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Why GPDs?
3D imaging of the nucleon's partonic content but also...

m Correlation of the longitudinal momentum and the
transverse position of a parton in the nucleon.

m Insights on:

m Spin structure,
m Energy-momentum structure.

m Probabilistic interpretation of Fourier transform of
GPD(x,& = 0, t) in transverse plane.

Transverse plane density (Goloskokov and Kroll model)
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3D imaging of the nucleon's partonic content but also...
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m Important topic for several past, existing and future
experiments: H1, ZEUS, HERMES, CLAS, CLAS12,

JLab Hall A, COMPASS, EIC, ..

m GPD modeling / parameterizing is an essential ingredient

for the interpretation of experimental data.
B Recent applications of the Dyson-Schwinger and
Bethe-Salpeter framework to hadron structure studies.




Pion GPD

Definition and symmetry properties:

Hz(x, €, )

References

Miiller et al., Fortschr. Phys. 42, 101 (1994)
Ji, Phys. Rev. Lett. 78, 610 (1997)
Radyushkin, Phys. Lett. B380, 417 (1996)

m From isospin symmetry, all the information about pion
GPD is encoded in H”, and HY, .
m m
m Further constraint from charge conjugation:

H . (%€ 1) = _H?dﬁ(_xa £, 1).
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Pion GPD

Form factors and parton distribution functions:

m PDF forward limit

H9(x,0,0) = q(x)
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Form factors and parton distribution functions:

m PDF forward limit
m Form factor sum rule

|
] dx H(x, £, £) = FI(1)
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Pion GPD

Form factors and parton distribution functions:

m PDF forward limit
m Form factor sum rule
m Polynomiality

+1
/ dxx"H(x, &, t) = polynomial in &
w _].
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Pion GPD

Form factors and parton distribution functions:

PDF forward limit

Form factor sum rule

Polynomiality

Positivity

H? is an even function of £ from time-reversal invariance.
H9 is real from hermiticity and time-reversal invariance.
H? has support x € [—1,+1].

Soft pion theorem (pion target)

Numerous theoretical constraints on GPDs.

m T[here is no known GPD parameterization relying only on
first principles.

m Modeling becomes a key issue.




Pion GPD

Double distributions (DD), a natural parameterization for a covariant GPD:

m A function satisfying a polynomiality property is the
Radon transform of another function.

m Representation of GPD in terms of Double Distributions:

H(x, &, t) = /ﬂdjﬁd&c‘i(x — B —af)(FI(B,a,t) + £GY(B, a, b))

Miuiller et al., Fortschr. Phys. 42, 101 (1994)
Radyushkin, Phys. Rev. D59, 014030 (1999)
Radysuhkin, Phys. Lett. B449, 81 (1999)

m Support property: x € [—1, +1].

m Discrete symmetries: F7 is a-even and GY is a-odd.




Pion GPD

Double distributions (DD), a natural parameterization for a covariant GPD:

m Define Double Distributions F? and GY9 as matrix elements
of twist-2 quark operators:

<P i %' G(0)y#iD¥ ... iDFm g(0) ‘P e %>

A

Hm—k4+1
[P (2P G (AP, Pt (‘5) o (

/ dBda a* ™ *FI(B, @)
()

/ dBda a*B™kG(B, @)
(1




1
I

Wt

et

GPD in the DSE-BSE approach

Evaluation via the triangle diagram approximation:

1 A PEREN = S g A
N W<”fp +5 [dUyTu L) q(.{-l_.)‘ﬂ:P— 5>

m Compute Mellin moments
of the pion GPD H.
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.,-—-<'?T=P %q(U) +(:D )"q(0)| 7 P—é>

m Compute Mellin moments
of the pion GPD H.

m [riangle diagram approx.
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m Compute Mellin moments
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m [riangle diagram approx.

m Resum infinitely many
contributions.
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GPD in the DSE-BSE approach

Evaluation via the triangle diagram approximation:

A P A
— <’?T: P+ Bl ‘a({])“ﬁ(f D )"q(0)| 7, P — 2>

m Compute Mellin moments
of the pion GPD H.

m [riangle diagram approx.

m Resum infinitely many
contributions.

