Strange and Nonstrange Baryon Spectra in the Interacting qD Model

Jacopo Ferretti ''Sapienza'' Università di Roma

NUCLEAR RESONANCES: FROM PHOTOPRODUCTION TO HIGH PHOTON VIRTUALITIES

ECT*, TRENTO (ITALY), 11-16 OCTOBER 2015

Overview

Three quark QM vs qD Model A relativistic Interacting qD Model Ferretti, Vassallo and Santopinto, PRC83, 065204 (2011) Nonstrange baryon spectrum • Extension to strange baryons Santopinto and Ferretti, PRC92, 025202 (2015) A relativistic Interacting qD Model with a spin-isospin transition interaction De Sanctis et al., arxiv:1410.0590 Improved nonstrange spectrum and scalaraxial-vector diquark mixing effects

Three quark QMs

Several versions: Isgur and Karl, Capstick and Isgur, U(7), Graz, Hypercentral QM ... Some differences, but share main features: 1) based on the effective degrees of freedom of three constituent quarks 2) (linear) confining potential 3) states classified within SU_{sf}(6) Reproduce reasonably well many observables: baryon magnetic moments, lower part of baryon spectrum, open-flavor decays ... • They have some problems, including that of the missing resonances

Missing resonances

- States predicted by quark models with no corresponding experimental counterparts QMs predict eccessive number of states • Possible explanations: 1) Some baryon states may be very weakly coupled to single-pion channels. Look for two-pion, three-pion, eta decay channels ... 2) Consider models based on smaller number of effective degrees of freedom (like quark-diquark
 - model): number of missing states decreases notably

Quark-diquark models

 Diquark: two strongly correlated quarks, with no internal spatial excitations (Ψ_{space} symmetric)
 Diquark as effective bosonic degree of freedom
 Diquark wave function is antisymmetric: Ψ_D = Ψ_{space}Ψ_{color}Ψ_{spin-flavor}

 Baryon in color-singlet: Ψ_{color} is antisymmetric
 Diquark spin-flavor wave function is symmetric
 15 spin-flavor representation is neglected

$SU_{sf}(6)$ representations

 20(A) and 70(MA) representations neglected in quark-diquark models
 Thus, the number of states decreases with respect to three quark QMs

Rel. Interacting qD Model

Model mass formula $M = E_0 + \sqrt{q^2 + m_1^2} + \sqrt{q^2 + m_2^2} + M_{dir}$ $+M_{ex}+M_{cont}$ \odot m₁ and m₂: quark and diquark masses Direct + exchange + contact terms \odot Eigenvalues \rightarrow numerical variational procedure with h.o. trial wave functions Model parameters (14) fitted to data

FERRETTI, VASSALLO AND SANTOPINTO, PRC83, 065204 (2011)

Interactions

Model parameters

$m_q = 200 \text{ MeV}$	$m_S = 600 \text{ MeV}$	$m_{\rm AV} = 950 {\rm MeV}$
$\tau = 1.25$	$\mu = 75.0 \ { m fm}^{-1}$	$\beta = 2.15 \text{ fm}^{-2}$
$A_S = 375 \text{ MeV}$	$A_I = 260 \text{ MeV}$	$A_{SI} = 375 \text{ MeV}$
$\sigma = 1.71 \text{ fm}^{-1}$	$E_0 = 154 \text{ MeV}$	$D = 4.66 \text{ fm}^2$
$\eta = 10.0~\mathrm{fm}^{-1}$	$\epsilon = 0.200$	

FERRETTI, VASSALLO AND SANTOPINTO, PRC83, 065204 (2011)

Nonstrange Spectrum

*** and **** PDG states below 2 GeV

FERRETTI, VASSALLO AND SANTOPINTO, PRC83, 065204 (2011)

