

Hunting the Resonances in $p(\gamma, K^+)\Lambda$ Reactions: (Over)Complete Measurements and Partial-Wave Analyses

Jannes Nys Jan Ryckebusch (T. Vrancx, L. De Cruz, P. Vancraeyveld, T. Corthals)

Department of Physics and Astronomy, Ghent University, Belgium

Nucleon Resonances: From Photoproduction to High Photon Virtualities, Trento

Jannes Nys (UGent)

(Over)Completeness in $p(\gamma, K^+)\Lambda$

OVERVIEW

- 2 Inferring model-independent reaction amplitudes
 - Multipole decomposition (Partial Wave Analysis PWA)
 - Alternate (complementary) method: amplitude extraction
 - Amplitude extraction using real data
 - From complete to overcomplete sets
 - Amplitude comparison

3 Conclusions

Regge-plus-resonance (RPR) approach [PRC86 (2012) 015212]

- Regge background: exchange of K(494) and $K^*(892)$ Regge trajectories in t channel
- Enrich Reggeized background with N^* : $J = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}$ with $M_{N^*} \leq 2$ GeV

Bayesian inference of the resonance content of $p(\gamma, K^+)\Lambda$ [PRL108 (2012) 182002]

> $S_{11}(1535), S_{11}(1650), F_{15}(1680), P_{13}(1720),$ $D_{13}(1875), P_{13}(1900), P_{11}(1900), \text{ and } F_{15}(2000)$

17 parameters

Bayesian analysis: beyond point estimates!

Marginalize over all possible models with resonance R:

1 Test of predictive power: fix against $p(\gamma, K^+)\Lambda$ data, **test** against $p(e, e'K^+)\Lambda$ data (no refitting)

2 EM transition form factors:

- t-channel: dipole (also electric s-channel Born term),
- s-channel: Inferred from Bonn CQM helicity amplitudes using consistent Lagrangians.

Data: [PRC81 (2010) 052201]

RPR for neutral kaon photoproduction from **DEUTERON** targets

- Elementary production operator: RPR model
- Parameters for neutron inferred from the ones of the proton using isospin symmetry
- \blacksquare relativistic Dnp-vertex + FSI

[PLB681 (2009) 428]

Data: [PRC78, 014001]

ABOVE the resonance region: **VR model** $(N(e, e'\pi^{\pm})N')$ [**PRC89** (2014) 025203 (π)]

- <u>Motivation</u>: models with Reggeized background underestimate σ_T
- Main component: gauged pion-exchange current (missing transverse strength provided by residual effects of *nucleon resonances*)
- \blacksquare EM transition FF implements resonance-parton contributions
- Running cutoff energy $\Lambda_{\gamma pp^*}(\mathbf{s})$ for the proton EM transition FF

• correct on-shell limits

- lowers number of free parameters (compare: [PRC81(2010) 045202])
- simple interpretation: p charge radius asymptotically \downarrow for p virtuality $s \uparrow$

For high $-t > 0.5 \text{ GeV}^2$ data [EPJ A49, 16 (2013)]

- KM and previous VR do not show correct *t*-dependence
- Additional *u*-channel trajectories and/or *t*-dependence for $\Lambda_{\gamma\pi\pi}$ do not considerably improve high -t fit.
- Introduce FF in strong vertex of *t*-channel Regge amplitudes (monopole in -t)

$p(e, e'K^+)\Lambda$

Use ingredients from π⁺ production to *predict* observables of K⁺
 electroproduction.

[PRC89 (2014) 065202 (K)]

October 13, 2015

9 / 25

OVERVIEW

- 2 Inferring model-independent reaction amplitudes
 - Multipole decomposition (Partial Wave Analysis PWA)
 - Alternate (complementary) method: amplitude extraction
 - Amplitude extraction using real data
 - From complete to overcomplete sets
 - Amplitude comparison

3 Conclusions

Case study of $p(\gamma, K^+)\Lambda$

Photon: γ	1-	/
Proton: p	$\frac{1}{2}^{+}$	uud
Kaon: K^+	0-	us
Lambda: Λ	$\frac{1}{2}^{+}$	uds