P+ 2

m Nonperturbative modeling.

m Most GPD properties satisfied by construction.

m Also compute crossed triangle diagram.

Mezrag et al., arXiv:1406.7425 [hep-ph]
and Phys. Lett. B741, 190 (2015)
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GPD in the DSE-BSE approach

Rainbow-ladder and physical content:

m Bethe-Salpeter
vertex.

Dressed quark
propagator.

Much more
than tree level
perturbative

diagram!
Enable
description of
non

perturbative
phenomena.
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GPD in the DSE-BSE approach

Most of the properties made sure by construction:

m Polynomiality from Poincaré covariance.
m Soft pion theorem from symmetry-preserving
truncation of Bethe-Salpeter and gap equations.

Mezrag et al., Phys. Lett. B741, 190 (2015)

m Mellin moments.

m Soft pion
kinematics.

Axial and axial
vector vertices 's,

F’g’ in chiral limit.

m Axial-vector Ward
identity.

Recover pion DA

Mellin moments.



Algebraic DSE-BSE inspired GPD model

Have to deal with DSEs and BSEs solutions:

m Numerical resolution of gap and Bethe-Salpeter equations
in Euclidean space.

m Analytic continuation to Minkowskian space required.
m lll-posed problem in the sense of Hadamard.

m Parameterize solutions and fit to numerical solution:

Gap Complex-conjugate pole representation:

Z o
S(k) = — '
(k) Zl:’}é+m;+r'}€+m’;‘

=()

Bethe-Salpeter Nakanishi representation of amplitude F:

#i pla, \)
Fael P) = 1 d}.
T q q - / Ay / +aq P_|_)\2)




Algebraic DSE-BSE inspired GPD model

A first intermediate step before dealing with numerical solutions:
m Expressions for vertices and propagators:
[ = ff"}s - p+ M] .ﬁm(pg)
1
s+ M?

fﬁfﬁf—My/l dzpy,(z) [AM(k+z)]

R,(1 — 2)¥

with R, a normalization factor and ki, = k— p(1 — z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)

m Only two parameters:
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’ M 21 i e 7
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with R, a normalization factor and k;, = k— p(1 — z)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
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m Dimensionful parameter M.
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m Expressions for vertices and propagators:
[ = ff"‘r - p+ M] ﬁm(pz)
1
s+ M?

. M D1 3= 2 v
1_‘?‘—(»{(1 P) ivs—M dz.ﬁu(z) [&M(k—kz)]

fr
pu(2) R,(1 — 22)”

1

with R, a normalization factor and ki, = k— p(1 — 2)/2.
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m Only two parameters:

m Dimensionful parameter M.
m Dimensionless parameter v




Algebraic DSE-BSE inspired GPD model

A first intermediate step before dealing with numerical solutions:

m Expressions for vertices and propagators:

— iy - p+ M| Am(pY)
1

s+ M?
M

41
L'z (k, p) "'“F'E:_szf dz p,(2) [&M(kiz)]

fr
pv(z) = R,(1—-Z2)

1

with R, a normalization factor and ki, = k— p(1 — 2)/2.
Chang et al., Phys. Rev. Lett. 110, 132001 (2013)
m Only two parameters:

m Dimensionful parameter M.
m Dimensionless parameter v. Fixed to 1 to recover
asymptotic pion DA.




Results for the pion GPD

Verification of the theoretical constraints:

m Analytic expression in the DGLAP region.

