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�  Three quark QM vs qD Model 
�  A relativistic Interacting qD Model 
     Ferretti, Vassallo and Santopinto, PRC83, 065204 (2011) 
�  Nonstrange baryon spectrum 
�  Extension to strange baryons 
     Santopinto and Ferretti, PRC92, 025202 (2015) 
�  A relativistic Interacting qD Model with a 

spin-isospin transition interaction 
     De Sanctis et al., arxiv:1410.0590 
�  Improved nonstrange spectrum and scalar-

axial-vector diquark mixing effects 
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�  Several versions: Isgur and Karl, Capstick and   
    Isgur, U(7), Graz, Hypercentral QM … 
�  Some differences, but share main features:  
     1) based on the effective degrees of freedom  
         of three constituent quarks 
     2) (linear) confining potential 
     3) states classified within SUsf(6) 
�  Reproduce reasonably well many observables:    
    baryon magnetic moments, lower part of  
    baryon spectrum, open-flavor decays … 
�  They have some problems, including that of the   
    missing resonances 
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�  States predicted by quark models with no   
    corresponding experimental counterparts 
�  QMs predict eccessive number of states 
�  Possible explanations: 
      1) Some baryon states may be very weakly coupled to  
           single-pion channels. Look for two-pion, three-pion,  
           eta decay channels … 
      2) Consider models based on smaller number of  
           effective degrees of freedom (like quark-diquark  
           model): number of missing states decreases notably 
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�  Diquark: two strongly correlated quarks, with  
no internal spatial excitations (Ψspace symmetric) 

�  Diquark as effective bosonic degree of freedom 
�  Diquark wave function is antisymmetric:  
    ΨD = ΨspaceΨcolorΨspin-flavor  
�  Baryon in color-singlet: Ψcolor is antisymmetric 
�  Diquark spin-flavor wave function is symmetric 
    15 spin-flavor representation is neglected 
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�  20(A) and 70(MA) representations   
    neglected in quark-diquark models 
�  Thus, the number of states decreases with   
    respect to three quark QMs 
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�  Model mass formula 

�  m1 and m2: quark and diquark masses 
�  Direct + exchange + contact terms 
�  Eigenvalues à numerical variational   
    procedure with h.o. trial wave functions  
�  Model parameters (14) fitted to data  

M = E0 + q2 +m1
2 + q2 +m2

2 +Mdir

       +Mex +Mcont

FERRETTI, VASSALLO AND SANTOPINTO, PRC83, 065204 (2011) 
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�  Direct Term 

�  Exchange Term 

�  Contact Term 

FERRETTI, VASSALLO AND SANTOPINTO, PRC83, 065204 (2011) 

Mdir = −
τ
r
(1− e−µr )+βr

Mex = (−1)L+1e−σ r[As
!s1 ⋅
!s2 + AI

!
t1 ⋅
!
t2

                               + ASI (
!s1 ⋅
!s2 )(
!
t1 ⋅
!
t2 )]

Mcont ∝
η3e−η

2r2

π 3/2
INTRODUCED TO REPRODUCE 

Δ-N MASS SPLITTING 

δ simulating function 

Smeared Coulomb-like 

Linear confining 
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RELATIVISTIC QUARK-DIQUARK MODEL OF BARYONS PHYSICAL REVIEW C 83, 065204 (2011)

momentum of r⃗ . We have already said that we use the relative
momentum q⃗ instead of the internal momenta k⃗1 and k⃗2, which
undergo the same Wigner rotation as q⃗.

We propose a relativistic quark-diquark model based on the
following baryon rest frame mass operator:

M = E0 +
√

q2 + m2
1 +

√
q2 + m2

2 + Mdir(r)

+Mcont(r) + Mex(r), (9)

where E0 is a constant, Mdir(r) and Mex(r), respectively, are
the direct and the exchange diquark-quark interaction, m1 and
m2 stand for the diquark and quark masses, where m1 is either
mS or mAV according if the mass operator acts on a scalar or
an axial vector diquark [5,6,25–37], and Mcont(r) is a contact
interaction.

The direct term is a Coulomb-like interaction with a cutoff
plus a linear confinement term

Mdir(r) = −τ

r
(1 − e−µr ) + βr. (10)

The importance of the Coulomb-like interaction was empha-
sized long ago by Lipkin [38]. A simple mechanism that
generates a Coulomb-like interaction is one-gluon exchange.

