The Long Way from QCD gauge sector to pion's and nucleon's GPDs

J. Rodríguez-Quintero Univ. Huelva & CAFPE

In collaboration with:

Chang Lei Cedric Mezrag Hervé Moutarde Craig D. Roberts Frank Sabatié Sebastian M. Schmidt Peter Tandy

Published in:

Phys. Lett. B735 (2014) 3239

Phys. Lett. B190 (2015) 731

D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Phys. Lett. B, 183 (2015)

Quark propagator gap equation

$$S^{-1}(p) = Z_2 (i\gamma \cdot p + m^{\text{bm}}) + \Sigma(p),$$

$$\Sigma(p) = Z_1 \int_{dq}^{\Lambda} g^2 D_{\mu\nu}(p - q) \frac{\lambda^a}{2} \gamma_{\mu} S(q) \frac{\lambda^a}{2} \Gamma_{\nu}(q, p),$$

D. Binosi, L. Chang, J. Papavassiliou, C:D. Roberts, Phys. Lett. B, 183 (2015)

Quark propagator gap equation

$$S^{-1}(p) = Z_2 (i\gamma \cdot p + m^{bm}) + \Sigma(p),$$

$$\Sigma(p) = Z_1 \int_{dq}^{\Lambda} g^2 D_{\mu\nu}(p-q) \frac{\lambda^a}{2} \gamma_{\mu} S(q) \frac{\lambda^a}{2} \Gamma_{\nu}(q,p),$$

Interaction kernel:

$$\begin{split} &Z_1 g^2 D_{\mu\nu}(k) \Gamma_{\nu}(q,p) = k^2 \mathcal{G}(k^2) D_{\mu\nu}^{\text{free}}(k) \, Z_2 \, \Gamma_{\nu}^A(q,p) \\ &= \left[k^2 \mathcal{G}_{\text{IR}}(k^2) + 4\pi \tilde{\alpha}_{\text{pQCD}}(k^2) \right] D_{\mu\nu}^{\text{free}}(k) \, Z_2 \, \Gamma_{\nu}^A(q,p), \end{split}$$

D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Phys. Lett. B, 183 (2015)

Quark propagator gap equation:

$$S^{-1}(p) = Z_2 (i\gamma \cdot p + m^{bm}) + \Sigma(p),$$

$$\Sigma(p) = Z_1 \int_{dq}^{\Lambda} g^2 D_{\mu\nu}(p-q) \frac{\lambda^a}{2} \gamma_{\mu} S(q) \frac{\lambda^a}{2} \Gamma_{\nu}(q,p),$$

Interaction kernel:

$$\begin{split} Z_1 g^2 D_{\mu\nu}(k) \Gamma_{\nu}(q,p) &= k^2 \mathcal{G}(k^2) D_{\mu\nu}^{\text{free}}(k) \, Z_2 \, \Gamma_{\nu}^A(q,p) \\ &= \left[k^2 \mathcal{G}_{\text{IR}}(k^2) + 4\pi \tilde{\alpha}_{\text{pQCD}}(k^2) \right] D_{\mu\nu}^{\text{free}}(k) \, Z_2 \, \Gamma_{\nu}^A(q,p), \end{split}$$

$$I(k^{2}) = k^{2} \mathcal{G}(k^{2}),$$

$$\mathcal{G}(k^{2}) = \frac{8\pi^{2}}{\omega^{4}} D e^{-k^{2}/\omega^{2}} + \frac{8\pi^{2} \gamma_{m} \mathcal{E}(k^{2})}{\ln[\tau + (1 + k^{2}/\Lambda_{QCD}^{2})^{2}]},$$

D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Phys. Lett. B, 183 (2015)

Current models of the interaction kernel yields ground- and excited-states hadron masses within a 10-15% of accuracy compared to experiments!!! C.D. Roberts et al. Few Body Sys. 51, 1 (2011)

$$\begin{split} I(k^2) &= k^2 \mathcal{G}(k^2) \,, \\ \mathcal{G}(k^2) &= \frac{8\pi^2}{\omega^4} D \, \mathrm{e}^{-k^2/\omega^2} + \frac{8\pi^2 \gamma_m \, \mathcal{E}(k^2)}{\ln[\tau + (1 + k^2/\Lambda_{\mathrm{QCD}}^2)^2]}, \end{split}$$

D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Phys. Lett. B, 183 (2015)

IR gauge-sector interaction kernel:

$$I_{\hat{d}}(k^2) := k^2 \hat{d}(k^2) = \frac{\alpha_s(\zeta^2) \Delta(k^2; \zeta^2)}{[1 + G^2(k^2; \zeta^2)]^2} = \left[\frac{1}{1 - L(q^2) F(q^2)}\right]^2 \alpha_T(q^2);$$

More details in Binosi's Friday talk!!!

$$\begin{split} I(k^2) &= k^2 \mathcal{G}(k^2) \,, \\ \mathcal{G}(k^2) &= \frac{8\pi^2}{\omega^4} D \, \mathrm{e}^{-k^2/\omega^2} + \frac{8\pi^2 \gamma_m \, \mathcal{E}(k^2)}{\ln[\tau + (1 + k^2/\Lambda_{\mathrm{QCD}}^2)^2]}, \end{split}$$

D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Phys. Lett. B, 183 (2015)

IR gauge-sector interaction kernel:

$$I_{\hat{d}}(k^2) := k^2 \hat{d}(k^2) = \frac{\alpha_s(\zeta^2) \Delta(k^2; \zeta^2)}{[1 + G^2(k^2; \zeta^2)]^2} = \left[\frac{1}{1 - L(q^2) F(q^2)}\right]^2 \alpha_T(q^2);$$

More details in Binosi's Friday talk!!!