Nonstrange Spectrum

Resonance	Status	M ^{expt} (MeV)	J^P	L ^P	S	<i>s</i> ₁	n_r	M ^{calc} (MeV)
N(939) P ₁₁	****	939	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	0	0	939
$N(1440) P_{11}$	****	1420-1470	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	0	1	1513
$N(1520) D_{13}$	****	1515-1525	$\frac{3}{2}^{-}$	1-	$\frac{1}{2}$	0	0	1527
$N(1535) S_{11}$	****	1525-1545	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	0	0	1527
$N(1650) S_{11}$	****	1645–1670	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}, \frac{3}{2}$	1	0	1671
$N(1675) D_{15}$	****	1670–1680	$\frac{5}{2}^{-}$	1-	$\frac{3}{2}$	1	0	1671
$N(1680) F_{15}$	****	1680–1690	$\frac{5}{2}^{+}$	2^{+}	$\frac{1}{2}$	0	0	1808
$N(1700) D_{13}$	***	1650-1750	$\frac{3}{2}^{-}$	1-	$\frac{1}{2}, \frac{3}{2}$	1	0	1671
$N(1710) P_{11}$	***	1680-1740	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	1	0	1768
$N(1720) P_{13}$	****	1700-1750	$\frac{3}{2}^{+}$	0^+	$\frac{3}{2}$	1	0	1768
$\Delta(1232) P_{33}$	****	1231-1233	$\frac{3}{2}^{+}$	0^+	$\frac{3}{2}$	1	0	1233
$\Delta(1600) P_{33}$	***	1550-1700	$\frac{3}{2}^{+}$	0^+	$\frac{3}{2}$	1	1	1602
$\Delta(1620) S_{31}$	****	1600-1660	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	1	0	1554
$\Delta(1700) D_{33}$	****	1670-1750	$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	1	0	1554
$\Delta(1900) S_{31}$	**	1850-1950	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	1	1	1986
$\Delta(1905) F_{35}$	****	1865–1915	$\frac{5}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	1952
$\Delta(1910) P_{31}$	****	1870–1920	$\frac{1}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	1952
$\Delta(1920) P_{33}$	***	1900–1970	$\frac{3}{2}^{+}$	2^+	$\frac{3}{2}$	1	0	1952
$\Delta(1930) D_{35}$	***	1900-2020	$\frac{5}{2}^{-}$	1-	$\frac{3}{2}$	1	0	2005
$\Delta(1950) F_{37}$	****	1915–1950	$\frac{7}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	1952
$N(2100) P_{11}$	*	1855–1915	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	0	2	1893
$N(2090) S_{11}$	*	1869–1987	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	0	1	1882
$N(1900) P_{13}$	**	1820–1974	$\frac{3}{2}^{+}$	2^{+}	$\frac{1}{2}$	0	0	1808
$N(2080) D_{13}$	**	1740–1940	$\frac{3}{2}^{-}$	1-	$\frac{1}{2}$	0	1	1882
$\Delta(1750) P_{31}$	*	1708-1780	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	1	0	1858
$\Delta(1940) D_{33}$	*	1947–2167	$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	1	1	1986

No missing states below 2 GeV

FERRETTI, VASSALLO AND SANTOPINTO, PRC83, 065204 (2011)

Extension to strange baryons

Mass formula

 $M = E_0 + \sqrt{q^2 + m_1^2} + \sqrt{q^2 + m_2^2} + M_{dir} + M_{ex} + M_{cont}$ • Exchange potential is generalized to Gürsey-Radicati inspired interaction $M_{e\chi} = (-1)^{L+1} e^{-\sigma r} [A_s \vec{s}_1 \cdot \vec{s}_2 + A_I \vec{t}_1 \cdot \vec{t}_2 + A_F \vec{\lambda}_1 \cdot \vec{\lambda}_2]$

 λ 's are SU(3) Gell-Mann matrices

Results updated to most recent exp. data.
 Global fit to strange & nonstrange baryons

Model parameters

Parameter	Value (fit 1)	Value (fit 2)	Parameter	Value (fit 1)	Value (fit 2)
$\overline{m_n}$	200 MeV	159 MeV	m_s	550 MeV	213 Mev
$m_{[n,n]}$	600 MeV	607 MeV	$m_{[n,s]}$	900 MeV	856 MeV
$m_{\{n,n\}}$	950 MeV	963 MeV	$m_{\{n,s\}}$	1200 MeV	1216 MeV
$m_{\{s,s\}}$	1580 MeV	1352 MeV	τ	1.20	1.02
μ	75.0 fm^{-1}	28.4 fm^{-1}	eta	2.15 fm^{-2}	2.36 fm^{-2}
A_S	350 MeV	-436 MeV	A_F	100 MeV	193 MeV
A_I	250 MeV	791 MeV	σ	2.30 fm^{-1}	2.25 fm^{-1}
E_0	141 MeV	150 MeV	ϵ	0.37	
D	6.13 fm^2		η	11.0 fm^{-1}	