One needs also an exchange interaction, as emphasized by
Lichtenberg [39]. This is indeed the crucial ingredient of a
quark-diquark description of baryons. We have

Mex(r) = (−1)l+1e−σ r [AS( s⃗1 · s⃗2) + AI ( t⃗1 · t⃗2)

+ASI (s⃗1 · s⃗2)( t⃗1 · t⃗2)], (11)

where s⃗ and t⃗ are the spin and the isospin operators.
Moreover, we consider a contact interaction similar to that

introduced by Godfrey and Isgur [40]

Mcont =
(

m1m2

E1E2

)1/2+ϵ
η3D

π3/2
e−η2r2

δL,0δs1,1

(
m1m2

E1E2

)1/2+ϵ

,

(12)

where Ei =
√

q2 + m2
i (i = 1, 2), ϵ, η, and D are parameters

of the model.
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FIG. 1. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ nonstrange baryon resonances
(up to 2 GeV) and the experimental masses from PDG [41] (boxes).

TABLE I. Resulting values for the model parameters.

mq = 200 MeV mS = 600 MeV mAV = 950 MeV
τ = 1.25 µ = 75.0 fm−1 β = 2.15 fm−2

AS = 375 MeV AI = 260 MeV ASI = 375 MeV
σ = 1.71 fm−1 E0 = 154 MeV D = 4.66 fm2

η = 10.0 fm−1 ϵ = 0.200

The Hamiltonian of the nonrelativistic model of Ref. [19] is

H = E0 + q2

2µ
− τ

r
+ βr + [B + Cδ0]δs1,1

+ (−1)l+12Ae−αr [(s⃗1 · s⃗2) + (t⃗1 · t⃗2) + (s⃗1 · s⃗2)(t⃗1 · t⃗2)],

(13)

TABLE II. Comparison between the experimental values [41] of
the masses of the nonstrange baryon resonances (up to 2 GeV) and
the numerical ones (all values are expressed in MeV). In the second
column the “status” of each resonance is reported according to the
classification given by PDG [41]. Tentative assignments of 2∗ and
1∗ resonances are shown in the second part of the table. J P and LP

are respectively the total angular momentum and the orbital angular
momentum of the baryon, including the parity P ; S is the total spin,
obtained coupling the spin of the diquark s1 to the one of the quark;
finally nr is the number of nodes in the radial wave function.

Resonance Status Mexpt J P LP S s1 nr Mcalc

(MeV) (MeV)