Top-down approach

bottom-up approach

$$I(k^{2}) = k^{2} \mathcal{G}(k^{2}),$$

$$\mathcal{G}(k^{2}) = \frac{8\pi^{2}}{\omega^{4}} D e^{-k^{2}/\omega^{2}} + \frac{8\pi^{2} \gamma_{m} \mathcal{E}(k^{2})}{\ln[\tau + (1 + k^{2}/\Lambda_{\text{OCD}}^{2})^{2}]},$$

D. Binosi, L. Chang, J. Papavassiliou, C.D. Roberts, Phys. Lett. B, 183 (2015)

IR gauge-sector interaction kernel:

$$I_{\hat{d}}(k^2) := k^2 \hat{d}(k^2) = \frac{\alpha_s(\zeta^2) \Delta(k^2;\zeta^2)}{[1 + G^2(k^2;\zeta^2)]^2} \ = \left[\frac{1}{1 - L(q^2) F(q^2)}\right]^2 \alpha_T(q^2) \, ;$$

More details in Binosi's Friday talk!!!

 $\mathcal{G}(k^2) = \frac{8\pi^2}{\omega^4} D e^{-k^2/\omega^2} + \frac{8\pi^2 \gamma_m \mathcal{E}(k^2)}{\ln[\tau + (1 + k^2/\Lambda_{CCD}^2)^2]},$

Very preliminary results!!!

3D imaging of the nucleon's partonic content but also...

Correlation of the longitudinal momentum and the transverse position of a parton in the nucleon.

- Correlation of the longitudinal momentum and the transverse position of a parton in the nucleon.
- Insights on:
 - Spin structure,
 - Energy-momentum structure.

- Correlation of the longitudinal momentum and the transverse position of a parton in the nucleon.
- Insights on:
 - Spin structure,
 - Energy-momentum structure.
- Probabilistic interpretation of Fourier transform of $GPD(x, \xi = 0, t)$ in transverse plane.

- Correlation of the longitudinal momentum and the transverse position of a parton in the nucleon.
- Insights on:
 - Spin structure,
 - Energy-momentum structure.
- Probabilistic interpretation of Fourier transform of $GPD(x, \xi = 0, t)$ in transverse plane.

- Important topic for several past, existing and future experiments: H1, ZEUS, HERMES, CLAS, CLAS12, JLab Hall A, COMPASS, EIC, ...
- GPD modeling / parameterizing is an essential ingredient for the interpretation of experimental data.
- Recent applications of the Dyson-Schwinger and Bethe-Salpeter framework to hadron structure studies.

Definition and symmetry properties:

$$H_{\pi}^{q}(x,\xi,t) = \frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ixP^{+}z^{-}} \left\langle \pi, P + \frac{\Delta}{2} \middle| \bar{q} \left(-\frac{z}{2} \right) \gamma^{+} q \left(\frac{z}{2} \right) \middle| \pi, P - \frac{\Delta}{2} \right\rangle_{\substack{z^{+}=0\\z_{\perp}=0}}$$

with $t = \Delta^2$ and $\xi = -\Delta^+/(2P^+)$.

References

Müller *et al.*, Fortschr. Phys. **42**, 101 (1994) Ji, Phys. Rev. Lett. **78**, 610 (1997) Radyushkin, Phys. Lett. **B380**, 417 (1996)

- From isospin symmetry, all the information about pion GPD is encoded in $H_{\pi^+}^u$ and $H_{\pi^+}^d$.
- Further constraint from **charge conjugation**: $H_{\pi^+}^u(x,\xi,t) = -H_{\pi^+}^d(-x,\xi,t)$.

Form factors and parton distribution functions:

■ PDF forward limit

$$H^q(x,0,0) = q(x)$$

- PDF forward limit
- Form factor sum rule

$$\int_{-1}^{+1} dx \, H^q(x,\xi,t) = F_1^q(t)$$

- PDF forward limit
- Form factor sum rule
- Polynomiality

$$\int_{-1}^{+1} dx x^n H^q(x, \xi, t) = \text{polynomial in } \xi$$

- PDF forward limit
- Form factor sum rule
- Polynomiality
- Positivity

$$H^{q}(x,\xi,t) \leq \sqrt{q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)}$$

- PDF forward limit
- Form factor sum rule
- Polynomiality
- Positivity
- \blacksquare H^q is an **even function** of ξ from time-reversal invariance.

- PDF forward limit
- Form factor sum rule
- Polynomiality
- Positivity
- \blacksquare H^q is an **even function** of ξ from time-reversal invariance.
- \blacksquare H^q is **real** from hermiticity and time-reversal invariance.