N spectrum and $N(1900)P_{13}$

Resonance	Status	$M^{\text{exp.}}$ (MeV)	J^P	L^{P}	S	<i>s</i> ₁	<i>n</i> _r	$M^{\text{calc.}}$ (fit 1) (MeV)
N(939) P ₁₁	****	939	$\frac{1}{2}^{+}$	0+	$\frac{1}{2}$	0	0	939
$N(1440) P_{11}$	****	1420-1470	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	0	1	1511
$N(1520) D_{13}$	****	1515–1525	$\frac{1}{2}$	1-	$\frac{1}{2}$	0	0	1537
$N(1535) S_{11}$	****	1525–1545	$\frac{\overline{1}}{2}$	1-	$\frac{1}{2}$	0	0	1537
$N(1650) S_{11}$	****	1645–1670	$\frac{1}{2}$	1-	$\frac{1}{2}$	1	0	1625
$N(1675) D_{15}$	****	1670–1680	$\frac{1}{5}$ - $\frac{1}{2}$	1-	$\frac{\overline{3}}{2}$	1	0	1746
$N(1680) F_{15}$	****	1680–1690	$\frac{5}{2}$ +	2^{+}	$\frac{1}{2}$	0	0	1799
$N(1700) D_{13}$	***	1650–1750	$\frac{1}{2}$ -	1-	$\frac{1}{2}$	1	0	1625
$N(1710) P_{11}$	***	1680–1740	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	1	0	1776
$N(1720) P_{13}$	****	1700-1750	$\frac{3}{2}$ +	0^+	$\frac{2}{3}$	1	0	1648
Missing			$\frac{\overline{1}}{2}$	1-	$\frac{2}{3}$	1	0	1746
Missing	3 missing s	states	$\frac{1}{2}$ -	1-	$\frac{3}{2}$	1	0	1746
Missing	,		$\frac{1}{2}$ +	2^{+}	$\frac{1}{2}$	0	0	1799
$N(1875) D_{13}$	***	1820–1920	$\frac{1}{2}$ -	1-	$\frac{1}{2}$	0	1	1888
$N(1880) P_{11}$	**	1835–1905	$\frac{\overline{1}}{2}^+$	0^+	$\frac{1}{2}$	0	2	1890
$N(1895) S_{11}$	**	1880–1910	$\frac{\overline{1}}{2}$	1-	$\frac{1}{2}$	0	1	1888
N(1900) P ₁₃	***	1875–1935	$\frac{\overline{3}}{2}^+$	0^+	$\frac{\overline{3}}{2}$	1	1	1947

Δ spectrum

Resonance	Status	M ^{exp.} (MeV)	J^P	L^P	S	<i>s</i> ₁	n_r	<i>M</i> ^{calc.} (fit 1) (MeV)
$\Delta(1232) P_{33}$	****	1230–1234	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	0	1247
$\Delta(1600) P_{33}$	***	1500-1700	$\frac{2}{3} + \frac{3}{2}$	0^+	$\frac{3}{2}$	1	1	1689
$\Delta(1620) S_{31}$	****	1600-1660	$\frac{1}{2}$ -	1-	$\frac{1}{2}$	1	0	1830
$\Delta(1700) D_{33}$	****	1670–1750	$\frac{\bar{3}}{2}$ -	1-	$\frac{1}{2}$	1	0	1830
$\Delta(1750) P_{31}$	*	1708-1780	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	1	0	1489
$\Delta(1900) S_{31}$	**	1840–1920	$\frac{1}{2}^{-}$	1-	$\frac{\overline{3}}{2}$	1	0	1910
$\Delta(1905) F_{35}$	****	1855–1910	$\frac{5}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	2042
$\Delta(1910) P_{31}$	****	1860–1920	$\frac{1}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	1827
$\Delta(1920) P_{33}$	***	1900–1970	$\frac{3}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	2042
$\Delta(1930) D_{35}$	***	1900-2000	$\frac{5}{2}^{-}$	1-	$\frac{3}{2}$	1	0	1910
$\Delta(1940) D_{33}$	**	1940–2060	$\frac{\overline{3}}{2}$	1-	$\frac{3}{2}$	1	0	1910
$\Delta(1950) F_{37}$	****	1915–1950	$\frac{1}{2}^{+}$	2^{+}	$\frac{\overline{3}}{2}$	1	0	2042