Two independent kinematic variables

- \blacksquare Invariant mass W
- \blacksquare Kaon angle $\theta_{\rm c.m.}$

Dynamics

- 2 spin-1/2 particles and a real photon \rightarrow 8 combinations
- Symmetries of the reaction
- 4 independent COMPLEX REACTION AMPLITUDES

$$\mathcal{M}_{\lambda_p,\lambda_\Lambda}^{\lambda_\gamma} \to \mathcal{M}_{i=1,2,3,4}$$

Transversity amplitudes / CGLN / multipoles

Normalized TA $a_{i=1,\ldots,4}$

$$a_i = rac{b_i}{\sqrt{|b_1|^2 + |b_2|^2 + |b_3|^2 + |b_4|^2}} = r_i e^{ilpha_i}$$

CGLN amplitudes and multipole decomposition

$$\begin{split} \mathcal{M} &= \\ \langle m_{s_{\Lambda}} | - iF_{1}\boldsymbol{\sigma}.\mathbf{e}_{\mathbf{P}\gamma} - F_{2}\left(\boldsymbol{\sigma}.\mathbf{e}_{\mathbf{p}}\right) \left[\boldsymbol{\sigma}.\left(\mathbf{e}_{\mathbf{k}} \times \mathbf{e}_{\mathbf{P}\gamma}\right)\right] - iF_{3}\left(\boldsymbol{\sigma}.\mathbf{e}_{\mathbf{k}}\right) \left(\mathbf{e}_{\mathbf{p}}.\mathbf{e}_{\mathbf{P}\gamma}\right) - iF_{4}\left(\boldsymbol{\sigma}.\mathbf{e}_{\mathbf{p}}\right) \left(\mathbf{e}_{\mathbf{p}}.\mathbf{e}_{\mathbf{P}\gamma}\right) \left| m_{s_{p}} \right\rangle \\ F_{1} &= \sum_{l} P_{l+1}'(\cos\theta_{\mathrm{c.m.}}) \left[E_{l+} + lM_{l+}\right] + P_{l-1}'(\cos\theta_{\mathrm{c.m.}}) \left[E_{l-} + (l+1)M_{l-}\right] \\ F_{2} &= \sum_{l} P_{l}'(\cos\theta_{\mathrm{c.m.}}) \left[(l+1)M_{l+} + lM_{l-}\right] \\ F_{3} &= \sum_{l} P_{l+1}'(\cos\theta_{\mathrm{c.m.}}) \left[E_{l+} - M_{l+}\right] + P_{l-1}''(\cos\theta_{\mathrm{c.m.}}) \left[E_{l-} + M_{l-}\right] \\ F_{4} &= \sum_{l} P_{l}''(\cos\theta_{\mathrm{c.m.}}) \left[-E_{l-} - M_{l-} - E_{l+} + M_{l+}\right] \end{split}$$

Multipoles for $p(\gamma, K^+)\Lambda$ (RPR-2011): BACKGROUND DOMINANCE

Figure : RPR-2011, RPR-2011 (only background) and RPR-2011 (only N^*).

Jannes Nys (UGent)