- PDF forward limit
- Form factor sum rule
- Polynomiality
- Positivity
- \blacksquare H^q is an **even function** of ξ from time-reversal invariance.
- \blacksquare H^q is **real** from hermiticity and time-reversal invariance.
- \blacksquare H^q has support $x \in [-1, +1]$.

- PDF forward limit
- Form factor sum rule
- Polynomiality
- Positivity
- \blacksquare H^q is an **even function** of ξ from time-reversal invariance.
- \blacksquare H^q is **real** from hermiticity and time-reversal invariance.
- \blacksquare H^q has support $x \in [-1, +1]$.
- Soft pion theorem (pion target)

$$H^{q}(x,\xi=1,t=0) = \frac{1}{2}\phi_{\pi}^{q}\left(\frac{1+x}{2}\right)$$

Form factors and parton distribution functions:

- PDF forward limit
- Form factor sum rule
- Polynomiality
- Positivity
- \blacksquare H^q is an **even function** of ξ from time-reversal invariance.
- \blacksquare H^q is **real** from hermiticity and time-reversal invariance.
- \blacksquare H^q has support $x \in [-1, +1]$.
- Soft pion theorem (pion target)

Numerous theoretical constraints on GPDs.

- There is no known GPD parameterization relying only on first principles.
- Modeling becomes a key issue.

Double distributions (DD), a natural parameterization for a covariant GPD:

- A function satisfying a polynomiality property is the Radon transform of another function.
- Representation of GPD in terms of **Double Distributions**:

$$H^{q}(x,\xi,t) = \int_{\Omega} d\beta d\alpha \, \delta(x-\beta-\alpha\xi) \big(F^{q}(\beta,\alpha,t) + \xi G^{q}(\beta,\alpha,t) \big)$$

Müller *et al.*, Fortschr. Phys. **42**, 101 (1994) Radyushkin, Phys. Rev. **D59**, 014030 (1999) Radysuhkin, Phys. Lett. **B449**, 81 (1999)

- Support property: $x \in [-1, +1]$.
- Discrete symmetries: F^q is α -even and G^q is α -odd.

Double distributions (DD), a natural parameterization for a covariant GPD:

■ Define Double Distributions F^q and G^q as matrix elements of twist-2 quark operators:

$$\left\langle P + \frac{\Delta}{2} \middle| \bar{q}(0) \gamma^{\{\mu_i \stackrel{\leftrightarrow}{\mathsf{D}} \mu_1} \dots i \stackrel{\leftrightarrow}{\mathsf{D}}^{\mu_m\}} q(0) \middle| P - \frac{\Delta}{2} \right\rangle = \sum_{k=0}^m \binom{m}{k}$$

$$\left[F_{mk}^{q}(t)2P^{\{\mu}-G_{mk}^{q}(t)\Delta^{\{\mu\}}P^{\mu_{1}}\dots P^{\mu_{m-k}}\left(-\frac{\Delta}{2}\right)^{\mu_{m-k+1}}\dots\left(-\frac{\Delta}{2}\right)^{\mu_{m}\}}\right]$$

with

$$F_{mk}^{q} = \int_{\Omega} d\beta d\alpha \, \alpha^{k} \beta^{m-k} F^{q}(\beta, \alpha)$$

$$G_{mk}^{q} = \int_{\Omega} d\beta d\alpha \, \alpha^{k} \beta^{m-k} G^{q}(\beta, \alpha)$$

Evaluation via the triangle diagram approximation:

$$\langle \mathbf{x}^{m} \rangle^{q} = \frac{1}{2(P^{+})^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{\mathbf{q}}(0) \gamma^{+} (i \overleftrightarrow{D}^{+})^{m} \mathbf{q}(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

Compute Mellin moments of the pion GPD H.

Evaluation via the triangle diagram approximation:

$$\langle x^m \rangle^q = \frac{1}{2(P^+)^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \overline{\mathbf{q}}(0) \gamma^+ (i \overleftrightarrow{D}^+)^m \mathbf{q}(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

- Compute Mellin moments of the pion GPD H.
- Triangle diagram approx.

Evaluation via the triangle diagram approximation:

$$\langle \mathbf{x}^{m} \rangle^{q} = \frac{1}{2(P^{+})^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{\mathbf{q}}(0) \gamma^{+} (i \overleftrightarrow{D}^{+})^{m} \mathbf{q}(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

- Compute Mellin moments of the pion GPD H.
- Triangle diagram approx.
- Resum infinitely many contributions.

Dyson - Schwinger equation

Evaluation via the triangle diagram approximation:

$$\langle \mathbf{x}^{m} \rangle^{q} = \frac{1}{2(P^{+})^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{q}(0) \gamma^{+} (i \overleftrightarrow{D}^{+})^{m} q(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

- Compute Mellin moments of the pion GPD H.
- Triangle diagram approx.
- Resum infinitely many contributions.

Bethe - Salpeter equation

Evaluation via the triangle diagram approximation:

$$\langle \mathbf{x}^{\mathbf{m}} \rangle^{\mathbf{q}} = \frac{1}{2(P^{+})^{\mathbf{n}+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{\mathbf{q}}(0) \gamma^{+} (i \overleftrightarrow{D}^{+})^{\mathbf{m}} \mathbf{q}(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

- Compute Mellin moments of the pion GPD H.
- Triangle diagram approx.
- Resum infinitely many contributions.
- Nonperturbative modeling.

