Strange and Nonstrange Baryon Spectra in the Interacting qiD IVLodel

Jacopo Ferretti "Sapienza" Università di Roma

NUCLEAR RESONANCES: FROM PHOTOPRODUCTION TO HIGH PHOTON VIRTUALITIES

ECT*, TRENTO (ITALY), 11-16 OCTOBER 2015

Overview

- Three quark QM vs qD Model
- A relativistic Interacting qD Model

Ferretti, Vassallo and Santopinto, PRC83, 065204 (2011)

- Nonstrange baryon spectrum
- Extension to strange baryons Santopinto and Ferretti, PRC92, 025202 (2015)
- A relativistic Interacting qD Model with a spin-isospin transition interaction
De Sanctis et al., arxiv: 1410.0590
- Improved nonstrange spectrum and scalar-axial-vector diquark mixing effects

Three quark QMs

- Several versions: Isgur and Karl, Capstick and Isgur, U(7), Graz, Hypercentral QM ...
- Some differences, but share main features:

1) based on the effective degrees of freedom of three constituent quarks
2) (linear) confining potential 3) states classified within $\mathrm{SU}_{\mathrm{sf}}(6)$

- Reproduce reasonably well many observables: baryon magnetic moments, lower part of baryon spectrum, open-flavor decays ...
- They have some problems, including that of the missing resonances

Missing resonances

- States predicted by quark models with no corresponding experimental counterparts
- QMs predict eccessive number of states
- Possible explanations:

1) Some baryon states may be very weakly coupled to single-pion channels. Look for two-pion, three-pion, eta decay channels ...
2) Consider models based on smaller number of effective degrees of freedom (like quark-diquark model): number of missing states decreases notably

Quark-diquark models

- Diquark: two strongly correlated quarks, with no internal spatial excitations ($\Psi_{\text {space }}$ symmetric)
- Diquark as effective bosonic degree of freedom
- Diquark wave function is antisymmetric:
$\Psi_{\mathrm{D}}=\Psi_{\text {space }} \Psi_{\text {color }} \Psi_{\text {spin-liavor }}$
- Baryon in color-singlet: $\Psi_{\text {color }}$ is antisymmetric
- Diquark spin-flavor wave function is symmetric 15 spin-flavor representation is neglected

$\mathrm{SU}_{\mathrm{sf}}(6)$ representations

- 20(A) and 70(MA) representations neglected in quark-diquark models
- Thus, the number of states decreases with respect to three quark QMs

Rel. Interacting qiD $\mathbb{M o d e l}$

- Model mass formula

$$
\begin{aligned}
M= & E_{0}+\sqrt{q^{2}+m_{1}^{2}}+\sqrt{q^{2}+m_{2}^{2}}+M_{d i r} \\
& +M_{e x}+M_{c o n t}
\end{aligned}
$$

o m_{1} and m_{2} : quark and diquark masses

- Direct + exchange + contact terms
- Eigenvalues \rightarrow numerical variational procedure with h.o. trial wave functions
- Model parameters (14) fitted to data

Interactions

- Direct Term
$M_{d i r}=-\frac{\tau}{r}\left(1-e^{-\mu r}\right)+\beta r$
- Exchange Term

> Linear confining

$$
M_{e x}=(-1)^{L+1} e^{-\sigma r}\left[A_{s} \vec{s}_{1} \cdot \vec{s}_{2}+A_{I} \vec{t}_{1} \cdot \vec{t}_{2}\right.
$$

- Contact Term

$$
\left.+A_{S l}\left(\vec{s}_{1} \cdot \vec{s}_{2}\right)\left(\vec{t}_{1} \cdot \vec{t}_{2}\right)\right]
$$

δ simulating function
INTRODUCED TO REPRODUCE
$\triangle-N$ MASS SPLITTING

Model parameters

$m_{q}=200 \mathrm{MeV}$	$m_{S}=600 \mathrm{MeV}$	$m_{\mathrm{AV}}=950 \mathrm{MeV}$
$\tau=1.25$	$\mu=75.0 \mathrm{fm}^{-1}$	$\beta=2.15 \mathrm{fm}^{-2}$
$A_{S}=375 \mathrm{MeV}$	$A_{I}=260 \mathrm{MeV}$	$A_{S I}=375 \mathrm{MeV}$
$\sigma=1.71 \mathrm{fm}^{-1}$	$E_{0}=154 \mathrm{MeV}$	$D=4.66 \mathrm{fm}^{2}$
$\eta=10.0 \mathrm{fm}^{-1}$	$\epsilon=0.200$	