(Over)Completeness in $p(\gamma, K^+)\Lambda$ Oc

	$(\mathcal{B}_1,\mathcal{T}_1,\mathcal{R}_1)$	$(\mathcal{B}_2,\mathcal{T}_2,\mathcal{R}_2)$	Transversity expression
Σ	(y,0,0)	(x, 0, 0)	$r_1^2 + r_2^2 - r_3^2 - r_4^2$
T	(0, +y, 0)	(0, -y, 0)	$r_1^2 - r_2^2 - r_3^2 + r_4^2$
P	(0, 0, +y)	(0, 0, -y)	$r_1^2 - r_2^2 + r_3^2 - r_4^2$
C_x	(+, 0, +x)	(+, 0, -x)	$-2 \operatorname{Im}(a_1 a_4^* + a_2 a_3^*)$
C_z	(+, 0, +z)	(+, 0, -z)	$+2 \operatorname{Re}(a_1 a_4^* - a_2 a_3^*)$
O_x	$(+\frac{\pi}{4}, 0, +x)$	$(+\frac{\pi}{4}, 0, -x)$	$+2\operatorname{Re}(a_1a_4^* + a_2a_3^*)$
O_Z	$(+\frac{\pi}{4}, 0, +z)$	$(+\frac{\pi}{4}, 0, -z)$	$+2 \operatorname{Im}(a_1 a_4^* - a_2 a_3^*)$
E	(+, -z, 0)	(+, +z, 0)	$+2 \operatorname{Re}(a_1 a_3^* - a_2 a_4^*)$
F	(+, +x, 0)	(+, -x, 0)	$-2 \operatorname{Im}(a_1 a_3^* + a_2 a_4^*)$
G	$(+\frac{\pi}{4}, +z, 0)$	$(+\frac{\pi}{4}, -z, 0)$	$-2 \operatorname{Im}(a_1 a_3^* - a_2 a_4^*)$
Н	$(+\frac{\pi}{4},+x,0)$	$(+\frac{\pi}{4}, -x, 0)$	$+2\operatorname{Re}(a_1a_3^* + a_2a_4^*)$
T_x	(0, +x, +x)	(0, +x, -x)	$+2\operatorname{Re}(a_1a_2^* + a_3a_4^*)$
T_z	(0, +x, +z)	(0, +x, -z)	$+2 \operatorname{Im}(a_1 a_2^* + a_3 a_4^*)$
L_x	(0, +z, +x)	(0, +z, -x)	$-2 \operatorname{Im}(a_1 a_2^* - a_3 a_4^*)$
L_z	(0, +z, +z)	(0, +z, -z)	$+2 \operatorname{Re}(a_1 a_2^* - a_3 a_4^*)$

• $\frac{d\sigma}{d\Omega}^{(\mathcal{B},\mathcal{T},\mathcal{R})}$: cross section for given beam (\mathcal{B}), target (\mathcal{T}), recoil (\mathcal{R}) polarization

Asymmetries

$$\mathcal{A} = \frac{\frac{d\sigma}{d\Omega}(B_1, \tau_1, \mathcal{R}_1) - \frac{d\sigma}{d\Omega}(B_2, \tau_2, \mathcal{R}_2)}{\frac{d\sigma}{d\Omega}(B_1, \tau_1, \mathcal{R}_1) + \frac{d\sigma}{d\Omega}(B_2, \tau_2, \mathcal{R}_2)}$$

$$\bullet \frac{d\sigma}{d\Omega} \frac{d\sigma}{d\Omega} = \frac{\rho}{4} \sum_{i=1}^{4} |b_i|^2$$

14 / 25

SINGLE asymmetries: MODULI

DOUBLE asymmetries: **PHASES**

Complete sets

4 complex amplitudes, or 8 real variables

■ There is one arbitrary global phase

$$\delta_i^{\alpha_4} = \alpha_i - \alpha_4 \,.$$

• Take $\alpha_4 = 0$ and use normalized transversity amplitudes

$$1 = |a_1|^2 + |a_2|^2 + |a_3|^2 + |a_4|^2$$

We need 6 real variables and an independent scaling factor

Definition **COMPLETE SET**

A complete set is a minimum set of observables from which one can determine the underlying reaction amplitudes unambiguously. [Chiang & Tabakin PRC55 (1997) 2054]: 8 observables

Role of resonances for the NTA moduli (r_2)

RPR-2011 predictions for $(W,\cos\theta_{\rm c.m.})$ dependence of NTA moduli for $p(\gamma,K^+)\Lambda$

Jannes Nys (UGent)

(Over)Completeness in $p(\gamma, K^+)\Lambda$

Extracted NTA moduli for $p(\gamma, K^+)\Lambda$: FORWARD [PRC87 (2013) 055205]

Extracted NTA moduli for $p(\gamma, K^+)\Lambda$: BACKWARD [PRC87 (2013) 055205]

$$r_2: b_2 = {}_y \langle -|J_y| - \rangle_y$$

RPR-2011 predictions for $(W, \cos \theta_{c.m.})$ dependence of NTA relative phases $\delta_i = \alpha_i - \alpha_4$ for $p(\gamma, K^+)\Lambda$

- \blacksquare at forward angles the background dominates and the W-dependence of δ_i is mild
- \blacksquare at backward angles large N^{\star} contributions and the W-dependence of δ_i is wild

Full amplitude extraction $(r_i, \delta_i^{\alpha_4})$ at single (s, t) [JPG42 (2015) 034016]

Jannes Nys (UGent)