No missing states below 2 GeV

$\Sigma, \Sigma^*, \Xi, \Xi^*$ and Ω spectrum

*** and **** PDG states below 2 GeV

Σ and Σ^* spectrum

Resonance	Status	M ^{exp.} (MeV)	J^P	L ^P	S	<i>s</i> ₁	Q^2q	F	F ₁	Ι	<i>t</i> ₁	n _r	M ^{calc.} (fit 2) (MeV)
$\Sigma(1193) P_{11}$	****	1189—1197	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	0	[n,s]n	8	3	1	$\frac{1}{2}$	0	1211
$\Sigma(1620) S_{11}$	**	≈1620	$\frac{1}{2}^{-}$	1-	$\frac{\overline{3}}{2}$	1	$\{n,n\}s$	8	6	1	1	0	1753
$\Sigma(1660) P_{11}$	***	1630–1690	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	1	$\{n,n\}s$	8	6	1	1	0	1546
$\Sigma(1670) D_{13}$	****	1665–1685	$\frac{3}{2}^{-}$	1-	$\frac{3}{2}$	1	$\{n,n\}s$	8	6	1	1	0	1753
$\Sigma(1750) S_{11}$	***	1730-1800	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	0	[n,s]n	8	3	1	$\frac{1}{2}$	0	1868
$\Sigma(1770) P_{11}$	*	≈ 1770	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	1	$\{n,s\}n$	8	6	1	$\frac{1}{2}$	0	1668
$\Sigma(1775) D_{15}$	****	1770–1780	$\frac{5}{2}^{-}$	1-	$\frac{3}{2}$	1	$\{n,n\}s$	8	6	1	1	0	1753
$\Sigma(1880) P_{11}$	**	≈ 1880	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	0	[n,s]n	8	3	1	$\frac{1}{2}$	1	1801
$\Sigma(1915) F_{15}$	****	1900–1935	$\frac{5}{2}^{+}$	2^{+}	$\frac{1}{2}$	0	[n,s]n	8	3	1	$\frac{1}{2}$	0	2061
$\Sigma(1940) D_{13}$	***	1900–1950	$\frac{3}{2}^{-}$	1-	$\frac{1}{2}$	0	[n,s]n	8	3	1	$\frac{1}{2}$	0	1868
Missing	1 missing	g state	$\frac{3}{2}^{-}$	1-	$\frac{3}{2}$	1	$\{n,n\}s$	8	6	1	1	0	1895
$\Sigma(2000)\;S_{11}$	*	≈ 2000	$\frac{1}{2}^{-}$	1-	$\frac{3}{2}$	1	$\{n,n\}s$	8	6	1	1	0	1895
$\Sigma^*(1385) P_{13}$	****	1382–1388	$\frac{3}{2}^{+}$	0^+	$\frac{3}{2}$	1	$\{n,n\}s$	10	6	1	1	0	1334
$\Sigma^*(1840) P_{13}$	*	≈ 1840	$\frac{3}{2}^{+}$	0^+	$\frac{\overline{3}}{2}$	1	$\{n,s\}n$	10	6	1	$\frac{1}{2}$	0	1439
$\Sigma^{*}(2080) P_{13}$	**	≈ 2080	$\frac{3}{2}^{+}$	0^+	$\frac{3}{2}$	1	$\{n,n\}s$	10	6	1	1	1	1924