Nonstrange Spectrum

and $\approx \star * *$ PDG states below 2 GeV
FERRETTI, VASSALLO AND SANTOPINTO, PRC83,065204 (2011)

Nonstrange Spectrum

Resonance	Status	$\begin{gathered} M^{\text {expt }} \\ (\mathrm{MeV}) \end{gathered}$	J^{P}	L^{P}	S	s_{1}	n_{r}	$\begin{gathered} M^{\text {calc }} \\ (\mathrm{MeV}) \end{gathered}$
$N(939) P_{11}$	****	939	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	0	939
$N(1440) P_{11}$	****	1420-1470	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	1	1513
$N(1520) D_{13}$	****	1515-1525	$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	0	1527
$N(1535) S_{11}$	****	1525-1545	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	0	1527
$N(1650) S_{11}$	****	1645-1670	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}, \frac{3}{2}$	1	0	1671
$N(1675) D_{15}$	****	1670-1680	$\frac{5}{2}^{-}$	1^{-}	$\frac{3}{2}$	1	0	1671
$N(1680) F_{15}$	****	1680-1690	$\frac{5}{2}^{+}$	2^{+}	$\frac{1}{2}$	0	0	1808
$N(1700) D_{13}$	***	1650-1750	$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}, \frac{3}{2}$	1	0	1671
$N(1710) P_{11}$	***	1680-1740	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	0	1768
$N(1720) P_{13}$	****	1700-1750	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	0	1768
$\Delta(1232) P_{33}$	****	1231-1233	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	0	1233
$\Delta(1600) P_{33}$	***	1550-1700	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	1	1602
$\Delta(1620) S_{31}$	****	1600-1660	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	1	0	1554
$\Delta(1700) D_{33}$	****	1670-1750	$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	1	0	1554
$\Delta(1900) S_{31}$	**	1850-1950	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	1	1	1986
$\Delta(1905) F_{35}$	****	1865-1915	$\frac{5}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	1952
$\Delta(1910) P_{31}$	****	1870-1920	$\frac{1}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	1952
$\Delta(1920) P_{33}$	***	1900-1970	$\frac{3}{2}$	2^{+}	$\frac{3}{2}$	1	0	1952
$\Delta(1930) D_{35}$	***	1900-2020	2	1^{-}	$\frac{3}{2}$	1	0	2005
$\Delta(1950) F_{37}$	****	1915-1950	$\overline{2}$	2^{+}	$\frac{3}{2}$	1	0	1952
$N(2100) P_{11}$	*	1855-1915	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	2	1893
$N(2090) S_{11}$	*	1869-1987	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	1	1882
$N(1900) P_{13}$	**	1820-1974	$\frac{3}{2}^{+}$	2^{+}	$\frac{1}{2}$	0	0	1808
$N(2080) D_{13}$	**	1740-1940	$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	1	1882
$\Delta(1750) P_{31}$	*	1708-1780	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	0	1858
$\Delta(1940) D_{33}$	*	1947-2167	$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	1	1	1986

No missing states below 2 GeV

Extension to strange baryons

- Mass formula
$M=E_{0}+\sqrt{q^{2}+m_{1}^{2}}+\sqrt{q^{2}+m_{2}^{2}}+M_{d i r}+M_{e x}+M_{c o n t}$
- Exchange potential is generalized to

Gürsey-Radicati inspired interaction
$M_{e x}=(-1)^{L+1} e^{-\sigma r}\left[A_{s} \vec{s}_{1} \cdot \vec{s}_{2}+A_{I} \vec{t}_{1} \cdot \vec{t}_{2}+A_{F} \vec{\lambda}_{1} \cdot \vec{\lambda}_{2}\right]$
λ 's are $\mathrm{SU}(3)$ Gell-Mann matrices