(Over)Completeness in $p(\gamma, K^+)\Lambda$

$$egin{aligned} \mathcal{M}_a(s,t) \equiv egin{pmatrix} a_1(s,t) \ a_2(s,t) \ a_3(s,t) \ a_4(s,t) \end{pmatrix} \ \mathcal{M}_a^\dagger \mathcal{M}_a = 1 \end{aligned}$$

Q: What is the distance between \mathcal{M}_1 and \mathcal{M}_2 ? **A**: $\mathcal{D}[\mathcal{M}_1, \mathcal{M}_2] = \arccos \operatorname{Re} \mathcal{M}_1^{\dagger} \mathcal{M}_2$

Both $\mathcal{M}_{i=1,2}$ have an unknown α_4 . Q: How to calculate $\mathcal{D}[\mathcal{M}_1, \mathcal{M}_2]$ independent of choice α_4 ?

A:
$$\alpha_4 = \operatorname*{argmin}_{\alpha_4} \left(\mathcal{D} \left[\mathcal{M}_1(\alpha_4), \mathcal{M}_2(\alpha'_4 = 0) \right] \right)$$

Model comparison in amplitude space

Resolution of the data

Jannes Nys (UGent)

(Over)Completeness in $p(\gamma, K^+)\Lambda$

October 13, 2015 23 / 25

Required resolution for model falsification?

To obtain "sensible" results:

- Are the models **falsifiable**?
- Project information in *amplitude* space onto *observable* space (observables are not independent)
- Clear effect of measurements of individual observables by comparing posterior to prior distributions

24 / 25

SUMMARY

Available models

- RPR model for $Q^2 = 0$ over large W range.
- VR for high virtuality $Q^2 \neq 0$ above the resonance region.

Model-independent amplitude inference

- Obtaining resonance information in background-dominated reactions requires background-subtraction schemes, such as RPR-2011.
- Hierarchy in the quality/quantity of the data!
- Quadratic equations connect $\{\Sigma, P, T\}$ to the moduli $\{r_1, r_2, r_3, r_4\}$ of the normalized transversity amplitudes
 - Analysis of $\gamma p \to K^+ \Lambda$ with $\{\Sigma, T, P\}$ from GRAAL (1.65 $\lesssim W \lesssim 1.91$ GeV) allowed to extract $\{r_1, r_2, r_3, r_4\}$ in $\approx 95\%$ of considered (W, cos $\theta_{c.m.}$)
 - **2** RPR-2011 is in reasonable agreement with the extracted r_i
- Extracting the NTA independent phases $\{\delta_1, \delta_2, \delta_3\}$ is far more challenging (connected to asymmetries by means of non-linear equations)
- Mathematical Completeness does not imply Practical Completeness!!
- Overcomplete sets provide a solution!

- J. Nys, T. Vrancx and J. Ryckebusch Amplitude extraction in pseudoscalar-meson photoproduction: towards a situation of complete information J. Phys. G 42 (2015) 3, 034016
- D. G. Ireland
 Information Content of Polarization Measurements
 Phys. Rev. C 82 (2010) 025204
- T. Vrancx, J. Ryckebusch, T. Van Cuyck T, P. Vancraeyveld Incompleteness of complete pseudoscalar-meson photoproduction Phys. Rev. C 87 (2013) 055205.
- L. De Cruz, J. Ryckebusch, T. Vrancx, P. Vancraeyveld A Bayesian analysis of kaon photoproduction with the Regge-plus-resonance model Phys. Rev. C 86 (2012) 015212
- L. De Cruz, T. Vrancx, P. Vancraeyveld, J. Ryckebusch Bayesian inference of the resonance content of $p(\gamma, K^+)\Lambda$ Phys. Rev. Lett. **108** (2012) 182002

Backup slides

Electromagnetic form factors from Bonn-CQM

Figure 5.21 – The EM transition form factors $F_1(Q^2)$ (left panels) and $F_2(Q^2)$ (right panels) derived from helicity amplitudes calculated by the Bonn CQM [176]. The top panels show the results for the spin-3/2 resonances $D_{15}(1700)$, $P_{13}(1720)$ and $P_{13}(1900)$, while the lower panels display the results for the spin-5/2 resonances $D_{15}(1675)$, $F_{15}(1680)$ and $F_{15}(2000)$.