3(—2(x—1)* (22 —5e? + 3) log(1 — xj)
20 (62 — 1)

48
Hi:j&{r}{.ﬁ,[]} — ?{

3 (+4es (155 (x+ 3) + (19x + 29)€* + 5(x(x(x + 11) + 21) + 3]52) tanh—1 ( e

20 (€2 — 1)
3 (¥ (X(2(x — 4)x+ 15) — 30) — 15(2x(x + 5) + 5)&*) log (x* — £2)
20 (&2 —1)°

+

3 (—E.x{x{'x{x%— 2) + 36) + lB}-‘E2 — 1556) log (?’i’j — “:J)
20 (£2 —1)”

4

3 (20x— 1) ((23x+ 58)€* + (x(x(x + 67) + 112) + 6)€2 + x(x((5 — 2x)x + 15) +
20 (€2 —1)3

4+

3 ((15{2}{{'}{:— o) -1 5)»:*54 + 10x{3x(x 4+ 5) + 11}52) log (1 B tz))
20 (:‘2 _ 1]:_1
3 (2x(5x(x + 2) — 6) + 156° — 562 +3) log (1 - £2) }
_ 1];':'-
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Verification of the theoretical constraints:

m Analytic expression in the DGLAP region.
m Similar expression in the ERBL region.

m Explicit check of support property and polynomiality
with correct powers of £.

m Also direct verification using Mellin moments of H.

Valence HY(x, &, t) as a function of x and ¢ at vanishing t.
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Mezrag et al., arXiv:1406.7425 [hep-ph]




Results for the pion GPD

Verification of the theoretical constraints:

m Analytic expression in the DGLAP region.
m Similar expression in the ERBL region.

m Explicit check of support property and polynomiality
with correct powers of £.

m Also direct verification using Mellin moments of H.

Valence HY(x, &, t) as a function of x and ¢ at vanishing t.
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Mezrag et al., arXiv:1406.7425 [hep-ph]
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Results for the pion GPD
The two-body problem:

@ The PDF appears not to

be symmetric around

-
=

0 0.2 0.4 0.6 0.8 1
X

(%) = my | (] -2(x — 4)x — 15] + 30) In(x) + (22" +3)
x(x - 1)* In(1 - x) + x[x(x[2x - 5] - 15) - 3](x - )] ,
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Results for the pion GPD
The two-body problem:

o The PDF appears not to

be symmetric around

|
xX=—.
2

Additional contribution o Part Of the gluons
contribution is neglected
in the triangle diagram

0 02 o 08 03 ! approach.

qi(x) = n, [:3(x[-2(x - 4)x - 15] + 30) In(x) + (2 + 3)
x(x = 1)* In(1 - x) + x[x(x[2x - §] - 15) = 3](x - )] ,

Flx) = 1 [r‘(zx([x -3]x+5)—15)In(x) - (2x’ +4x+9)
X(x=1°In(1 - x) - x2x - )([x - 1}x-9x- 1] . (13)
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Results for the pion GPD
The two-body problem:

@ The PDF appears not to

be symmetric around

L
vl

Part of the gluons

contribution is neglected

in the triangle diagram
B o U8 i 1 approach.

- allows us to recover a

symmetric PDF
[L. Chang et al.,

Phys.Lett.B737(2014)2329].

x(1 - 2" In(1 - x) + 2x(6 - [1 - x]x)(1 - 1)] .
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symmetric PDF
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Results for the pion GPD

The form factor and the dimensionful parameter:

m Pion form factor obtained from isovector GPD:

+1
/ dx H=Y (x, €, t) = 2F,(t)

—1

m Single dimensionful parameter M ~ 400 MeV.