- Results updated to most recent exp. data. Global fit to strange \& nonstrange baryons

SANTOPINTO AND FERRETTI, PRC92,025202 (2015)

Model parameters

Parameter	Value (fit 1)	Value (fit 2)	Parameter	Value (fit 1)	Value (fit 2)
m_{n}	200 MeV	159 MeV	m_{s}	550 MeV	213 Mev
$m_{[n, n]}$	600 MeV	607 MeV	$m_{[n, s]}$	900 MeV	856 MeV
$m_{\{n, n\}}$	950 MeV	963 MeV	$m_{\{n, s\}}$	1200 MeV	1216 MeV
$m_{\{s, s\}}$	1580 MeV	1352 MeV	τ	1.20	1.02
μ	$75.0 \mathrm{fm}^{-1}$	$28.4 \mathrm{fm}^{-1}$	β	$2.15 \mathrm{fm}^{-2}$	$2.36 \mathrm{fm}^{-2}$
A_{S}	$350 \mathrm{MeV}^{-436 \mathrm{MeV}}$	A_{F}	$100 \mathrm{MeV}^{193 \mathrm{MeV}^{2}}$		
A_{I}	250 MeV	791 MeV	σ	$2.30 \mathrm{fm}^{-1}$	$2.25 \mathrm{fm}^{-1}$
E_{0}	141 MeV	150 MeV	ϵ	0.37	
D	$6.13 \mathrm{fm}^{2}$		η	$11.0 \mathrm{fm}^{-1}$	

N spectrum and $\mathbb{N}(1900) \mathrm{P}_{13}$

Resonance	Status	$M^{\text {exp. }}(\mathrm{MeV})$	J^{P}	L^{P}	S	s_{1}	n_{r}	$M^{\text {calc. }}$ (fit 1) (MeV)
$N(939) P_{11}$	****	939	$\frac{1}{2}+$	0^{+}	$\frac{1}{2}$	0	0	939
$N(1440) P_{11}$	****	1420-1470	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	1	1511
$N(1520) D_{13}$	****	1515-1525	$\frac{3}{2}{ }^{-}$	1^{-}	$\frac{1}{2}$	0	0	1537
$N(1535) S_{11}$	****	1525-1545	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	0	1537
$N(1650) S_{11}$	****	1645-1670	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	1	0	1625
$N(1675) D_{15}$	****	1670-1680	$\frac{5}{2}$	1^{-}	$\frac{3}{2}$	1	0	1746
$N(1680) F_{15}$	****	1680-1690	$\frac{5}{2}+$	2^{+}	$\frac{1}{2}$	0	0	1799
$N(1700) D_{13}$	***	1650-1750	$\frac{3}{2}$	1^{-}	$\frac{1}{2}$	1	0	1625
$N(1710) P_{11}$	***	1680-1740	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	0	1776
$N(1720) P_{13}$	****	1700-1750	$\frac{3}{2}+$	0^{+}	$\frac{3}{2}$	1	0	1648
Missing			$\frac{1}{2}^{-}$	1^{-}	$\frac{3}{2}$	1	0	1746
Missing	3 missin	tes	$\frac{3}{2}$	1^{-}	$\frac{3}{2}$	1	0	1746
Missing			$\frac{3}{2}+$	2^{+}	$\frac{1}{2}$	0	0	1799
$N(1875) D_{13}$	***	1820-1920	$\frac{3}{2}$	1^{-}	$\frac{1}{2}$	0	1	1888
$N(1880) P_{11}$	**	1835-1905	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	2	1890
$N(1895) S_{11}$	**	1880-1910	$\frac{1}{2}$	1^{-}	$\frac{1}{2}$	0	1	1888
$N(1900) P_{13}$	***	1875-1935	$\frac{3}{2}+$	0^{+}	$\frac{3}{2}$	1	1	1947