Evaluation via the triangle diagram approximation:

$$\langle \mathbf{x}^{\mathbf{m}} \rangle^{\mathbf{q}} = \frac{1}{2(P^{+})^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{\mathbf{q}}(0) \gamma^{+} (i \overleftrightarrow{D}^{+})^{\mathbf{m}} \mathbf{q}(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

- Compute Mellin moments of the pion GPD H.
- Triangle diagram approx.
- Resum infinitely many contributions.
- Nonperturbative modeling.
- Most GPD properties satisfied by construction.

Evaluation via the triangle diagram approximation:

$$\langle \mathbf{x}^{\mathbf{m}} \rangle^{\mathbf{q}} = \frac{1}{2(P^{+})^{n+1}} \left\langle \pi, P + \frac{\Delta}{2} \left| \bar{\mathbf{q}}(0) \gamma^{+} (i \overleftrightarrow{D}^{+})^{\mathbf{m}} \mathbf{q}(0) \right| \pi, P - \frac{\Delta}{2} \right\rangle$$

- Compute Mellin moments of the pion GPD H.
- Triangle diagram approx.
- Resum infinitely many contributions.
- Nonperturbative modeling.
- Most GPD properties satisfied by construction.
- Also compute crossed triangle diagram.

Mezrag *et al.*, arXiv:1406.7425 [hep-ph] and Phys. Lett. **B741**, 190 (2015)

Rainbow-ladder and physical content:

Rainbow-ladder and physical content:

Bethe-Salpeter vertex.

Rainbow-ladder and physical content:

- Bethe-Salpeter vertex.
- Dressed quark propagator.

Rainbow-ladder and physical content:

- Bethe-Salpeter vertex.
- Dressed quark propagator.
- Much more than tree level perturbative diagram!
- Enable description of non perturbative phenomena.

Most of the properties made sure by construction:

Polynomiality from Poincaré covariance.

Most of the properties made sure by construction:

- Polynomiality from Poincaré covariance.
- Soft pion theorem from symmetry-preserving truncation of Bethe-Salpeter and gap equations. Mezrag et al., Phys. Lett. B741, 190 (2015)

Most of the properties made sure by construction:

- Polynomiality from Poincaré covariance.
- Soft pion theorem from symmetry-preserving truncation of Bethe-Salpeter and gap equations.

Most of the properties made sure by construction:

- Polynomiality from Poincaré covariance.
- Soft pion theorem from symmetry-preserving truncation of Bethe-Salpeter and gap equations.

- Mellin moments.
- Soft pion kinematics.
- Axial and axial vector vertices Γ_5 , Γ_5^μ in chiral limit.

Most of the properties made sure by construction:

- Polynomiality from Poincaré covariance.
- Soft pion theorem from symmetry-preserving truncation of Bethe-Salpeter and gap equations.

- Mellin moments.
- Soft pion kinematics.
- Axial and axial vector vertices Γ_5 , Γ_5^μ in chiral limit.
- Axial-vector Ward identity.

Most of the properties made sure by construction:

- Polynomiality from Poincaré covariance.
- Soft pion theorem from symmetry-preserving truncation of Bethe-Salpeter and gap equations.

- Mellin moments.
- Soft pion kinematics.
- Axial and axial vector vertices Γ_5 , Γ_5^μ in chiral limit.
- Axial-vector Ward identity.
- Recover pion DA Mellin moments.

Have to deal with DSEs and BSEs solutions:

- Numerical resolution of gap and Bethe-Salpeter equations in Euclidean space.
- Analytic continuation to Minkowskian space required.
- III-posed problem in the sense of Hadamard.
- Parameterize solutions and fit to numerical solution:

Gap Complex-conjugate pole representation:

$$S(k) = \sum_{i=0}^{N} \left[\frac{z_i}{i \not k + m_i} + \frac{z_i^*}{i \not k + m_i^*} \right]$$

Bethe-Salpeter Nakanishi representation of amplitude \mathcal{F}_{π} :

$$\mathcal{F}_{\pi}(q^2, q \cdot P) = \int_{-1}^{+1} d\alpha \int_{0}^{\infty} d\lambda \frac{\rho(\alpha, \lambda)}{(q^2 + \alpha q \cdot P + \lambda^2)^n}$$

A first intermediate step before dealing with numerical solutions:

Expressions for vertices and propagators:

$$S(p) = \left[-i\gamma \cdot p + M \right] \Delta_{M}(p^{2})$$

$$\Delta_{M}(s) = \frac{1}{s + M^{2}}$$

$$\Gamma_{\pi}(k, p) = i\gamma_{5} \frac{M}{f_{\pi}} M^{2\nu} \int_{-1}^{+1} dz \, \rho_{\nu}(z) \, \left[\Delta_{M}(k_{+z}^{2}) \right]^{\nu}$$

$$\rho_{\nu}(z) = R_{\nu} (1 - z^{2})^{\nu}$$

with R_{ν} a normalization factor and $k_{+z} = k - p(1-z)/2$. Chang et al., Phys. Rev. Lett. **110**, 132001 (2013)

Only two parameters:

A first intermediate step before dealing with numerical solutions:

Expressions for vertices and propagators:

$$S(p) = \left[-i\gamma \cdot p + \mathbf{M} \right] \Delta_{\mathbf{M}}(p^{2})$$

$$\Delta_{\mathbf{M}}(s) = \frac{1}{s + \mathbf{M}^{2}}$$

$$\Gamma_{\pi}(k, p) = i\gamma_{5} \frac{\mathbf{M}}{f_{\pi}} \mathbf{M}^{2\nu} \int_{-1}^{+1} dz \, \rho_{\nu}(z) \, \left[\Delta_{\mathbf{M}}(k_{+z}^{2}) \right]^{\nu}$$

$$\rho_{\nu}(z) = R_{\nu} (1 - z^{2})^{\nu}$$

with R_{ν} a normalization factor and $k_{+z} = k - p(1-z)/2$. Chang et al., Phys. Rev. Lett. **110**, 132001 (2013)

- Only two parameters:
 - Dimensionful parameter M.

A first intermediate step before dealing with numerical solutions:

Expressions for vertices and propagators:

$$S(p) = \left[-i\gamma \cdot p + M \right] \Delta_{M}(p^{2})$$

$$\Delta_{M}(s) = \frac{1}{s + M^{2}}$$

$$\Gamma_{\pi}(k, p) = i\gamma_{5} \frac{M}{f_{\pi}} M^{2\nu} \int_{-1}^{+1} dz \, \rho_{\nu}(z) \, \left[\Delta_{M}(k_{+z}^{2}) \right]^{\nu}$$

$$\rho_{\nu}(z) = R_{\nu} (1 - z^{2})^{\nu}$$

with R_{ν} a normalization factor and $k_{+z} = k - p(1-z)/2$. Chang et al., Phys. Rev. Lett. **110**, 132001 (2013)

- Only two parameters:
 - Dimensionful parameter *M*.
 - $lue{}$ Dimensionless parameter u

A first intermediate step before dealing with numerical solutions:

Expressions for vertices and propagators:

$$S(p) = \left[-i\gamma \cdot p + M \right] \Delta_{M}(p^{2})$$

$$\Delta_{M}(s) = \frac{1}{s + M^{2}}$$

$$\Gamma_{\pi}(k, p) = i\gamma_{5} \frac{M}{f_{\pi}} M^{2\nu} \int_{-1}^{+1} dz \, \rho_{\nu}(z) \, \left[\Delta_{M}(k_{+z}^{2}) \right]^{\nu}$$

$$\rho_{\nu}(z) = R_{\nu} (1 - z^{2})^{\nu}$$

with R_{ν} a normalization factor and $k_{+z} = k - p(1-z)/2$. Chang et al., Phys. Rev. Lett. **110**, 132001 (2013)

- Only two parameters:
 - Dimensionful parameter M.
 - Dimensionless parameter ν. Fixed to 1 to recover asymptotic pion DA.

Verification of the theoretical constraints:

Analytic expression in the DGLAP region.

$$\begin{split} \mathcal{H}^{\mu}_{\mathsf{X} \geq \xi}(\mathsf{x}, \xi, 0) &= \frac{48}{5} \left\{ \frac{3 \left(-2(\mathsf{x}-1)^4 \left(2 x^2 - 5 \xi^2 + 3 \right) \log (1-\mathsf{x}) \right)}{20 \left(\xi^2 - 1 \right)^3} \right. \\ &= \frac{3 \left(+4 \xi \left(15 x^2 (\mathsf{x}+3) + (19 \mathsf{x}+29) \xi^4 + 5 (\mathsf{x} (\mathsf{x} (\mathsf{x}+11) + 21) + 3) \xi^2 \right) \tanh^{-1} \left(\frac{(\mathsf{x}-1)}{\mathsf{x} - \xi^2} \right) \right. \\ &+ \frac{3 \left(x^3 (\mathsf{x} (2(\mathsf{x}-4) \mathsf{x}+15) - 30) - 15 (2 \mathsf{x} (\mathsf{x}+5) + 5) \xi^4 \right) \log \left(x^2 - \xi^2 \right)}{20 \left(\xi^2 - 1 \right)^3} \\ &+ \frac{3 \left(-5 x (\mathsf{x} (\mathsf{x} (\mathsf{x}+2) + 36) + 18) \xi^2 - 15 \xi^6 \right) \log \left(x^2 - \xi^2 \right)}{20 \left(\xi^2 - 1 \right)^3} \\ &+ \frac{3 \left(2 (\mathsf{x}-1) \left((23 \mathsf{x}+58) \xi^4 + (\mathsf{x} (\mathsf{x} (\mathsf{x}+67) + 112) + 6) \xi^2 + \mathsf{x} (\mathsf{x} ((5-2\mathsf{x}) \mathsf{x}+15) + \xi (5-2\mathsf{x}) \xi^2 + 1) \right)}{20 \left(\xi^2 - 1 \right)^3} \\ &+ \frac{3 \left(\left(15 (2 \mathsf{x} (\mathsf{x}+5) + 5) \xi^4 + 10 \mathsf{x} (3 \mathsf{x} (\mathsf{x}+5) + 11) \xi^2 \right) \log \left(1 - \xi^2 \right) \right)}{20 \left(\xi^2 - 1 \right)^3} \\ &+ \frac{3 \left(2 \mathsf{x} (5 \mathsf{x} (\mathsf{x}+2) - 6) + 15 \xi^6 - 5 \xi^2 + 3 \right) \log \left(1 - \xi^2 \right)}{20 \left(\xi^2 - 1 \right)^3} \right\} \end{split}$$

Verification of the theoretical constraints:

- Analytic expression in the DGLAP region.
- Similar expression in the ERBL region.