N (939) P11 **** 939 1
2

+
0+ 1

2 0 0 939
N (1440) P11 **** 1420–1470 1

2
+

0+ 1
2 0 1 1513

N (1520) D13 **** 1515–1525 3
2

−
1− 1

2 0 0 1527
N (1535) S11 **** 1525–1545 1

2
−

1− 1
2 0 0 1527

N (1650) S11 **** 1645–1670 1
2

−
1− 1

2 , 3
2 1 0 1671

N (1675) D15 **** 1670–1680 5
2

−
1− 3

2 1 0 1671

N (1680) F15 **** 1680–1690 5
2

+
2+ 1

2 0 0 1808
N (1700) D13 *** 1650–1750 3

2
−

1− 1
2 , 3

2 1 0 1671
N (1710) P11 *** 1680–1740 1

2
+

0+ 1
2 1 0 1768

N (1720) P13 **** 1700–1750 3
2

+
0+ 3

2 1 0 1768
)(1232) P33 **** 1231–1233 3

2
+

0+ 3
2 1 0 1233

)(1600) P33 *** 1550–1700 3
2

+
0+ 3

2 1 1 1602
)(1620) S31 **** 1600–1660 1

2
−

1− 1
2 1 0 1554

)(1700) D33 **** 1670–1750 3
2

−
1− 1

2 1 0 1554
)(1900) S31 ** 1850–1950 1

2
−

1− 1
2 1 1 1986

)(1905) F35 **** 1865–1915 5
2

+
2+ 3

2 1 0 1952
)(1910) P31 **** 1870–1920 1

2
+

2+ 3
2 1 0 1952

)(1920) P33 *** 1900–1970 3
2

+
2+ 3

2 1 0 1952

)(1930) D35 *** 1900–2020 5
2

−
1− 3

2 1 0 2005
)(1950) F37 **** 1915–1950 7

2
+

2+ 3
2 1 0 1952

N (2100) P11 * 1855–1915 1
2

+
0+ 1

2 0 2 1893
N (2090) S11 * 1869–1987 1

2
−

1− 1
2 0 1 1882

N (1900) P13 ** 1820–1974 3
2

+
2+ 1

2 0 0 1808
N (2080) D13 ** 1740–1940 3

2
−

1− 1
2 0 1 1882

)(1750) P31 * 1708–1780 1
2

+
0+ 1

2 1 0 1858
)(1940) D33 * 1947–2167 3

2
−

1− 1
2 1 1 1986
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RELATIVISTIC QUARK-DIQUARK MODEL OF BARYONS PHYSICAL REVIEW C 83, 065204 (2011)

momentum of r⃗ . We have already said that we use the relative
momentum q⃗ instead of the internal momenta k⃗1 and k⃗2, which
undergo the same Wigner rotation as q⃗.

We propose a relativistic quark-diquark model based on the
following baryon rest frame mass operator:

M = E0 +
√

q2 + m2
1 +

√
q2 + m2

2 + Mdir(r)

+Mcont(r) + Mex(r), (9)

where E0 is a constant, Mdir(r) and Mex(r), respectively, are
the direct and the exchange diquark-quark interaction, m1 and
m2 stand for the diquark and quark masses, where m1 is either
mS or mAV according if the mass operator acts on a scalar or
an axial vector diquark [5,6,25–37], and Mcont(r) is a contact
interaction.

The direct term is a Coulomb-like interaction with a cutoff
plus a linear confinement term

Mdir(r) = −τ

r
(1 − e−µr ) + βr. (10)

The importance of the Coulomb-like interaction was empha-
sized long ago by Lipkin [38]. A simple mechanism that
generates a Coulomb-like interaction is one-gluon exchange.

One needs also an exchange interaction, as emphasized by
Lichtenberg [39]. This is indeed the crucial ingredient of a
quark-diquark description of baryons. We have

Mex(r) = (−1)l+1e−σ r [AS( s⃗1 · s⃗2) + AI ( t⃗1 · t⃗2)

+ASI (s⃗1 · s⃗2)( t⃗1 · t⃗2)], (11)

where s⃗ and t⃗ are the spin and the isospin operators.
Moreover, we consider a contact interaction similar to that

introduced by Godfrey and Isgur [40]

Mcont =
(

m1m2

E1E2

)1/2+ϵ
η3D

π3/2
e−η2r2

δL,0δs1,1

(
m1m2

E1E2

)1/2+ϵ

,

(12)

where Ei =
√

q2 + m2
i (i = 1, 2), ϵ, η, and D are parameters

of the model.
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FIG. 1. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ nonstrange baryon resonances
(up to 2 GeV) and the experimental masses from PDG [41] (boxes).

TABLE I. Resulting values for the model parameters.

mq = 200 MeV mS = 600 MeV mAV = 950 MeV
τ = 1.25 µ = 75.0 fm−1 β = 2.15 fm−2

AS = 375 MeV AI = 260 MeV ASI = 375 MeV
σ = 1.71 fm−1 E0 = 154 MeV D = 4.66 fm2

η = 10.0 fm−1 ϵ = 0.200

The Hamiltonian of the nonrelativistic model of Ref. [19] is

H = E0 + q2

2µ
− τ

r
+ βr + [B + Cδ0]δs1,1

+ (−1)l+12Ae−αr [(s⃗1 · s⃗2) + (t⃗1 · t⃗2) + (s⃗1 · s⃗2)(t⃗1 · t⃗2)],

(13)

TABLE II. Comparison between the experimental values [41] of
the masses of the nonstrange baryon resonances (up to 2 GeV) and
the numerical ones (all values are expressed in MeV). In the second
column the “status” of each resonance is reported according to the
classification given by PDG [41]. Tentative assignments of 2∗ and
1∗ resonances are shown in the second part of the table. J P and LP

are respectively the total angular momentum and the orbital angular
momentum of the baryon, including the parity P ; S is the total spin,
obtained coupling the spin of the diquark s1 to the one of the quark;
finally nr is the number of nodes in the radial wave function.