Δ spectrum

Resonance	Status	$M^{\text {exp. }(\mathrm{MeV})}$	J^{P}	L^{P}	S	s_{1}	n_{r}	$M^{\text {calc. }(\text { fit } 1)(\mathrm{MeV})}$
$\Delta(1232) P_{33}$	$* * * *$	$1230-1234$	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	0	1247
$\Delta(1600) P_{33}$	$* * *$	$1500-1700$	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	1	1689
$\Delta(1620) S_{31}$	$* * * *$	$1600-1660$	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	1	0	1830
$\Delta(1700) D_{33}$	$* * * *$	$1670-1750$	$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	1	0	1830
$\Delta(1750) P_{31}$	$*$	$1708-1780$	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	0	1489
$\Delta(1900) S_{31}$	$* *$	$1840-1920$	$\frac{1}{2}^{-}$	1^{-}	$\frac{3}{2}$	1	0	1910
$\Delta(1905) F_{35}$	$* * * *$	$1855-1910$	$\frac{5}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	2042
$\Delta(1910) P_{31}$	$* * * *$	$1860-1920$	$\frac{1}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	1827
$\Delta(1920) P_{33}$	$* * *$	$1900-1970$	$\frac{3}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	2042
$\Delta(1930) D_{35}$	$* * *$	$1900-2000$	$\frac{5}{2}^{-}$	1^{-}	$\frac{3}{2}$	1	0	1910
$\Delta(1940) D_{33}$	$* *$	$1940-2060$	$\frac{3}{2}^{-}$	1^{-}	$\frac{3}{2}$	1	0	1910
$\Delta(1950) F_{37}$	$* * * *$	$1915-1950$	$\frac{7}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	2042

No missing states below 2 GeV

$\Sigma, \Sigma^{*}, \Xi, \Xi^{*}$ and Ω spectrum

and $* * * *$ PDG states below 2 GeV

Σ and Σ^{*} spectrum

Resonance	Status	$\begin{gathered} M^{\text {exp. }} \\ (\mathrm{MeV}) \end{gathered}$	J^{P}	L^{P}	S	s_{1}	$Q^{2} q$	F	F_{1}	I	t_{1}	n_{r}	$\begin{gathered} M^{\text {calc. }(\text { fit } 2)} \\ (\mathrm{MeV}) \end{gathered}$
$\Sigma(1193) P_{11}$	****	1189-1197	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	$[n, s] n$	8	$\overline{3}$	1	$\frac{1}{2}$	0	1211
$\Sigma(1620) S_{11}$	**	≈ 1620	$\frac{1}{2}^{-}$	1^{-}	$\frac{3}{2}$	1	$\{n, n\} s$	8	6	1	1	0	1753
$\Sigma(1660) P_{11}$	***	1630-1690	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	$\{n, n\} s$	8	6	1	1	0	1546
$\Sigma(1670) D_{13}$	****	1665-1685	$\frac{3}{2}^{-}$	1^{-}	$\frac{3}{2}$	1	$\{n, n\} s$	8	6	1	1	0	1753
$\Sigma(1750) S_{11}$	***	1730-1800	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	$[n, s] n$	8	$\overline{3}$	1	$\frac{1}{2}$	0	1868
$\Sigma(1770) P_{11}$	*	≈ 1770	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	$\{n, s\} n$	8	6	1	$\frac{1}{2}$	0	1668
$\Sigma(1775) D_{15}$	****	1770-1780	$\frac{5}{2}^{-}$	1^{-}	$\frac{3}{2}$	1	$\{n, n\} s$	8	6	1	1	0	1753
$\Sigma(1880) P_{11}$	**	≈ 1880	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	$[n, s] n$	8	$\overline{3}$	1	$\frac{1}{2}$	1	1801
$\Sigma(1915) F_{15}$	****	1900-1935	$\frac{5}{2}^{+}$	2^{+}	$\frac{1}{2}$	0	$[n, s] n$	8	$\overline{3}$	1	$\frac{1}{2}$	0	2061
$\Sigma(1940) D_{13}$	***	1900-1950	$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	$[n, s] n$	8	$\overline{3}$	1	$\frac{1}{2}$	0	1868
Missing	1 missin	state	$\frac{3}{2}^{-}$	1^{-}	$\frac{3}{2}$	1	$\{n, n\} s$	8	6	1	1	0	1895
$\Sigma(2000) S_{11}$	*	≈ 2000	$\frac{1}{2}^{-}$	1^{-}	$\frac{3}{2}$	1	$\{n, n\} s$	8	6	1	1	0	1895
$\Sigma^{*}(1385) P_{13}$	****	1382-1388	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	$\{n, n\} s$	10	6	1	1	0	1334
$\Sigma^{*}(1840) P_{13}$	*	≈ 1840	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	$\{n, s\} n$	10	6	1	$\frac{1}{2}$	0	1439
$\Sigma{ }^{*}(2080) P_{13}$	**	≈ 2080	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	$\{n, n\} s$	10	6	1	1	1	1924