Figure 2.6 – Chew-Frautschi plots for the two lightest kaon trajectories. Meson masses as listed by the PDG were used [25]. Note that each line represents two trajectories, corresponding with the odd- and even-parity states.

Reconstructed observables: CLAS check

Jannes Nys (UGent)

(Over)Completeness in $p(\gamma, K^+)\Lambda$

Bayesian evidence map for the 2¹¹ model variants

Figure : Example of a situation where a global phase transformation, followed by $\alpha_4 = 0$ can give a distorted picture of the degree of compatibility of two models.

Observable	#data	Experiment	Year	Reference
$d\sigma_0$	56	SLAC	1969	Boyarski et al. [38]
	720	SAPHIR	2004	Glander et al. [39]
	1377	CLAS	2006	Bradford et al. [40]
	12	LEPS	2007	Hicks et al. [41]
	2066	CLAS	2010	McCracken et al. [32]
Σ	9	SLAC	1979	Quinn et al. [42]
	45	LEPS	2003	Zegers et al. [43]
	54	LEPS	2006	Sumihama et al. [44]
	4	LEPS	2007	Hicks et al. [41]
	66	GRAAL	2007	Lleres et al. [30]
Т	3	BONN	1978	Althoff et al. [45]
	66	GRAAL	2009	Lleres et al. [31]
P	7	DESY	1972	Vogel et al. [46]
	233	CLAS	2004	McNabb et al. [33]
	66	GRAAL	2007	Lleres et al. [30]
	1707	CLAS	2010	McCracken et al. [32]
C_x, C_z	320	CLAS	2007	Bradford et al. [34]
O_x, O_z	132	GRAAL	2009	Lleres et al. [31]

• The Search for Missing Resonances in $\gamma p \to K^+ + \Lambda$ and $K^+ + \Sigma^0$ Using Circularly Polarized Photons on a **Transversely** Polarized Frozen Spin Target (N. Walford, g9b, T, F, T_x, T_z).

• The Search for Missing Resonances in $\gamma p \rightarrow K^+ + \Lambda$ Using Circularly Polarized Photons on a **Longitudinally** Polarized Frozen Spin Target (L. Casey, g9a, $E, L_{x'}, L_{z'}$).

N* photoproduction program at CLAS																	
	σ	Σ	т	Р	E	F	G	н	T _x	T,	L,	L,	O _x	0,	C,	C _z	
										1							
pπ ⁰	•	1	1		1	1	1	1	Proton targets								
nπ⁺	•	1	1		1	1	1	1									
рη	•	1	1		1	1	1	1									
рղ'	•	1	1		1	1	1	1			Data t	aking	com	plete	d Ma	y 18	, 2012
ρω/φ	•	1	1		1	1	1	1					√-pu	ıblish	ed, 🗸	/-acc	luired
Νππ	1	1															
K⁺Λ	•	1	1	•	1	1	1	1	1	1	1	1	1	1	•	•	
K+Σ ⁰	•	1	1	•	1	1	1	1	1	1	1	1	1	1	•	•	
K ^{0*} Σ+	•	1									1	1					
K+*Σ0	•	1															
рπ [.]	•	1			1	1	1		Neutron targets								
pρ [.]	1	1			1	1	1										
K⁻Σ⁺	1	1			1	1	1										•
K⁰N	1	1		1	1	1	1				1	1	1	1	1	1	
KºΣº	1	1		1	1	1	1				1	1	1	1	1	1	
K ^{0*} Σ ⁰	1	1															