$\Xi, \Xi^* \text{ and } \Omega \text{ spectrum}$

Resonance	Status	M ^{exp.} (MeV)	J^P	L^{P}	S	<i>s</i> ₁	Q^2q	F	F ₁	Ι	t_1	n _r	M ^{calc.} (fit 2) (MeV)
$\Xi(1318) P_{11}$	****	1315–1322	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	0	[n,s]s	8	3	$\frac{1}{2}$	$\frac{1}{2}$	0	1317
Missing			$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	1	$\{n,s\}s$	8	6	$\frac{1}{2}$	$\frac{1}{2}$	0	1772
$\Xi(1820) D_{13}$	***	1818–1828	$\frac{3}{2}$ -	1-	$\frac{1}{2}$	0	[n,s]s	8	3	$\frac{1}{2}$	$\frac{1}{2}$	0	1861
Missing			$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	0	[n,s]s	8	3	$\frac{1}{2}$	$\frac{1}{2}$	1	1868
Missing	5 miss	sing states	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	1	$\{s,s\}n$	8	6	$\frac{1}{2}$	0	0	1874
Missing			$\frac{3}{2}^{-}$	1-	$\frac{3}{2}$	1	$\{n,s\}s$	8	6	$\frac{1}{2}$	$\frac{1}{2}$	0	1971
$\Xi^*(1530) P_{13}$	****	1531–1532	$\frac{3}{2}^{+}$	0^+	$\frac{3}{2}$	1	$\{n,s\}s$	10	6	$\frac{1}{2}$	$\frac{1}{2}$	0	1552
Missing			$\frac{3}{2}$ +	0^+	$\frac{3}{2}$	1	$\{s,s\}n$	10	6	$\frac{1}{2}$	$\tilde{0}$	0	1653
$\Omega(1672) P_{03}$	****	1672–1673	$\frac{3}{2}^{+}$	0^+	$\frac{3}{2}$	1	$\{s,s\}s$	10	6	0	0	0	1672

Λ and Λ^* spectrum

*** and **** PDG states below 2 GeV

Λ and Λ^* spectrum

Resonance	Status	M ^{exp.} (MeV)	J^P	L^{P}	S	<i>s</i> ₁	Q^2q	F	F ₁	Ι	t_1	n _r	M ^{calc.} (fit 2) (MeV)
$\Lambda(1116) P_{01}$	****	1116	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	[n,n]s	8	3	0	0	0	1116
$\Lambda(1600) P_{01}$	***	1560-1700	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	0	[n,s]n	8	3	0	$\frac{1}{2}$	0	1518
$\Lambda(1670) S_{01}$	****	1660–1680	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	[n,n]s	8	3	0	0	0	1650
$\Lambda(1690) D_{03}$	****	1685-1695	$\frac{3}{2}$ -	1^{-}	$\frac{1}{2}$	0	[n,n]s	8	3	0	0	0	1650
Missing			$\frac{3}{2}^{-}$	1-	$\frac{1}{2}$	0	[n,s]n	8	3	0	$\frac{1}{2}$	0	1732
Missing			$\frac{1}{2}^{-}$	1^{-}	$\frac{3}{2}$	1	$\{n,s\}n$	8	6	0	$\frac{1}{2}$	0	1785
Missing			$\frac{3}{2}$ -	1^{-}	$\frac{1}{2}$	0	[n,n]s	8	3	0	0	1	1785
$\Lambda(1800) S_{01}$	***	1720-1850	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	[n,s]n	8	3	0	$\frac{1}{2}$	0	1732
$\Lambda(1810) P_{01}$	***	1750-1850	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	0	[n,n]s	8	3	0	0	1	1666
$\Lambda(1820) F_{05}$	****	1815-1825	$\frac{5}{2}^{+}$	2^{+}	$\frac{1}{2}$	0	[n,n]s	8	3	0	0	0	1896
$\Lambda(1830) D_{05}$	****	1810-1830	$\frac{5}{2}$ -	1^{-}	$\frac{\overline{3}}{2}$	1	$\{n,s\}n$	8	6	0	$\frac{1}{2}$	0	1785
$\Lambda(1890) P_{03}$	****	1850-1910	$\frac{\bar{3}}{2}$ +	0^+	$\frac{\overline{3}}{2}$	1	$\{n,s\}n$	8	6	0	$\frac{\overline{1}}{2}$	0	1896
Missing			$\frac{1}{2}^{+}$	0^+	$\frac{\tilde{1}}{2}$	1	$\{n,s\}n$	8	6	0	$\frac{1}{2}$	0	1955
Missing			$\frac{1}{2}^{+}$	0^+	$\frac{\tilde{1}}{2}$	0	[n,s]n	8	3	0	$\frac{1}{2}$	1	1960
Missing			$\frac{1}{2}$ -	1^{-}	$\frac{\tilde{1}}{2}$	1	$\{n,s\}n$	8	6	0	$\frac{1}{2}$	0	1969
Missing			$\frac{3}{2}$ -	1^{-}	$\frac{\tilde{1}}{2}$	1	$\{n,s\}n$	8	6	0	$\frac{\overline{1}}{2}$	0	1969
$\Lambda^{*}(1405) S_{01}$	****	1402-1410	$\frac{1}{2}^{-}$	1-	$\frac{1}{2}$	0	[n,n]s	1	3	0	0	0	1431
$\Lambda^*(1520) D_{03}$	****	1519–1521	$\frac{3}{2}$ -	1-	$\frac{1}{2}$	0	[n,n]s	1	3	0	0	0	1431
Missing			$\frac{1}{2}$ -	1-	$\frac{1}{2}$	0	[n,s]n	1	3	0	$\frac{1}{2}$	0	1443
Missing			$\frac{3}{2}$ -	1-	$\frac{1}{2}$	0	[n,s]n	1	3	0	$\frac{1}{2}$	0	1443
Missing			$\frac{1}{2}$ -	1-	$\frac{1}{2}$	0	[n,n]s	1	3	0	$\tilde{0}$	1	1854
Missing	13 mis	sing states	$\frac{3}{2}$ -	1-	$\frac{1}{2}$	0	[n,n]s	1	3	0	0	1	1854
Missing			$\frac{1}{2}$ -	1-	$\frac{1}{2}$	0	[n,s]n	1	3	0	$\frac{1}{2}$	1	1928
Missing			$\frac{\frac{2}{3}}{\frac{2}{2}}$ -	1-	$\frac{1}{2}$	0	[n,s]n	1	3	0	$\frac{1}{2}$	1	1928