Ξ, Ξ^{*} and Ω spectrum

Resonance	Status	$\begin{gathered} M^{\text {exp. }} \\ (\mathrm{MeV}) \end{gathered}$	J^{P}	L^{P}	S	s_{1}	$Q^{2} q$	F	F_{1}	I	t_{1}	n_{r}	$M^{\text {calc. }}$ (fit 2) (MeV)
$\Xi(1318) P_{11}$	****	1315-1322	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	$[n, s] s$	8	$\overline{3}$	$\frac{1}{2}$	$\frac{1}{2}$	0	1317
Missing			$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	$\{n, s\} s$	8	6	$\frac{1}{2}$	$\frac{1}{2}$	0	1772
$\Xi(1820) D_{13}$	***	1818-1828	3^{-}	1^{-}	$\frac{1}{2}$	0	$[n, s] s$	8	$\overline{3}$	$\frac{1}{2}$	$\frac{1}{2}$	0	1861
Missing			$\frac{1}{2}+$	0^{+}	$\frac{1}{2}$	0	$[n, s] s$	8	$\overline{3}$	$\frac{1}{2}$	$\frac{1}{2}$	1	1868
Missing	5 missing states		$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	$\{s, s\} n$	8	6	$\frac{1}{2}$	0	0	1874
Missing			$\frac{3}{2}$	1^{-}	$\frac{3}{2}$	1	$\{n, s\} s$	8	6	$\frac{1}{2}$	$\frac{1}{2}$	0	1971
Ξ^{*} (1530) P_{13}	****	1531-1532	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	$\{n, s\} s$	10	6	$\frac{1}{2}$	$\frac{1}{2}$	0	1552
Missing			$\frac{3}{2}+$	0^{+}	$\frac{3}{2}$	1	$\{s, s\} n$	10	6	$\frac{1}{2}$	0	0	1653
$\Omega(1672) P_{03}$	****	1672-1673	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	$\{s, s\} s$	10	6	0	0	0	1672