Observables for particular experimental setups

Co	nfigu	iration	$d\sigma = c_{1} + d\sigma (0.0.0)$	
B	\mathcal{T}	\mathcal{R}	$\frac{d\Omega}{d\Omega}(\text{conf.})/\frac{d\Omega}{d\Omega}$	
0	0	Ν	1	
0	0	Y	$1 + PP_{y'}^R$	
0	L	N	1	
0	L	Y	$1 + PP_{y'}^R + P_z^T (L_{x'}P_{x'}^R + L_{z'}P_{z'}^R)$	
0	T	N	$1 + TP_y^T$	
0	T	Y	$1 + \Sigma P_y^T P_{y'}^R + T P_y^T + P P_{y'}^R + P_x^T (T_{x'} P_{x'}^R + T_{z'} P_{z'}^R)$	
c	0	N	1	
<i>c</i>	0	Y	$1 + PP_{y'}^R + P_c^{\gamma}(C_{x'}P_{x'}^R + C_{z'}P_{z'}^R)$	
c	L	N	$1 - E P_c^{\gamma} P_z^T$	
c	L	Y	$1 + PP_{y'}^R - EP_c^{\gamma}P_z^T - HP_c^{\gamma}P_z^TP_{y'}^R + P_c^{\gamma}(C_{x'}P_{x'}^R + C_{z'}P_{z'}^R) + P_z^T(L_{x'}P_{x'}^R + L_{z'}P_{z'}^R)$	
c	T	N	$1 + TP_y^T + FP_c^\gamma P_x^T$	
<i>c</i>	Т	Y	$1 + \Sigma P_y^T P_{y'}^R + T P_y^T + P P_{y'}^R + G P_c^{\gamma} P_{y'}^R P_x^T + F P_c^{\gamma} P_x^T + P_c^{\gamma} P_y^T (C_{x'} P_{z'}^R + C_{z'} P_{x'}^R)$	
			$+P_{c}^{\gamma}P_{y}^{T}(O_{x'}P_{z'}^{R}+O_{z'}P_{x'}^{R})+P_{x}^{T}(T_{x'}P_{x'}^{R}+T_{z'}P_{z'}^{R})$	
l	0	N	$1 - \Sigma P_l^{\gamma} \cos(2\phi_{\gamma})$	
l	0	Y	$1 - \Sigma P_l^{\gamma} \cos(2\phi_{\gamma}) - T P_l^{\gamma} P_{y'}^R \cos(2\phi_{\gamma}) + P P_{y'}^R + P_l^{\gamma} \sin(2\phi_{\gamma}) (O_{x'} P_{x'}^R + O_{z'} P_{z'}^R)$	
l	L	N	$1 - \Sigma P_l^{\gamma} \cos(2\phi_{\gamma}) + G P_l^{\gamma} P_z^T \sin(2\phi_{\gamma})$	
l	L	Y	$1 + PP_{y'}^{R} - P_{l}^{\gamma} \cos(2\phi_{\gamma}) \left(TP_{y'}^{R} + \Sigma + P_{x}^{T} (T_{x'}P_{z'}^{R} - T_{z'}P_{x'}^{R}) \right)$	
			$+P_{l}^{\gamma}\sin(2\phi_{\gamma})\left(GP_{z}^{T}+FP_{y'}^{R}P_{z}^{T}+O_{x'}P_{x'}^{R}+O_{z'}P_{z'}^{R}\right)+P_{z}^{T}(L_{x'}P_{x'}^{R}+L_{z'}P_{z'}^{R})$	
l	T	Ν	$1 + TP_y^T - P_l^{\gamma}\cos(2\phi_{\gamma})(PP_y^T + \Sigma) + HP_l^{\gamma}P_x^T\sin(2\phi_{\gamma})$	
l	Т	Y	$1 - P_l^{\gamma} P_y^T P_{y'}^R \cos(2\phi_{\gamma}) + \Sigma P_y^T P_{y'}^R + T P_y^T + P P_{y'}^R + P_x^T (T_{x'} P_{x'}^R + T_{z'} P_{z'}^R)$	
			$-P_{l}^{\gamma}\cos(2\phi_{\gamma})\left(-P_{x}^{T}(L_{x'}P_{z'}^{R}-L_{z'}P_{x'}^{R})+PP_{y}^{T}+\Sigma+TP_{y'}^{R}\right)$	
			$+P_{l}^{\gamma}\sin(2\phi_{\gamma})\left(\left(O_{x'}P_{x'}^{R}+O_{z'}P_{z'}^{R}\right)+HP_{x}^{T}+EP_{y'}^{R}P_{x}^{T}-P_{y}^{T}\left(C_{x'}P_{z'}^{R}-C_{z'}P_{x'}^{R}\right)\right)$	

Jannes Nys (UGent)

(Over)Completeness in $p(\gamma, K^+)\Lambda$

Multipoles (Kaon-MAID)

Figure : Kaon-MAID, Kaon-MAID \Resonances and Kaon-MAID \Bg.