Relativistic qD Model with Spin-Isospin (SI) transition interaction

 SI transition interaction mixes scalar and axial-vector diquark components

Motivations:

 Improve reproduction of nonstrange baryon spectrum
 Introduce axial-vector diquark component in nucleon WF
 Better reproduction of nucleon e.m. form factors expected De Sanctis et al. PRC84, 055201 (2011)
 Other observables can also be computed

Model Hamiltonian

•
$$H = E_0 + \sqrt{q^2 + m_1^2} + \sqrt{q^2 + m_2^2} + M_{dir}$$

+ $M_{ex} + M_{cont} + M_{tr}$

•
$$M_{tr} = V_0 e^{-\frac{1}{2}v^2 r^2} (\vec{s}_2 \cdot \vec{S}) (\vec{t}_2 \cdot \vec{T})$$

 S and T are spin and isospin transition operators

Model parameters

$m_q = 140 \text{ MeV}$	m_S	= 150 MeV	m_{AV}	= 360 MeV
au = 1.23	μ	$= 125 \text{ fm}^{-1}$	eta	$= 1.57 \text{ fm}^{-2}$
$A_S = 125 \text{ MeV}$	A_I	= 85 MeV	A_{SI}	= 350 MeV
$\sigma = 0.60 \text{ fm}^{-1}$	E_0	= 826 MeV	D	$= 2.00 \text{ fm}^2$
$\eta = 10.0 \; {\rm fm}^{-1}$	V_0	= 1450 MeV	u	$= 0.35 \text{ fm}^{-1}$

