Exclusive electroproduction of pions

P. Kroll

Fachbereich Physik, Univ. Wuppertal and Univ. Regensburg Trento, October 2015

Outline:

- Introduction: The handbag approach
- Evidence for strong $\gamma_T^* \to \pi$ transitions
- Transversity in the handbag approach
- Pion electroproduction
- Vector mesons
- Summary

Hard exclusive scattering within the handbag approach

rigorous proofs of collinear factorization in generalized Bjorken regime: for $\gamma_L^* \to V_L(P)$ and $\gamma_T^* \to \gamma_T$ amplitudes $(Q^2, W \to \infty, x_{Bj} \text{ fixed})$ Radyushkin, Collins et al, Ji-Osborne

hard subprocesses

 $\gamma^* g \to V g ,$ $\gamma^* q \to V(P, \gamma) q$

and GPDs and meson w.f. (encode the soft physics)

$$\mathcal{M} \sim \int_{-1}^{1} dx \,\mathcal{H}(x,\xi,Q^2,t=0)K(x,\xi,t)$$
$$d\sigma/dt \sim |\mathcal{M}|^2 + \mathcal{O}(1/Q^2)$$

power corrections are theoretical not under control

Exp: strong power corrections from γ_T^* and $\gamma_L^* \to V_L(P)$

GPDs – a reminder

Müller et al (94), Ji(97), Radyushkin (97)

properties:

reduction formula $H^q(\bar{x}, \xi = t = 0) = q(\bar{x}), \ \widetilde{H}^q \to \Delta q(\bar{x}), \ H^q_T \to \delta^q(\bar{x})$ sum rules (proton form factors): $F_1^q(t) = \int d\bar{x} H^q(\bar{x}, \xi, t), \ F_1 = \sum e_q F_1^q$ $E \to F_2, \ \widetilde{H} \to F_A, \ \widetilde{E} \to F_P$

polynomiality, universality, evolution, positivity constraints Ji's sum rule $J_q = \frac{1}{2} \int_{-1}^{1} d\bar{x} \, \bar{x} \left[H^q(\bar{x}, \xi, t = 0) + E^q(\bar{x}, \xi, t = 0) \right]$ FT $\Delta \rightarrow \mathbf{b} \ (\Delta^2 = -t)$: information on parton localization in trans. position space

An almost model-independent argument

consider pion electroproduction

sum and difference of single-flip ampl. (~ $\sqrt{-t'}$ for $t' \to 0$ by angular mom. conserv.) $\mathcal{M}_{0+\mu+}^{N(U)} = \frac{1}{2} \Big[\mathcal{M}_{0+\mu+} + (-)\mathcal{M}_{0+-\mu+} \Big] \qquad \mu = \pm 1$ $\implies \qquad \mathcal{M}_{0+-+}^{N(U)} = +(-)\mathcal{M}_{0+++}^{N(U)}$

like a one-particle-exchange of either Natural or Unnatural parity

nucleon helicity flip: $\mathcal{M}_{0--+} \sim t'$ $\mathcal{M}_{0-++} \sim const$ sum and difference inconvenient (constant can be small - or zero - for dynamical reasons)

Experiment:

Pion photoproduction: cross section exhibits pronounced maximum at t = 0const. cannot be zeroPhillips (1967): Regge cuts necessary

Pion electroproduction

 $\begin{aligned} & \mathsf{HERMES}(09) \\ Q^2 &\simeq 2.5 \,\mathrm{GeV}^2, \ W &= 3.99 \,\mathrm{GeV} \\ & \sin \phi_s \ \text{modulation very large} \\ & \text{does not seem to vanish for } t' \to 0 \\ & A_{UT}^{\sin \phi_S} \propto \mathrm{Im} \Big[\mathcal{M}_{0-,++}^* \mathcal{M}_{0+,0+} \Big] \\ & \text{n-f. ampl. } \mathcal{M}_{0-,++} \ \text{required} \\ & \text{not vanishing in forward direction} \end{aligned}$

assumption: $|\mathcal{M}_{0--+}| \ll |\mathcal{M}_{0-++}|, |\mathcal{M}_{0+\pm+}|$

Transverse cross sections

transversity dominance

Handbag: can $\mathcal{M}_{0-,++}$ be fed by ordinary GPDs?

lead. twist pion wave fct. $\propto q'\cdot\gamma\gamma_5$ (perhaps including ${f k}_\perp$)

transversity GPDs required go along with twist-3 w.f.