Λ and Λ^{*} spectrum

and $* * * *$ PDG states below 2 GeV

Λ and Λ^{*} spectrum

Resonance	Status	$\begin{gathered} M^{\text {exp. }} \\ (\mathrm{MeV}) \end{gathered}$	J^{P}	L^{P}	S	s_{1}	$Q^{2} q$	F	F_{1}	I	t_{1}	n_{r}	$\begin{gathered} M^{\text {calc. }}(\text { fit } 2) \\ (\mathrm{MeV}) \end{gathered}$
$\Lambda(1116) P_{01}$	****	1116	$\overline{\frac{1}{2}^{+}}$	0^{+}	$\frac{1}{2}$	0	[$n, n] s$	8	$\overline{3}$	0	0	0	1116
$\Lambda(1600) P_{01}$	***	1560-1700	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	$[n, s] n$	8	$\overline{3}$	0	$\frac{1}{2}$	0	1518
$\Lambda(1670) S_{01}$	****	1660-1680	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	[$n, n] s$	8	$\overline{3}$	0	0	0	1650
$\Lambda(1690) D_{03}$	****	1685-1695	$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	$[n, n] s$	8	$\overline{3}$	0	0	0	1650
Missing			$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	$[n, s] n$	8	$\overline{3}$	0	$\frac{1}{2}$	0	1732
Missing			$\frac{1}{2}^{-}$	1^{-}	$\frac{3}{2}$	1	$\{n, s\} n$	8	6	0	$\frac{1}{2}$	0	1785
Missing			$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	$[n, n] s$	8	$\overline{3}$	0	0	1	1785
$\Lambda(1800) S_{01}$	***	1720-1850	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	$[n, s] n$	8	$\overline{3}$	0	$\frac{1}{2}$	0	1732
$\Lambda(1810) P_{01}$	***	1750-1850	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	0	$[n, n] s$	8	$\overline{3}$	0	0	1	1666
$\Lambda(1820) F_{05}$	****	1815-1825	$\frac{5}{2}^{+}$	2^{+}	$\frac{1}{2}$	0	[n, n]s	8	$\overline{3}$	0	0	0	1896
$\Lambda(1830) D_{05}$	****	1810-1830	$\frac{5}{2}-$	1^{-}	$\frac{3}{2}$	1	$\{n, s\} n$	8	6	0	$\frac{1}{2}$	0	1785
$\Lambda(1890) P_{03}$	****	1850-1910	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	$\{n, s\} n$	8	6	0	$\frac{1}{2}$	0	1896
Missing			$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	$\{n, s\} n$	8	6	0	$\frac{1}{2}$	0	1955
Missing			$\frac{1}{2}+$	0^{+}	$\frac{1}{2}$	0	$[n, s] n$	8	$\overline{3}$	0	$\frac{1}{2}$	1	1960
Missing			$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	1	$\{n, s\} n$	8	6	0	$\frac{1}{2}$	0	1969
Missing			$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	1	$\{n, s\} n$	8	6	0	$\frac{1}{2}$	0	1969
$\Lambda^{*}(1405) S_{01}$	****	1402-1410	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	[n, n]s	1	$\overline{3}$	0	0	0	1431
$\Lambda^{*}(1520) D_{03}$	****	1519-1521	$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	[n, n] s	1	$\overline{3}$	0	0	0	1431
Missing			$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	$[n, s] n$	1	$\overline{3}$	0	$\frac{1}{2}$	0	1443
Missing			$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	$[n, s] n$	1	$\overline{3}$	0	$\frac{1}{2}$	0	1443
Missing			$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	[n, n]s	1	$\overline{3}$	0	0	1	1854
Missing	13 mi	ng states	$\frac{3}{2}-$	1^{-}	$\frac{1}{2}$	0	[n, n]s	1	$\overline{3}$	0	0	1	1854
Missing			$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	[n, s] n	1	$\overline{3}$	0	$\frac{1}{2}$	1	1928
Missing			$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	0	$[n, s] n$	1	$\overline{3}$	0	$\frac{1}{2}$	1	1928

Relativistic qD M Model with SpinIsospin (SI) transition interaction

- SI transition interaction mixes scalar and axial-vector diquark components
- Motivations:

1. Improve reproduction of nonstrange baryon spectrum
2. Introduce axial-vector diquark component in nucleon WF

- Better reproduction of nucleon e.m. form factors expected
- Other observables can also be computed

Model Hamiltonian

- $H=E_{0}+\sqrt{q^{2}+m_{1}^{2}}+\sqrt{q^{2}+m_{2}^{2}}+M_{d i r}$ $+M_{e x}+M_{c o n t}+M_{t r}$
$M_{t r}=V_{0} e^{-\frac{1}{2} v^{2} r^{2}}\left(\vec{s}_{2} \cdot \vec{S}\right)\left(\vec{t}_{2} \cdot \vec{T}\right)$
- S and T are spin and isospin transition operators

DE SANCTIS ET AL., ARXIV: 1410.0590

Model parameters

$$
\begin{aligned}
& m_{q}=140 \mathrm{MeV} \quad m_{S}=150 \mathrm{MeV} \quad m_{A V}=360 \mathrm{MeV} \\
& \tau=1.23 \quad \mu=125 \mathrm{fm}^{-1} \quad \beta \quad=1.57 \mathrm{fm}^{-2} \\
& A_{S}=125 \mathrm{MeV} \quad A_{I}=85 \mathrm{MeV} \quad A_{S I}=350 \mathrm{MeV} \\
& \sigma=0.60 \mathrm{fm}^{-1} \quad E_{0}=826 \mathrm{MeV} \quad D \quad=2.00 \mathrm{fm}^{2} \\
& \eta=10.0 \mathrm{fm}^{-1} \quad V_{0}=1450 \mathrm{MeV} \nu \quad=0.35 \mathrm{fm}^{-1}
\end{aligned}
$$