Verification of the theoretical constraints:

- Analytic expression in the DGLAP region.
- Similar expression in the ERBL region.
- **Explicit check** of **support property** and **polynomiality** with correct powers of ξ .

Verification of the theoretical constraints:

- Analytic expression in the DGLAP region.
- Similar expression in the ERBL region.
- **Explicit check** of **support property** and **polynomiality** with correct powers of ξ .
- Also direct verification using Mellin moments of H.

Valence $H^u(x, \xi, t)$ as a function of x and ξ at vanishing t.

Mezrag et al., arXiv:1406.7425 [hep-ph]

Verification of the theoretical constraints:

- Analytic expression in the DGLAP region.
- Similar expression in the ERBL region.
- **Explicit check** of **support property** and **polynomiality** with correct powers of ξ .
- Also direct verification using Mellin moments of H.

Valence $H^u(x, \xi, t)$ as a function of x and ξ at vanishing t.

Mezrag et al., arXiv:1406.7425 [hep-ph]

The two-body problem:

$$q_A^{\pi}(x) = n_q \left[x^3 (x[-2(x-4)x-15] + 30) \ln(x) + (2x^2 + 3) \right] \times (x-1)^4 \ln(1-x) + x[x(x[2x-5]-15)-3](x-1),$$

The PDF appears not to be symmetric around
 x = 1/-

The two-body problem:

- The PDF appears not to be symmetric around $x = \frac{1}{2}$.
- Part of the gluons contribution is neglected in the triangle diagram approach.

The two-body problem:

- The PDF appears not to be symmetric around $x = \frac{1}{2}$.
- Part of the gluons contribution is neglected in the triangle diagram approach.

The two-body problem:

$$q_A^{\pi}(x) = n_q \left[x^3 (x[-2(x-4)x-15] + 30) \ln(x) + (2x^2 + 3) \right] \times (x-1)^4 \ln(1-x) + x[x(x[2x-5]-15)-3](x-1),$$

$$q_{BC}^{\pi}(x) = n_q \left[x^3 (2x([x-3]x+5) - 15) \ln(x) - (2x^3 + 4x + 9) \right] \times (x-1)^3 \ln(1-x) - x(2x-1)([x-1]x-9)(x-1) .$$
 (13)

- The PDF appears not to be symmetric around $x = \frac{1}{2}$.
- Part of the gluons contribution is neglected in the triangle diagram approach.

The two-body problem:

$$q_L^{\pi}(x) = \frac{72}{25} \left[x^3 (x[2x - 5] + 15) \ln(x) + (x[2x + 1] + 12) \right]$$
$$\times (1 - x)^3 \ln(1 - x) + 2x(6 - [1 - x]x)(1 - x).$$

- The PDF appears not to be symmetric around $x = \frac{1}{2}$.
- Part of the gluons contribution is neglected in the triangle diagram approach.
- Adding this contribution allows us to recover a symmetric PDF [L. Chang et al.,

Phys.Lett.B737(2014)2329].

The two-body problem:

$$q_L^{\pi}(x) = \frac{72}{25} \left[x^3 (x[2x - 5] + 15) \ln(x) + (x[2x + 1] + 12) \right]$$
$$\times (1 - x)^3 \ln(1 - x) + 2x(6 - [1 - x]x)(1 - x).$$

- The PDF appears not to be symmetric around $x = \frac{1}{2}$.
- Part of the gluons contribution is neglected in the triangle diagram approach.
- Adding this contribution allows us to recover a symmetric PDF [L. Chang et al.,

Phys.Lett.B737(2014)2329].

The form factor and the dimensionful parameter:

■ Pion form factor obtained from isovector GPD:

$$\int_{-1}^{+1} dx \, H^{l=1}(x,\xi,t) = 2F_{\pi}(t)$$

■ Single dimensionful parameter $M \simeq 400$ MeV.

The parton distribution function:

Pion PDF obtained from forward limit of GPD:

$$q(x) = H^q(x, 0, 0)$$

Use LO DGLAP equation and compare to PDF extraction.
 Aicher et al., Phys. Rev. Lett. 105, 252003 (2010)

Mezrag et al., arXiv:1406.7425 [hep-ph]

Find model initial scale $\mu \simeq 400$ MeV.

The off-forward (non-skewed) GPD:

The off-forward (non-skewed) GPD:

The off-forward (non-skewed) GPD:

$$q(x,|\vec{b}|) = \int \frac{d|\vec{\Delta}_{\perp}|}{2\pi} |\vec{\Delta}_{\perp}| J_0(|\vec{b}_{\perp}||\vec{\Delta}_{\perp}|) H(x,0,-\Delta_{\perp}^2)$$

Impact parameter space GPD at $\zeta = 0.4$ GeV

The off-forward (non-skewed) GPD:

$$q(x,|\vec{b}|) = \int \frac{d|\vec{\Delta}_{\perp}|}{2\pi} |\vec{\Delta}_{\perp}| J_0(|\vec{b}_{\perp}||\vec{\Delta}_{\perp}|) H(x,0,-\Delta_{\perp}^2)$$

Impact parameter space GPD at $\zeta = 2$ GeV

M = 0.4 GeV 0. $\frac{q(x, b_{\perp})}{M^2}$ 1. 0.5 0.5 0.5 0.5

The peak of probability, at $|\vec{b}_{\perp}| = 0$, drifts to x = 0, its height is diminished and the distribution in $|\vec{b}_{\perp}|$ broadens.