Nonstrange spectrum

Nonstrange spectrum

кр. V)	J^P	L^P	S	s_1	n_r	$M^{\text{calc.}}$ (MeV)	Resonance	Status	$M^{\text{exp.}}$ (MeV)	J^P	L^P	S	s_1	n_r	$M^{\text{calc.}}$ (MeV)
9 1470 1525 1545 1670 1680 1690 1750 1750 1750 1920 1905 1910 1935	$\frac{1}{2} \frac{1}{2} \frac{1}$	$\begin{array}{c} 0^{+} \\ 0^{+} \\ 1^{-} \\ 1^{-} \\ 2^{+} \\ 1^{-} \\ 2^{+} \\ 2^{+} \\ 1^{-} \\ 0^{+} \\ 1^{-} \\ 0^{+} \end{array}$	$\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{3}{2}\frac{3}{2}\frac{3}{2}\frac{1}{2}\frac{1}{2}\frac{3}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{3}{2}\frac{3}{2}\frac{1}{2}$	$\begin{array}{c} 0,1\\ 0,1\\ 0,1\\ 1\\ 1\\ 0,1\\ 1\\ 0,1\\ 0,1\\ $	0 1 0 0 0 0 0 0 2 0 1 3 1 0	939 1412 1533 1533 1667 1667 1694 1694 1694 1866 1786 1866 1780	$\begin{array}{c} \Delta(1232) \ P_{33} \\ \Delta(1600) \ P_{33} \\ \Delta(1620) \ S_{31} \\ \Delta(1700) \ D_{33} \\ \Delta(1700) \ D_{33} \\ \Delta(1750) \ P_{31} \\ \Delta(1900) \ S_{31} \\ \Delta(1905) \ F_{35} \\ \Delta(1910) \ P_{31} \\ \Delta(1920) \ P_{33} \\ \Delta(1930) \ D_{35} \\ \Delta(1940) \ D_{33} \\ \Delta(1950) \ F_{37} \end{array}$	**** *** *** *** *** *** *** *** *** *	1230 - 1234 1500 - 1700 1600 - 1660 1670 - 1750 1708 - 1780 1840 - 1920 1855 - 1910 1860 - 1920 1900 - 1970 1900 - 2000 1940 - 2060 1915 - 1950	$\frac{3}{2} \frac{3}{2} \frac{3}{2} \frac{1}{2} \frac{3}{2} \frac{1}{2} \frac{3}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{3}{2} \frac{1}{2} \frac{1}{2} \frac{3}{2} \frac{1}{2} \frac{1}{2} \frac{3}{2} \frac{1}{2} \frac{1}$	0^+ 0^+ 1^- 0^+ 1^- 2^+ 2^+ 2^+ 1^- 1^- 2^+	3 23 21 21 21 21 23 23 23 23 21 23 2	1 1 1 1 1 1 1 1 1 1 1 1 1	0 1 0 0 1 0 0 0 0 0 0 1 0 0	$1236 \\ 1687 \\ 1600 \\ 1600 \\ 1857 \\ 1963 \\ 1958 \\ 1958 \\ 1958 \\ 2064 \\ 1963 \\ 1958 \\ 1958 \\ 1958 \\ 2064 \\ 1963 \\ 1958 \\ 1058 \\ $
state	$\frac{3}{2}^+$	2^{+}	$\frac{1}{2}$	0,1	1	1990									