Jannes Nys (UGent)

(Over)Completeness in $p(\gamma, K^+)\Lambda$ O

October 13, 2015 37 / 25

In the following, we study the effect of additional observables on the precision of the extracted amplitudes.

Set number	Observables
1	$\{C_x, O_x, E, F\}$
2	$\{C_x, O_x, E, F, C_z\}$
3	$\{C_x, O_x, E, F, C_z, \boldsymbol{O_z}\}$
4	$\{C_x, O_x, E, F, C_z, O_z, \boldsymbol{G}\}$
5	$\{C_x, O_x, E, F, C_z, O_z, G, \boldsymbol{H}\}$
6	$\{C_x, O_x, E, F, C_z, O_z, G, H, T_x\}$
7	$\{C_x, O_x, E, F, C_z, O_z, G, H, T_x, \boldsymbol{L}_{\boldsymbol{x}}\}$
8	$\{C_x, O_x, E, F, C_z, O_z, G, H, T_x, L_x, T_z\}$
9	$\{C_x, O_x, E, F, C_z, O_z, G, H, T_x, L_x, T_z, \boldsymbol{L}_{\boldsymbol{z}}\}$

Σ	$(B_1^2 + B_2^2 - B_2^2 - B_4^2)/N$
T	$(R_1^2 + R_2^2 - R_3^2 + R_4^2)/\mathcal{N}$
P	$(R_1^2 - R_2^2 + R_3^2 - R_4^2)/\mathcal{N}$
C_x	$-2\left(R_1R_4\sin\delta_1+R_2R_3\sin(\delta_2-\delta_3)\right)/\mathcal{N}$
C_z	$+2(R_1R_4\cos\delta_1 - R_2R_3\cos(\delta_2 - \delta_3))/N$
O_x	$+2(R_1R_4\cos\delta_1+R_2R_3\cos(\delta_2-\delta_3))/N$
O_z	$+2(R_1R_4\sin\delta_1 - R_2R_3\sin(\delta_2 - \delta_3))/N$
E	$+2\left(R_1R_3\cos(\delta_1-\delta_3)-R_2R_4\cos\delta_2\right)/\mathcal{N}$
F	$-2\left(R_1R_3\sin(\delta_1-\delta_3)+R_2R_4\sin\delta_2\right)/\mathcal{N}$
G	$-2\left(R_1R_3\sin(\delta_1-\delta_3)-R_2R_4\sin\delta_2\right)/\mathcal{N}$
H	$+2\left(R_1R_3\cos(\delta_1-\delta_3)+R_2R_4\cos\delta_2\right)/\mathcal{N}$
T_x	$+2\left(R_1R_2\cos(\delta_1-\delta_2)+R_3R_4\cos\delta_3\right)/\mathcal{N}$
T_z	$+2\left(R_1R_2\sin(\delta_1-\delta_2)+R_3R_4\sin\delta_3\right)/\mathcal{N}$
L_x	$-2\left(R_1R_2\sin(\delta_1-\delta_2)-R_3R_4\sin\delta_3\right)/\mathcal{N}$
L_z	$+2\left(R_1R_2\cos(\delta_1-\delta_2)-R_3R_4\cos\delta_3\right)/\mathcal{N}$

Jannes Nys (UGent)

(Over)Completeness in $p(\gamma, K^+)\Lambda$

			Kinematics nr.							
			1	2	3	4				
	ט	S	0.21	0.43	0.21	0.47				
2	20 11	$\mid T \mid$	-0.89	-0.57	-0.52	0				
ΰ	5	P	-0.15	-0.54	0.25	0.03				
		C_x	-0.28	-0.51	-0.32	-0.16				
	\mathcal{BR}	C_z	0.84	0.28	0.62	0.85				
		B	O_x	-0.92	-0.64	-0.74	0.02			
		O_z	-0.33	-0.31	-0.37	-0.19				
0	τ	E	0.03	0.02	0.44	0.22				
plq		F	-0.09	0.56	-0.27	0.83				
Jol	Ŕ	G	-0.30	-0.55	-0.37	0.08				
		H	0.29	0.41	0.58	-0.17				
		T_x	-0.24	-0.59	-0.39	-0.30				
	R	T_z	-0.24	-0.16	-0.49	0.93				
	F	L_x	0.33	0.43	0.52	-0.40				
		L_z	0.02	-0.09	-0.21	-0.34				