 $\mathcal{M}_{0-,++} \propto t'$ $\mathcal{M}_{0-,++} \propto \mathsf{const}$

(forced by angular momentum conservation)

prominent role of transversity GPDs also claimed by Ahmad et al analysis and results different

 $\gamma_T^* \to \pi$ in the handbag approach see Diehlo1, GK10, GK11 $\bar{E}_T \equiv 2\tilde{H}_T + E_T \qquad \mu = \pm 1$

$$\mathcal{M}_{0+\mu+} = e_0 \frac{\sqrt{-t'}}{4m} \int dx \left\{ \left(H_{0+\mu-} - H_{0-\mu+} \right) \left(\bar{E}_T - \xi \tilde{E}_T \right) \right. \\ \left. + \left(H_{0+\mu-} + H_{0-\mu+} \right) \left(\tilde{E}_T - \xi E_T \right) \right\} \\ \mathcal{M}_{0-\mu+} = e_0 \sqrt{1 - \xi^2} \int dx \left\{ H_{0-\mu+} \left[H_T + \frac{\xi}{1 - \xi^2} \left(\tilde{E}_T - \xi E_T \right) \right] \right. \\ \left. + \left(H_{0+\mu-} - H_{0-\mu+} \right) \frac{t'}{4m^2} \tilde{H}_T \right\}$$

with parity conservation: $\mathcal{M}_{0+\pm+} = \mathcal{M}_{0+++}^N \pm \mathcal{M}_{0+++}^U$ time-reversal invariance: \tilde{E}_T is odd function of ξ N: \bar{E}_T with corrections of order ξ^2 \mathbb{S}_T with corrections of order ξ^2 \mathcal{M}_{0-++} mainly H_T with corrections of order ξ^2 \mathcal{M}_{0--+} suppressed by t/Q^2 due to H_{0--+} and by $t'/4m^2$ from \tilde{H}_T handbag explains structure of ampl. at least at small ξ and small -t'

The twist-3 pion distr. amplitude

projector
$$q\bar{q} \rightarrow \pi$$
 (3-part. $q\bar{q}g$ contr. neglected) Beneke-Feldmann (01)
 $\sim q' \cdot \gamma \gamma_5 \Phi + \mu_{\pi} \gamma_5 \Big[\Phi_P - \imath \sigma_{\mu\nu} (\dots \Phi'_{\sigma} + \dots \Phi_{\sigma} \partial / \partial \mathbf{k}_{\perp \nu}) \Big]$
definition: $\langle \pi^+(q') \mid \bar{d}(x) \gamma_5 u(-x) \mid 0 \rangle = f_{\pi} \mu_{\pi} \int d\tau e^{iq'x\tau} \Phi_P(\tau)$
local limit $x \rightarrow 0$ related to divergency of axial vector current
 $\implies \mu_{\pi} = m_{\pi}^2 / (m_u + m_d) \simeq 2 \text{ GeV}$ at scale 2 GeV (conv. $\int d\tau \Phi_P(\tau) = 1$)

Eq. of motion:
$$\tau \Phi_P = \Phi_\sigma / N_c - \tau \Phi'_\sigma / (2N_c)$$
solution: $\Phi_P = 1$, $\Phi_\sigma = \Phi_{AS} = 6\tau (1 - \tau)$ Braun-Filyanov (90)

$$H^{
m twist-3}_{0-,++}
eq 0$$
, Φ_P dominant, Φ_σ contr. $\propto t/Q^2$

in coll. appr.: $H_{0-,++}^{\text{twist}-3}$ singular \mathbf{k}_{\perp} factorization (m.p.a.) regular

$$M_{0-++} = e_0 \sqrt{1-\xi^2} \int dx H_{0-++}^{\text{twist}-3} H_T , \qquad M_{0+\pm+} = -e_0 \frac{\sqrt{-t'}}{4m} \int dx H_{0-++}^{\text{twist}-3} \bar{E}_T$$