1IIII|I\II‘IIIIlIIIIlIIIIlI\II

— RL Model (M=0.40 GeV)|

= Huber et al. (2008) ]
-~ RL Model M=0.35 GeV)| -
-~ RL Model (M=0.45 GeV)|

- -

- s

0.8

0.6

0.4

IIII|IIII|IIII|IIII|II__

PN I N T T T TN YT T S M M A S B

0.5 1 1.5 2 2.5
-t [GeV7]

o)

C. Mezrag et al., Phys. Lett. B190 (2015) 741




Results for the pion GPD

The parton distribution function:

m Pion PDF obtained from forward limit of GPD:
q(x) = DL 0)

m Use LO DGLAP equation and compare to PDF extraction.
Aicher et al., Phys. Rev. Lett. 105, 252003 (2010)

«-« Model (M=00.40GeV)
w-» Adcher et al (Q=063 GeVy| |7
+-= Alcher et al. (Q=0.40 GeV) 7
<= Ajcher et ol Q=042 GeV) |

Mellin moment

n (moment order)

Mezrag et al., arXiv:1406.7425 [hep-ph]
m Find model initial scale u ~ 400 MeV.
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C. Mezrag et al., Phys. Lett. B190 (2015) 741
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-skewed) GPD:

The off-forward (non

3D plot of GPD at ( = 2 GeV (DGLAP running; x > &)

0.4 GeV

M_

)

0

1.0t H (x,

C. Mezrag et al., Phys. Lett. B190 (2015) 741




Results for the pion GPD
The off-forward (non-skewed) GPD:

a8 = [ COLA Lao(IBLIA L DAH(x,0,-42)

2m

Impact parameter space GPD at ( = 0.4 GeV
M = 0.4 GeV

C. Mezrag et al., Phys. Lett. B190 (2015) 741
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Results for the pion GPD
The off-forward (non-skewed) GPD:

il
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al 1Bl) = [ S LA L o(IBLIA L)H(x,0,-A3)

Impact parameter space GPD at { = 2 GeV
M = 0.4 GeV
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C. Mezrag et al., Phys. Lett. B190 (2015) 741



Results for the pion GPD
The off-forward (non-skewed) GPD:

a8 = [ COLA L o(IBLIA L H(x,0,-42)

2m

1 1 oo o0
(Bl = [ ax(ButaQR) = [ o [T dBLIBLR [T dABK(BLIAF(A?)

Impact parameter space GPD

o = \/3/2(|El|2} = 0.674 fm <= r, = 0.672(8) fm [PRD86(2012)010001]

o
™

o
o

167 (fm~2)

O

025 050 0.75
¢ =2GeV; ¢ =0.4 GeV; ( = 0.4GeV [c(xt)=1]. X

C. Mezrag et al., Phys. Lett. B190 (2015) 741



The overlap approach

A first-principle connection with Light-Front Wave Function:

m Decompose an hadronic state |H; P, \) in a Fock basis:

m Derive an expression for the pion GPD in the DGLAP
region £ < x < 1.

o . —y (BN rnp T (3, -
HI(x, &, 1) o Y / [dxdk | ] n6; o6 (x—x;) 1050V (K, K DN (k)

with X, k| (resp. ¥, l;‘l) generically denoting incoming
(resp. outgoing) parton kinematics.
Diehl et al., Nucl. Phys. B596, 33 (2001)
m Similar expression in the ERBL region —& < x < &, but
with overlap of N- and (N + 2)-body LFWF.
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A first-principle connection with Light-Front Wave Function:

m Decompose an hadronic state |H; P, \) in a Fock basis:

m Derive an expression for the pion GPD in the DGLAP
region £ < x < 1.

x+& -
148+

H(x, &, 1)ecre) = C fdzki‘l‘* (T%;’:,lu + QT;P_)‘P(

with X, k| (resp. ¥, l;‘l) generically denoting incoming
(resp. outgoing) parton kinematics.

Diehl et al., Nucl. Phys. B596, 33 (2001)

m Similar expression in the ERBL region —& < x < &, but
with overlap of N- and (N + 2)-body LFWF.




The overlap approach
A first-principle connection with Light-Front Wave Function:

m Evaluate LFWF in algebraic model:

1 dk™
W(k",k ;P) =——— | —Tr[y vsxa(k, P)]

243 2r




The overlap approach
A first-principle connection with Light-Front Wave Function:

m Evaluate LFWF in algebraic model:
x(1 — x)
(k| — xP )% + M?]?