The off-forward (non-skewed) GPD:

$$q(x,|\vec{b}|) = \int \frac{d|\vec{\Delta}_{\perp}|}{2\pi} |\vec{\Delta}_{\perp}| J_0(|\vec{b}_{\perp}||\vec{\Delta}_{\perp}|) H(x,0,-\Delta_{\perp}^2)$$

$$\langle |\vec{b}_{\perp}|^{2} \rangle = \int_{-1}^{1} dx \frac{\langle |\vec{b}_{\perp}(x;\zeta)|^{2} \rangle}{\langle |\vec{b}_{\perp}(x;\zeta)|^{2} \rangle} = \int_{-1}^{1} dx \int_{0}^{\infty} d|\vec{b}_{\perp}| |\vec{b}_{\perp}|^{3} \int_{0}^{\infty} d\Delta \Delta J_{0}(\vec{b}_{\perp}|\Delta) F_{\pi}(\Delta^{2})$$

Impact parameter space GPD

$$r_{\pi} = \sqrt{3/2\langle |\vec{b}_{\perp}|^2 \rangle} = 0.674 \text{ fm} \iff r_{\pi} = 0.672(8) \text{ fm [PRD86(2012)010001]}$$

$$\zeta = 2 \text{ GeV}$$
; $\zeta = 0.4 \text{ GeV}$; $\zeta = 0.4 \text{GeV}$ [c(x,t)=1]. X

A first-principle connection with Light-Front Wave Function:

■ Decompose an hadronic state $|H; P, \lambda\rangle$ in a Fock basis:

$$|H; P, \lambda\rangle = \sum_{N,\beta} \int [\mathrm{d}x \mathrm{d}\mathbf{k}_{\perp}]_N \psi_N^{(\beta,\lambda)}(x_1, \mathbf{k}_{\perp 1}, \dots, x_N, \mathbf{k}_{\perp N}) |\beta, k_1, \dots, k_N\rangle$$

■ Derive an expression for the pion GPD in the DGLAP region $\xi \le x \le 1$:

$$H^{q}(x,\xi,t) \propto \sum_{\beta,j} \int [\mathrm{d}\bar{\mathbf{x}} \mathrm{d}\bar{\mathbf{k}}_{\perp}]_{N} \delta_{j,q} \delta(x-\bar{x}_{j}) \psi_{N}^{(\beta,\lambda)*}(\hat{\mathbf{x}}',\hat{\mathbf{k}}'_{\perp}) \psi_{N}^{(\beta,\lambda)}(\tilde{\mathbf{x}},\tilde{\mathbf{k}}_{\perp})$$

with $\tilde{x}, \tilde{\mathbf{k}}_{\perp}$ (resp. $\hat{x}', \hat{\mathbf{k}}'_{\perp}$) generically denoting incoming (resp. outgoing) parton kinematics.

Diehl et al., Nucl. Phys. **B596**, 33 (2001)

■ Similar expression in the ERBL region $-\xi \le x \le \xi$, but with overlap of N- and (N+2)-body LFWF.

A first-principle connection with Light-Front Wave Function:

■ Decompose an hadronic state $|H; P, \lambda\rangle$ in a Fock basis:

$$|H; P, \lambda\rangle = \sum_{N,\beta} \int [\mathrm{d}x \mathrm{d}\mathbf{k}_{\perp}]_N \psi_N^{(\beta,\lambda)}(x_1, \mathbf{k}_{\perp 1}, \dots, x_N, \mathbf{k}_{\perp N}) |\beta, k_1, \dots, k_N\rangle$$

■ Derive an expression for the pion GPD in the DGLAP region $\xi \le x \le 1$:

$$H_{\pi}^{q}(x,\xi,t)_{\xi \leq x \leq 1} = C^{q} \int d^{2}\mathbf{k}_{\perp}^{2} \Psi^{*}\left(\frac{x-\xi}{1-\xi},\mathbf{k}_{\perp} + \frac{1-x}{1-\xi}\frac{\Delta_{\perp}}{2};P_{-}\right) \Psi\left(\frac{x+\xi}{1+\xi},\mathbf{k}_{\perp} - \frac{1-x}{1+\xi}\frac{\Delta_{\perp}}{2};P_{+}\right)$$

with $\tilde{x}, \tilde{\mathbf{k}}_{\perp}$ (resp. $\hat{x}', \hat{\mathbf{k}}'_{\perp}$) generically denoting incoming (resp. outgoing) parton kinematics.

Diehl et al., Nucl. Phys. **B596**, 33 (2001)

■ Similar expression in the ERBL region $-\xi \le x \le \xi$, but with overlap of N- and (N+2)-body LFWF.