PK 9

The pion pole

$$\mathcal{M}_{0+0+} = \frac{e_0}{2}\sqrt{1-\xi^2}\langle \widetilde{H} - \frac{\xi^2}{1-\xi^2}\widetilde{E}\rangle \qquad \mathcal{M}_{0-0+} = e_0\frac{\sqrt{-t'}}{4m}\xi\langle \widetilde{E}\rangle$$

leading amplitudes for $Q^2 \to \infty$

For π^+ production - pion pole:

 $\widetilde{E}_{\text{pole}}^{u} = -\widetilde{E}_{\text{pole}}^{d} = \Theta(|x| \le \xi) \frac{m f_{\pi} g_{\pi NN}}{\sqrt{2}\xi} \frac{F_{\pi NN}(t)}{m_{\pi}^{2} - t} \Phi_{\pi}(\frac{x + \xi}{2\xi})$ $\implies \frac{d\sigma_{L}^{\text{pole}}}{dt} \sim \frac{-t}{Q^{2}} \left[\sqrt{2}e_{0}g_{\pi NN} \frac{F_{\pi NN}(t)}{m_{\pi}^{2} - t} Q^{2} F_{\pi}^{\text{pert}}(Q^{2}) \right]^{2}$

handbag understimates FF $F_{\pi}^{\text{pert.}} \simeq 0.3 - 0.5 F_{\pi}^{\text{exp.}}$ (F_{π} measured in π^+ electroproduction at Jlab) Goloskokov-K(09): $F_{\pi}^{\text{pert}} \rightarrow F_{\pi}^{\text{exp}}$ knowledge of the sixties suffices to explain π^+ data at small -t and large Q^2

PK 10

Parametrizing the GPDs

double distribution ansatz (Mueller et al (94), Radyushkin (99))

$$K_i(x,\xi,t) = \int_{-1}^1 d\rho \int_{-1+|\rho|}^{1-|\rho|} d\eta \,\delta(\rho + \xi\eta - x) \,K_i(\rho,\xi = 0,t) w_i(\rho,\eta) + D_i(x/\xi,t) \,\Theta(\xi^2 - \bar{x}^2)$$

weight fct $w_i(\rho, \eta) \sim [(1 - |\rho|)^2 - \eta^2]^{n_i}$ $(n_g = n_{\text{sea}} = 2, n_{\text{val}} = 1, \text{ generates } \xi \text{ dep.})$ zero-skewness GPD $K_i(\rho, \xi = 0, t) = k_i(\rho) \exp [(b_{ki} + \alpha'_{ki} \ln (1/\rho))t]$ $k = q, \Delta q, \delta^q$ for H, \widetilde{H}, H_T or $N_{ki}\rho^{-\alpha_{ki}(0)}(1 - \rho)^{\beta_{ki}}$ for $E, \widetilde{E}, \overline{E}_T$ Regge-like t dep. (for small -t reasonable appr.)

advantages: polynomiality and reduction formulas automatically satisfied H_{val} , E_{val} and \tilde{H}_{val} at $\xi = 0$ from analysis of form factors (sum rules) positivity bounds respected Diehl et al(04), Diehl-K (13)

for H and E D-term; neglected

The subprocess amplitude for DVMP

mod. pert. approach - quark trans. momenta in subprocess (emission and absorption of partons from proton collinear to proton momenta) transverse separation of color sources \implies gluon radiation

Sudakov factor Sterman et al(93) $S(\tau, \mathbf{b}_{\perp}, Q^2) \propto \ln \frac{\ln (\tau Q/\sqrt{2}\Lambda_{\rm QCD})}{-\ln (b_{\perp}\Lambda_{\rm QCD})} + \text{NLL}$ resummed gluon radiation to NLL $\Rightarrow \exp [-S]$ provides sharp cut-off at $b_{\perp} = 1/\Lambda_{\rm QCD}$

LO pQCD

+ quark trans. mom.