Nonstrange spectrum

Nonstrange spectrum

Resonance	Status	$\begin{aligned} & M^{\text {exp. }} \\ & (\mathrm{MeV}) \end{aligned}$	$J^{P} L^{P} S s_{1}$		$\begin{aligned} & M^{\text {calc. } . ~} \\ & (\mathrm{MeV}) \end{aligned}$
$N(939) P_{11}$	****	939	$\frac{1}{2}^{+} 0^{+} \frac{1}{2} 0,1$	0	939
$N(1440) P_{11}$	****	1420-1470	$\frac{1}{2}^{+} 0^{+} \frac{1}{2} 0,1$	1	1412
$N(1520) D_{13}$	****	1515-1525	$\frac{3}{2}-1^{-} \frac{1}{2} 0,1$	0	1533
$N(1535) S_{11}$	****	1525-1545	$\frac{1}{2}^{-} 1^{-} \frac{1}{2} 0,1$	0	1533
$N(1650) S_{11}$	****	1645-1670	$\frac{1}{2}^{-} 1^{-} \frac{3}{2} 11$	0	1667
$N(1675) D_{15}$	**	1670-1680	$\frac{5}{2}-1^{-} \frac{3}{2} 1$	0	1667
$N(1680) F_{15}$	****	1680-1690	$\frac{5}{2}+2^{+} \frac{1}{2} 0,1$	0	1694
$N(1700) D_{13}$	***	1650-1750	$\frac{3}{2}-1^{-} \frac{3}{2} 1$	0	1667
$N(1710) P_{11}$		1680-1740	$\frac{1^{+}}{}{ }^{+} 0^{+} \frac{1}{2} 0,1$	2	1639
$N(1720) P_{13}$	**	1700-1750	$\frac{3}{2}+2^{+} \frac{1}{2} 0,1$	0	1694
$N(1875) D_{13}$	***	1820-1920	$\frac{3}{2}-1^{-} \frac{1}{2} 0,1$	1	1866
$N(1880) P_{11}$	**	1835-1905	$\frac{1}{2}^{+} 0^{+} \frac{1}{2} 0,1$	3	1786
$N(1895) S_{11}$	**	1880-1910	$1^{-} \frac{1}{2} 0,1$	1	1866
$\begin{gathered} N(1900) P_{13} \\ \text { missing } \end{gathered}$	miss	1875-1935 ing-state			$\begin{aligned} & 1780 \\ & 1990 \end{aligned}$
$N(2000) F_{15}$	**	1950-2150	$\frac{5}{2}+2^{+} \frac{1}{2} 0,1$	1	1990

Resonance	Status	$M^{\text {exp. }}$ (MeV)	J^{P}	L^{P}	S	s_{1}	n_{r}	$M^{\text {calc. }}$ (MeV)	
$\Delta(1232) P_{33}$	$* * * *$	$1230-1234$	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	0	1236	
$\Delta(1600)$	P_{33}	$* * *$	$1500-1700$	$\frac{3}{2}^{+}$	0^{+}	$\frac{3}{2}$	1	1	1687
$\Delta(1620)$	S_{31}	$* * * *$	$1600-1660$	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	1	0	1600
$\Delta(1700)$	D_{33}	$* * * *$	$1670-1750$	$\frac{3}{2}^{-}$	1^{-}	$\frac{1}{2}$	1	0	1600
$\Delta(1750)$	P_{31}	$*$	$1708-1780$	$\frac{1}{2}^{+}$	0^{+}	$\frac{1}{2}$	1	0	1857
$\Delta(1900)$	S_{31}	$* *$	$1840-1920$	$\frac{1}{2}^{-}$	1^{-}	$\frac{1}{2}$	1	1	1963
$\Delta(1905)$	F_{35}	$* * * *$	$1855-1910$	5_{2}^{+}	2^{+}	$\frac{3}{2}$	1	0	1958
$\Delta(1910)$	P_{31}	$* * * *$	$1860-1920$	$\frac{1}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	1958
$\Delta(1920)$	P_{33}	$* * *$	$1900-1970$	$\frac{3}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	1958
$\Delta(1930)$	D_{35}	$* * *$	$1900-2000$	$\frac{5}{2}^{-}$	1^{-}	$\frac{3}{2}$	1	0	2064
$\Delta(1940)$	D_{33}	$* *$	$1940-2060$	$\frac{3}{2}$	1^{-}	$\frac{1}{2}$	1	1	1963
$\Delta(1950)$	F_{37}	$* * * *$	$1915-1950$	$\frac{7}{2}^{+}$	2^{+}	$\frac{3}{2}$	1	0	1958