Resonance	Status	$\frac{M^{\text{exp.}}}{(\text{MeV})}$	J^P	L^P	S	<i>s</i> ₁	n_r	$M^{\text{calc.}}$ (MeV)
$N(939) P_{11}$	****	939	$\frac{1}{2}$ +	0^{+}	1	0.1	0	939
$N(1440) P_{11}$	****	1420 - 1470	$\frac{\frac{2}{1}}{\frac{1}{2}}$ +	0^+	$\frac{1}{2}$	0,1	1	1412
$N(1520) D_{13}$	****	1515 - 1525	$\frac{\frac{2}{3}}{2}$ -	1^{-}	$\frac{\frac{2}{1}}{2}$	$0,\!1$	0	1533
$N(1535) S_{11}$	****	1525 - 1545	$\frac{1}{2}$ -	1^{-}	$\frac{\tilde{1}}{2}$	0,1	0	1533
$N(1650) S_{11}$	****	1645 - 1670	$\frac{\overline{1}}{2}$ -	1^{-}	$\frac{\overline{3}}{2}$	1	0	1667
$N(1675) D_{15}$	****	1670 - 1680	$\frac{5}{2}$ -	1^{-}	$\frac{\overline{3}}{2}$	1	0	1667
$N(1680) F_{15}$	****	1680 - 1690	$\frac{5}{2}^{+}$	2^{+}	$\frac{1}{2}$	0,1	0	1694
$N(1700) D_{13}$	***	1650 - 1750	$\frac{3}{2}$	1^{-}	$\frac{3}{2}$	1	0	1667
$N(1710) P_{11}$	***	1680 - 1740	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	0,1	2	1639
$N(1720) P_{13}$	****	1700 - 1750	$\frac{3}{2}^{+}$	2^{+}	$\frac{1}{2}$	0,1	0	1694
$N(1875) D_{13}$	***	1820 - 1920	$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	0,1	1	1866
$N(1880) P_{11}$	**	1835 - 1905	$\frac{1}{2}^{+}$	0^+	$\frac{1}{2}$	0,1	3	1786
$N(1895) S_{11}$	**	1880 - 1910	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	0,1	1	1866
$N(1900) P_{13}$	***	1875 - 1935	$\frac{3}{2}^{+}$	0^+	$\frac{3}{2}$	0	0	1780
missing]	miss	sing-state	$\frac{3}{2}^{+}$	2^{+}	$\frac{1}{2}$	0,1	1	1990
$N(2000) F_{15}$	**	1950 - 2150	$\frac{5}{2}^{+}$	2^{+}	$\frac{1}{2}$	0,1	1	1990

Nucleon Wave Function

 The SI interaction allows scalar and axialvector diquarks components in nucleon WF with probability:

State	Scalar component	Axial-vector component
Ν	53%	47%
N(1440)	51%	49%
Δ(1232)	0	100%

 Important also in the calculation of several other observables: e.m. form factors, openflavor decays, magnetic moments, ...
 DE SANCTIS ET AL., ARXIV:1410.0590

Future developments

- Rel. Interacting qD Model extended to heavy baryons
- Baryon magnetic moments in qD model
- Improved nucleon elastic and transition (helicity amplitudes) e.m. form factors
 Open-flavor decays in a qD model

Conclusions

Three quark QM vs qD Model A relativistic Interacting qD Model Ferretti, Vassallo and Santopinto, PRC83, 065204 (2011) Nonstrange baryon spectrum • Extension to strange baryons Santopinto and Ferretti, PRC92, 025202 (2015) A relativistic Interacting qD Model with a spin-isospin transition interaction De Sanctis et al., arxiv:1410.0590 Improved nonstrange spectrum and scalaraxial-vector diquark mixing effects

Thank you for you attention!

Extra slides

SI transition interaction

• Operator:

$$M_{\rm tr}(r) = V_0 \ e^{-\frac{1}{2}\nu^2 r^2} (\vec{s}_2 \cdot \vec{S}) (\vec{t}_2 \cdot \vec{T})$$

Matrix elements defined as:

$$\langle s'_1, m'_{s_1} | S^{[1]}_{\mu} | s_1, m_{s_1} \rangle \neq 0 \text{ for } s'_1 \neq s_1$$

$$\langle 1 \| S_1 \| 0 \rangle = 1 \ \langle 0 \| S_1 \| 1 \rangle = -1$$

Point Form Relativistic Dynamics

Point Form is one of the Relativistic Hamiltonian Dynamics for a fixed number of particles (Dirac)

Construction of a representation of the Poincaré generators P_{μ} (tetramomentum), J_{k} (angular momenta), K_{i} (boosts) obeying the Poincaré group commutation relations in particular

 $[P_k, K_i] = i \delta_{kj} H$

Three forms: Light (LF), Instant (IF), Point (PF) Differ in the number and type of (interaction) free generators

Composition of angular momentum states as in the non relativistic case

Mass operator $M = M_0 + M_I$

$$\mathbf{M}_0 = \sum_i \sqrt{\mathbf{p}_i^2} + \mathbf{m}^2 \qquad \qquad \sum_i \mathbf{p}_i = 0$$

 $\vec{\mathbf{P}}_{i}$ undergo the same Wigner rotation -> M_{0} is invariant

The eigenstates of the relativistic qD Model are interpreted as eigenstates of the mass operator M

Moving three-quark states are obtained through (interaction free) Lorentz boosts (velocity states)