+ Sudakov supp.

 \Rightarrow asymp. fact. formula (lead. twist) for $Q^2 \rightarrow \infty$

 $\mathcal{H}^{M}_{0\lambda,0\lambda} = \int d\tau d^{2}b_{\perp} \,\hat{\Psi}_{M}(\tau, -\mathbf{b}_{\perp}) \, e^{-S} \hat{\mathcal{F}}_{0\lambda,0\lambda}(\bar{x}, \xi, \tau, Q^{2}, \mathbf{b}_{\perp})$

 $\hat{\Psi}_M \sim \exp[\tau \bar{\tau} b_{\perp}^2 / 4a_M^2]$ LC wave fct of meson $\hat{\mathcal{F}}$ FT of hard scattering kernel e.g. $\propto 1/[k_{\perp}^2 + \tau(\bar{x} + \xi)Q^2/(2\xi)] \Rightarrow$ Bessel fct

Sudakov factor generates series of power corr. $\sim (\Lambda_{\rm QCD}^2/Q^2)^n$ from intrinsic k_{\perp} in wave fct: series $\sim (a_M Q)^{-n}$ The role of H_T and \overline{E}_T in pion leptoproduction simplified picture: $H_T^d \simeq -1/2H_T^u$ $\overline{E}_T^d \simeq \overline{E}_T^u$ $\widetilde{H}, \widetilde{E} \simeq 0$ pion pole supported by lattice QCD QCDSF-UKQCD(05,06) transversity PDFs Anselmino et al(09) \overline{E}_T related to Boer-Mulders fct $\langle \cos(2\phi) \rangle$ in SIDIS – same pattern Burkhardt

 $\pi^{+}: \text{ pion pole} \to \sigma_{L} \qquad K_{\pi^{+}} = K^{u} - K^{d}; \qquad H_{T}^{\pi^{+}} = 3/2H_{T}^{u}; \quad \bar{E}_{T}^{\pi^{+}} = 0$ $\pi^{0}: \qquad \sigma_{L} = 0 \qquad K_{\pi^{0}} = e_{u}K^{u} - e_{d}K^{d}; \qquad H_{T}^{\pi^{0}} = 1/2H_{T}^{u}; \quad \bar{E}_{T}^{\pi^{0}} = \bar{E}_{T}^{u}$

	$d\sigma_L$	$d\sigma_T$	$d\sigma_{LT}$	$d\sigma_{TT}$	$A_{UT}^{\sin\phi_s}$
π^+	large	H_T large	large	0	large
π^0	0	$ar{E}_T$ large	0	large	0

Results for pion production

Goloskokov-K (10),(11) optimized for small ξ and large W

Bedlinsky et al (12)

data CLAS (prel.) unseparated (longitinal, transverse) cross sections

$$\frac{d\sigma(\eta)}{d\sigma(\pi^0)} \simeq \left(\frac{f_\eta}{f_\pi}\right)^2 \frac{1}{3} \left|\frac{e_u \langle K^u \rangle + e_d \langle K^d \rangle}{e_u \langle K^u \rangle - e_d \langle K^d \rangle}\right|^2 \qquad (f_\eta = 1.26f_\pi)$$

if K^u and K^d have opposite sign: $\eta/\pi^0 \simeq 1$ $(\eta = (\cos \theta_8 - \sqrt{2} \sin \theta_1)\eta_q)$ if K^u and K^d have same sign: $\eta/\pi^0 < 1$ $t' \simeq 0 \ \tilde{H}, H_T$ dominant (see also Eides et al(98) from asym. factor. formula for all t') $t' \neq 0 \ \bar{E}_T$ dominant

Reanalysis of pion electroproduction data

up to now: rather estimates than analysis new (preliminary) exp. information:

- σ_L , σ_T for π^0 production (settles dominance of $\gamma_T^* \to \pi$)