Y(x k) x




The overlap approach

A first-principle connection with Light-Front Wave Function:

m Evaluate LFWF in algebraic model:
x(1 — x)
(ki — xP1)? + M?]?
m Expression for the GPD at t = 0:
(1= — &)

Y(x k) x

H(X, ge Uj X (1 B 52)2




The overlap approach

A first-principle connection with Light-Front Wave Function:

m Evaluate LFWF in algebraic model:
x(1 — x)
(k. —xP L) + M
m Expression for the GPD at t = 0:
(1= — &)

Y(x k) x

H(X, ge Uj X (1 B 52)2

— Overlap — Trangle diagram

m Manifest 2-body symmetry.

m Expression for the PDF:
q(x) = 30x°(1 — x)*

m Off-forward case: in progress.
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DGLAP to ERBL extension from the overlap

Before dealing with a nucleon GPD, one needs to solve the
problem of the extension to - Eky:

1CDD-scheme Radon transform:

)

—— =3

H(x,& D =Rf(s,¢,0) = | dBda (s — Bcosg —asing) f(B,a,1)
| +|g]=1
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DGLAP to ERBL extension from the overlap

Before dealing with a nucleon GPD, one needs to solve the
problem of the extension to - Eky:

1CDD-scheme Radon transform:

)

—— =3

H(x, &0 =Rf(s,,1) = | dBdad(s—Bcosy —asing) f(B,a,t)
X L Ettt+ljrj|51

Mathematical literature (a lot of) on the problem of computerized tomography:

o nr

Rf(s,p.8) = D > guilt) € T"420% Ch(s)

m=0 [=0
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DGLAP to ERBL extension from the overlap

Before dealing with a nucleon GPD, one needs to solve the
problem of the extension to - Eky:

1CDD-scheme Radon transform:

]__E(‘_‘E

H(x,&,0 =Rf(s,p,0) = | dBdad(s —Bcosg —asing) f(B,a,1)
X w tttt+|fj|£1

Mathematical literature (a lot of) on the problem of computerized tomography:

Rf(s, ¢, 1) = Z Z g(t) & T ¢ 00 (5)

m=0 [=0

Thm 2.3 Let f be a compactly-supported locally summable function defined
on R? and Rf its Radon transform. Let (sg,wp) € R x 81 and Uy an open
neighborhood of wy such that:

for all s > sg andw €Uy Rf(s,wp) =0. (2.101)

Then f(R) = 0 on the half-plane (W |wy) > so of R%. (See detailed proof on
p. 59.._)
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DGLAP to ERBL extension from the overlap

Before dealing with a nucleon GPD, one needs to solve the
problem of the extension to - Eky: -

1CDD-scheme Radon transform:

1-¢2 3
5 H(x,& 0 =Rf(s,0,1) = ’ dfda d(s — Becosy — asing) f(B,a,1)
X L Ii.tl-f-lfle].

Mathematical literature (a lot of) on the problem of computerized tomography:

o m
Rf(s.@.t) = ) D gmt) & 209 C(s)

m=0 [=0

Unicity: the knowledge of the GPD in DGLAP region allows
the (unique) reconstruction of the GPD over the full range,

§,X€ER , by capitalizing the polynomiality condition, and up
to an ambiguity on the line =0 .

... In progress!!!






Conclusions:

We just made a few modest steps in a very long way!!!

m Computation of GPDs, DDs, PDFs, LFWFs and form
factors in the nonperturbative framework of
Dyson-Schwinger and Bethe-Salpeter equations.

m Explicit check of several theoretical constraints, including
polynomiality, support property and soft pion theorem.

m Simple algebraic model exhibits most features of the
numerical solutions of the Dyson-Schwinger and
Bethe-Salpeter equations.

m Very good agreement with existing pion form factor and
PDF data.

m |n progress: a priori implementation of polynomiality and
positivity.
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