.Hosaka, PRD84 014032 (2011) and PRD85 054003 (2012)

11

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

•
$$J^P = 1/2^{\pm}, 3/2^{\pm}, 5/2^{\pm}$$
 with $I = 0$

One bound state, and resonances in charm

Y.Y., S.Ohkoda, S.Yasui and A.Hosaka, PRD84 014032 (2011) and PRD85 054003 (2012)

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

•
$$J^P = 1/2^{\pm}, 3/2^{\pm}, 5/2^{\pm}$$
 with $I = 0$

One bound state, and resonances in charm and bottom sectors!

■ Many states near the thresholds. ⇔ No KN bound state

Expectation values in Bound state of $\mathsf{J}^\mathsf{P}=1/2^ _{\bar{D}N\mbox{ and }BN}$

• Expectation values of OPEP in $\overline{D}N$

Table	1	Expectation	values	of	V_{π}	([MeV])
-------	---	-------------	--------	----	-----------	---------

ĒΝ	$\langle V_{\bar{D}N-\bar{D}^*N} \rangle$	$\langle V_{\bar{D}^*N-\bar{D}^*N} \rangle$
Central	-2.5	$1.6 imes10^{-1}$
Tensor	-35.2	-1.1

• The tensor force of π exchange potential generates a strong attraction. Especially, $\overline{D}N - \overline{D}^*N$ mixing is important.

Expectation values in Bound state of $\mathsf{J}^\mathsf{P}=1/2^ _{\bar{D}N\mbox{ and }BN}$

• Expectation values of OPEP in $\overline{D}N$

Fable	2	Expectation	values	of	V_{π}	([MeV])
-------	---	-------------	--------	----	-----------	---------

ĒΝ	$\langle V_{\bar{D}N-\bar{D}^*N} \rangle$	$\langle V_{\bar{D}^*N-\bar{D}^*N} \rangle$
Central	-2.5	$1.6 imes10^{-1}$
Tensor	-35.2	-1.1

• The tensor force of π exchange potential generates a strong attraction. Especially, $\overline{D}N - \overline{D}^*N$ mixing is important.

Expectation values in Bound state of $\mathsf{J}^\mathsf{P}=1/2^ \bar{\mathsf{D}}\mathsf{N}$ and $\mathsf{B}\mathsf{N}$

• Expectation values of OPEP in $\overline{D}N$

Fable	2	Expectation values	of	V_{π}	([MeV])
-------	---	--------------------	----	-----------	---------

ĒΝ	$\langle V_{\bar{D}N-\bar{D}^*N} \rangle$	$\langle V_{\bar{D}^*N-\bar{D}^*N} \rangle$
Central	-2.5	$1.6 imes10^{-1}$
Tensor	-35.2	-1.1

• The tensor force of π exchange potential generates a strong attraction. Especially, $\overline{D}N - \overline{D}^*N$ mixing is important.

BN	$\langle V_{BN-B^*N} \rangle$	$\langle V_{B^*N-B^*N} \rangle$
Central	-8.2	1.3
Tensor	-90.2	-8.3

• Mixing effects are enhanced in *BN* due to small Δm_{BB^*} .

Results of P^(*)NN states (3-body)

Exotic dibaryon states: $\bar{D}^{(*)}NN$, $B^{(*)}NN$

with $J^{P} = 0^{-}, 1^{-}$ and I = 1/2

Bound state and Resonance

- $P^{(*)}N$ interaction: $\pi\rho\omega$ exchanges
- NN interaction: AV8' potential (B. S. Pudliner, et.al., PRC56(1997)1720)

Results of P^(*)NN states (3-body)

Exotic dibaryon states: $\bar{D}^{(*)}NN$, $B^{(*)}NN$

Bound state and Resonance

- $P^{(*)}N$ interaction: $\pi\rho\omega$ exchanges
- NN interaction: AV8' potential (B. S. Pudliner, et.al., PRC56(1997)1720)

$\bar{D}^{(*)}$ NN and $B^{(*)}$ NN for I = 1/2 (3-body) \bar{D} NN and BNN

$\bar{D}^{(*)}$ NN and $B^{(*)}$ NN for I = 1/2 (3-body) \bar{D} NN and BNN

$\bar{\mathsf{D}}^{(*)}\mathsf{NN}$ and $\mathsf{B}^{(*)}\mathsf{NN}$ for $\mathsf{I}=1/2$ (3-body) $_{\bar{\mathsf{D}}\mathsf{NN}}$ and $_{\mathsf{BNN}}$

高 と く ヨ と く ヨ と

$\bar{\mathsf{D}}^{(*)}\mathsf{NN}$ and $\mathsf{B}^{(*)}\mathsf{NN}$ for $\mathsf{I}=1/2$ (3-body) $_{\bar{\mathsf{D}}\mathsf{NN}}$ and $_{\mathsf{BNN}}$

New exotic states!

Energy expectation values of the bound states $\bar{\text{DNN}}$ and BNN

Q. How is the bound state formed?

 \Rightarrow Expectation values of the potentials $\left<\psi\right|\left.V\left|\psi\right>$

The bound state of $\overline{D}NN(0^-)$ (Unit: MeV)					
$\bar{D}^{(*)}NN$	$\langle V_{\bar{D}N-\bar{D}^*N} \rangle$	$\langle V_{ar{D}^*N\!-\!ar{D}^*N} angle$	$\langle V_{NN} \rangle$		
Central	-3.1	0.1	-9.2		
Tensor	-45.6	-1.0	-0.3		
LS			-0.5		

YY, S. Yasui, and A. Hosaka, NPA 927 (2014) 110

Energy expectation values of the bound states $\bar{\text{DNN}}$ and BNN

Q. How is the bound state formed?

 \Rightarrow Expectation values of the potentials $\left\langle \psi\right|$ V $\left|\psi\right\rangle$

The bound state of $ar{D}NN(0^-)$ (Unit: MeV)					
$\bar{D}^{(*)}NN$	$\langle V_{\bar{D}N-\bar{D}^*N} \rangle$	$\langle V_{ar{D}^*N\!-\!ar{D}^*N} angle$	$\langle V_{NN} \rangle$		
Central	-3.1	0.1	-9.2		
Tensor	-45.6	-1.0	-0.3		
LS			-0.5		

YY, S. Yasui, and A. Hosaka, NPA 927 (2014) 110

 V_{D̄N-D̄*N}(Tensor) generates the strong attraction.
 ⇔ the NN force (V_{NN}) plays a minor role, because the Deuteron channel (J^P_{NN} = 1⁺) is suppressed. (D̄NN(J^P = 0⁻))

Summary

Subject: Hadronic molecules $P^{(*)}N$ and $P^{(*)}NN$ by introducing Heavy quark symmetry and OPEP

• New Bound states and Resonances are found in $P^{(*)}N$ and $P^{(*)}NN$ in the heavy quark sectors.

ᆂ

- The Heavy quark symmetry enhances the OPEP between the heavy meson *P* and the nucleon *N*.
- Tensor force of OPEP in PN P*N mixing plays a crucial role to produce the New Exotic states.

Thank you for your kind attention.