-
$$A_{LL}$$
, A_{UL} , A_{LU} for π^+ and π^0 from CLAS

- expected π^0 cross section from COMPASS

 \widetilde{H} from Diehl-K (13) based on DSSV (11)

 H_T, \overline{E}_T parametrized as before (more transversity GPDs ? see A_{LL}) DIFFICULTY:

large $-t_0 = 4m^2\xi^2/(1-\xi^2)$ implied (e.g. Q = W = 2 GeV: $t_0 \simeq -1$ GeV²) implies corrections in ξ (see also Braun et al (14))

$$\xi = \frac{x_{\rm Bj}}{2 - x_{\rm Bj}} \Big[1 + \frac{2}{2 - x_{\rm Bj}} \frac{m_{\pi}^2}{Q^2} - 2x_{\rm Bj}^2 \frac{1 - x_{\rm Bj}}{2 - x_{\rm Bj}} \frac{m^2}{Q^2} + 2x_{\rm Bj} \frac{1 - x_{\rm Bj}}{2 - x_{\rm Bj}} \frac{t}{Q^2} \Big]$$

handbag approach requires $-t \ll Q^2$, Q is the hard scale for $-t \gtrsim Q^2$ factorization different (subprocess and generalized form factors)

Strangeness production

would probe \widetilde{H} , \widetilde{E} and H_T for flavor symmetry breaking in sea e.g.

$$K_{p \to \Sigma^0} = -K_v^d + (K^s - K^{\bar{d}}),$$

$$K_{p \to \Lambda} = -\frac{1}{\sqrt{6}} \left[2K_v^u - K_v^d + (2K^{\bar{u}} - K^{\bar{d}} - K^s) \right]$$

Transversity in vector meson electroproduction

as for pions: $\gamma_T^* \to V_L$ amplitudes, same subprocess amplitude except $\Psi_\pi \to \Psi_V$, i.e. $f_\pi \to f_V$, $\mu_\pi/Q \to m_V/Q$

 $\gamma_T^* \to V_L$ amplitudes of about the same strength as the $\gamma_T^* \to \pi$ ones but competition with $\langle H \rangle$ (for gluons and quarks) instead with $\langle \widetilde{H} \rangle$ ($|\langle H \rangle| \gg |\langle \widetilde{H} \rangle|$) \implies small transversity effects for vector mesons to be seen in some of the SDMEs and in spin asymmetries examples from Goloskokov-K(13,14) estimates, not fits

Spin density matrix elements

SDME from HERMES(09) $r_{00}^{1} \sim -|\langle \bar{E}_{T} \rangle|^{2}$ $\operatorname{Re} r_{10}^{04} \sim \operatorname{Re} [\langle \bar{E}_{T} \rangle^{*} \langle H \rangle_{TT}]$ $r_{00}^{5} \sim \operatorname{Re} [\langle \bar{E}_{T} \rangle^{*} \langle H \rangle_{LL}]$

 $\langle H \rangle_{LL(TT)}$ convolution of H with $\gamma_L^* \to V_L$ ($\gamma_T^* \to V_T$) subprocess ampl.

Gluon transversity?

only non-flip subprocess ampl. $\gamma^*g \to Vg$ with gluon helicity-flip $\mathcal{H}_{--,++}$ (helicities ± 1) \Longrightarrow contribution to $\gamma^*_T \to V_{-T}$ amplitudes $\mathcal{M}_{-\mu\nu'\mu\nu}$ SDME (HERMES(09), H1(09)): $\gamma^*_T \to V_{-T}$ ampl. are small, compatible with zero consistent with small gluon transv. GPDs

not in contradiction with large quark transv. GPDs: gluon and quark transv. GPDs evolve independently with scale Hoodbhoy-Ji(98), Belitsky et al(00)

gluon transv. contribution to $\gamma_T^* \rightarrow \gamma_{-T}$ DVCS at NLO Hoodbhoy-Ji(98), Belitsky-Müller (00)

From pion leptoproduction we learn about \widetilde{H} and \widetilde{E}

state of the art 10-15 years ago

obsolete now it is to be revised:

From pion leptoproduction

we learn about H_T and \overline{E}_T