A first-principle connection with Light-Front Wave Function:

Evaluate LFWF in algebraic model:

$$\Psi(k^+, \mathbf{k}_\perp; P) = -\frac{1}{2\sqrt{3}} \int \frac{dk^-}{2\pi} \text{Tr}\left[\gamma^+ \gamma_5 \chi_\pi(k, P)\right]$$

A first-principle connection with Light-Front Wave Function:

■ Evaluate LFWF in algebraic model:

$$\psi(\mathbf{x}, \mathbf{k}_{\perp}) \propto \frac{\mathbf{x}(1-\mathbf{x})}{[(\mathbf{k}_{\perp} - \mathbf{x}\mathbf{P}_{\perp})^2 + M^2]^2}$$

A first-principle connection with Light-Front Wave Function:

Evaluate LFWF in algebraic model:

$$\psi(\mathbf{x}, \mathbf{k}_{\perp}) \propto \frac{\mathbf{x}(1-\mathbf{x})}{[(\mathbf{k}_{\perp} - \mathbf{x}\mathbf{P}_{\perp})^2 + M^2]^2}$$

Expression for the GPD at t = 0:

$$H(x,\xi,0) \propto \frac{(1-x)^2(x^2-\xi^2)}{(1-\xi^2)^2}$$

A first-principle connection with Light-Front Wave Function:

Evaluate LFWF in algebraic model:

$$\psi(x, \mathbf{k}_{\perp}) \propto \frac{x(1-x)}{[(\mathbf{k}_{\perp} - x\mathbf{P}_{\perp})^2 + M^2]^2}$$

Expression for the GPD at t = 0:

$$H(x,\xi,0) \propto \frac{(1-x)^2(x^2-\xi^2)}{(1-\xi^2)^2}$$

— Overlap — Triangle diagram

- Manifest 2-body symmetry.
- Expression for the PDF:

$$q(x) = 30x^2(1-x)^2$$

Off-forward case: in progress.

Before dealing with a nucleon GPD, one needs to solve the problem of the extension to $\xi > x$:

1CDD-scheme Radon transform:

$$\begin{array}{rcl} x & = & \frac{s}{\cos\phi} \\ \xi & = & \tan\phi \end{array}$$

Before dealing with a nucleon GPD, one needs to solve the problem of the extension to $\xi > x$:

1CDD-scheme Radon transform:

$$x = \frac{s}{\cos \phi}$$
$$\xi = \tan \phi$$

Before dealing with a nucleon GPD, one needs to solve the problem of the extension to $\xi > x$:

1CDD-scheme Radon transform:

Mathematical literature (a lot of) on the problem of computerized tomography:

$$\mathcal{R}f(s,\varphi,t) \; = \; \sum_{m=0}^{\infty} \sum_{l=0}^{m} g_{ml}(t) \; e^{i \; (-m+2l) \; \varphi} \; C_m^{\alpha}(s)$$

Before dealing with a nucleon GPD, one needs to solve the problem of the extension to $\xi > x$:

1CDD-scheme Radon transform:

Mathematical literature (a lot of) on the problem of computerized tomography:

$$\mathcal{R}f(s,\varphi,t) \; = \; \sum_{m=0}^{\infty} \sum_{l=0}^{m} g_{ml}(t) \; e^{i \; (-m+2l) \; \varphi} \; C_m^{\alpha}(s)$$

Thm 2.3 Let f be a compactly-supported locally summable function defined on \mathbb{R}^2 and $\mathcal{R}f$ its Radon transform. Let $(s_0, \omega_0) \in \mathbb{R} \times S^1$ and U_0 an open neighborhood of ω_0 such that:

for all
$$s > s_0$$
 and $\omega \in U_0$ $\mathcal{R}f(s, \omega_0) = 0$. (2.101)

Then $f(\aleph) = 0$ on the half-plane $\langle \aleph | \omega_0 \rangle > s_0$ of \mathbb{R}^2 . (See detailed proof on [p. 59].)

Before dealing with a nucleon GPD, one needs to solve the problem of the extension to $\xi > x$:

1CDD-scheme Radon transform:

Mathematical literature (a lot of) on the problem of computerized tomography:

$$\mathcal{R}f(s,\varphi,t) = \sum_{m=0}^{\infty} \sum_{l=0}^{m} g_{ml}(t) \, e^{i \, (-m+2l) \, \varphi} \, C_m^{\alpha}(s)$$

Unicity: the knowledge of the GPD in DGLAP region allows the (unique) reconstruction of the GPD over the full range, ξ , $x \in R$, by capitalizing the polynomiality condition, and up to an ambiguity on the line $\beta = 0$.

... in progress!!!

Conclusions:

We just made a few modest steps in a very long way!!!

Conclusions:

We just made a few modest steps in a very long way!!!

- Computation of GPDs, DDs, PDFs, LFWFs and form factors in the nonperturbative framework of Dyson-Schwinger and Bethe-Salpeter equations.
- Explicit check of several theoretical constraints, including polynomiality, support property and soft pion theorem.
- Simple algebraic model exhibits most features of the numerical solutions of the Dyson-Schwinger and Bethe-Salpeter equations.
- Very good agreement with existing pion form factor and PDF data.
- In progress: a priori implementation of polynomiality and positivity.