Nucleon Wave Function

- The SI interaction allows scalar and axialvector diquarks components in nucleon WF with probability:

State	Scalar component	Axial-vector component
N	53%	47%
$N(1440)$	51%	49%
$\Delta(1232)$	0	100%

- Important also in the calculation of several other observables: e.m. form factors, openflavor decays, magnetic moments, ...
DE SANCTIS ET AL., ARXIV: 1410.0590

Future developments

- Rel. Interacting qD Model extended to heavy baryons
- Baryon magnetic moments in qD model
- Improved nucleon elastic and transition (helicity amplitudes) e.m. form factors
- Open-flavor decays in a qD model

Conclusions

- Three quark QM vs qD Model
- A relativistic Interacting qD Model

Ferretti, Vassallo and Santopinto, PRC83, 065204 (2011)

- Nonstrange baryon spectrum
- Extension to strange baryons

Santopinto and Ferretti, PRC92, 025202 (2015)

- A relativistic Interacting qD Model with a spin-isospin transition interaction
De Sanctis et al., arxiv: 1410.0590
- Improved nonstrange spectrum and scalar-axial-vector diquark mixing effects

Thank you for you attention!

Extra slides

SI transition interaction

- Operator:

$$
M_{\mathrm{tr}}(r)=V_{0} e^{-\frac{1}{2} \nu^{2} r^{2}}\left(\overrightarrow{s_{2}} \cdot \vec{S}\right)\left(\overrightarrow{t_{2}} \cdot \vec{T}\right)
$$

- Matrix elements defined as:

$$
\begin{aligned}
& \left\langle s_{1}^{\prime}, m_{s_{1}}^{\prime}\right| S_{\mu}^{[1]}\left|s_{1}, m_{s_{1}}\right\rangle \neq 0 \text { for } s_{1}^{\prime} \neq s_{1} \\
& \left\langle 1\left\|S_{1}\right\| 0\right\rangle=1\left\langle 0\left\|S_{1}\right\| 1\right\rangle=-1
\end{aligned}
$$

Point Form Relativistic Dynamics

Point Form is one of the Relativistic Hamiltonian Dynamics for a fixed number of particles (Dirac)

Construction of a representation of the Poincaré generators P_{u} (tetramomentum), J_{k} (angular momenta), K_{i} (boosts) obeying the Poincaré group commutation relations in particular

$$
\left[P_{\mathrm{k}}, K_{\mathrm{i}}\right]=\mathrm{i} \delta_{\mathrm{kj}} H
$$

Three forms:
Light (LF), Instant (IF), Point (PF)
Differ in the number and type of (interaction) free generators

Point form: $\quad P_{u}$ interaction dependent J_{k} and K_{i}

Composition of angular momentum states as in the non relativistic case

Mass operator $\quad \mathrm{M}=\mathrm{M}+\mathrm{M}_{\mathrm{I}}$
$=\Sigma \quad \vec{p}+m \quad \Sigma_{i} \mathbf{p}_{\mathrm{i}}=0$
$\overrightarrow{\mathbf{P}}_{\mathrm{i}}$ undergo the same Wigner rotation $->\mathrm{M}_{0}$ is invariant

The eigenstates of the relativistic qD Model are interpreted as eigenstates of the mass operator M

Moving three-quark states are obtained through (interaction free) Lorentz boosts (velocity states)