Resonance Status Mexpt J P LP S s1 nr Mcalc

(MeV) (MeV)

N (939) P11 **** 939 1
2

+
0+ 1

2 0 0 939
N (1440) P11 **** 1420–1470 1

2
+

0+ 1
2 0 1 1513

N (1520) D13 **** 1515–1525 3
2

−
1− 1

2 0 0 1527
N (1535) S11 **** 1525–1545 1

2
−

1− 1
2 0 0 1527

N (1650) S11 **** 1645–1670 1
2

−
1− 1

2 , 3
2 1 0 1671

N (1675) D15 **** 1670–1680 5
2

−
1− 3

2 1 0 1671

N (1680) F15 **** 1680–1690 5
2

+
2+ 1

2 0 0 1808
N (1700) D13 *** 1650–1750 3

2
−

1− 1
2 , 3

2 1 0 1671
N (1710) P11 *** 1680–1740 1

2
+

0+ 1
2 1 0 1768

N (1720) P13 **** 1700–1750 3
2

+
0+ 3

2 1 0 1768
)(1232) P33 **** 1231–1233 3

2
+

0+ 3
2 1 0 1233

)(1600) P33 *** 1550–1700 3
2

+
0+ 3

2 1 1 1602
)(1620) S31 **** 1600–1660 1

2
−

1− 1
2 1 0 1554

)(1700) D33 **** 1670–1750 3
2

−
1− 1

2 1 0 1554
)(1900) S31 ** 1850–1950 1

2
−

1− 1
2 1 1 1986

)(1905) F35 **** 1865–1915 5
2

+
2+ 3

2 1 0 1952
)(1910) P31 **** 1870–1920 1

2
+

2+ 3
2 1 0 1952

)(1920) P33 *** 1900–1970 3
2

+
2+ 3

2 1 0 1952

)(1930) D35 *** 1900–2020 5
2

−
1− 3

2 1 0 2005
)(1950) F37 **** 1915–1950 7

2
+

2+ 3
2 1 0 1952

N (2100) P11 * 1855–1915 1
2

+
0+ 1

2 0 2 1893
N (2090) S11 * 1869–1987 1

2
−

1− 1
2 0 1 1882

N (1900) P13 ** 1820–1974 3
2

+
2+ 1

2 0 0 1808
N (2080) D13 ** 1740–1940 3

2
−

1− 1
2 0 1 1882

)(1750) P31 * 1708–1780 1
2

+
0+ 1

2 1 0 1858
)(1940) D33 * 1947–2167 3

2
−

1− 1
2 1 1 1986
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�  Mass formula 

�  Exchange potential is generalized to   
    Gürsey-Radicati inspired interaction 
 
       λ‘s are SU(3) Gell-Mann matrices 

�  Results updated to most recent exp. data.    
    Global fit to strange & nonstrange baryons  
 
 SANTOPINTO AND FERRETTI, PRC92, 025202 (2015) 
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M = E0 + q2 +m1
2 + q2 +m2

2 +Mdir +Mex +Mcont

Mex = (−1)
L+1e−σ r[As

!s1 ⋅
!s2 + AI

!
t1 ⋅
!
t2 + AF

!
λ1 ⋅
!
λ2 ]
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E. SANTOPINTO AND J. FERRETTI PHYSICAL REVIEW C 92, 025202 (2015)

TABLE I. Mass difference (in GeV) between scalar and axial-vector diquarks according to some previous studies.

M[n,n] M{n,n} − M[n,n] M[n,s] − M[n,n] M{n,s} − M[n,s] M{n,s} − M{n,n} M{s,s} − M{n,s} Source

0.29 0.11 [28]
0.210 0.150 [29]

0.50 0.30 [38]
0.60 0.35 [39]
0.74 0.21 0.14 0.17 0.10 0.08 [53,54]
0.78 0.28 [55]
0.420 0.520 [56]
0.692 0.330 [57]
0.595 0.205 0.240 0.140 0.175 [58]
0.688 0.202 0.272 [59]

0.360 [60]
0.183 0.218 0.176 0.211 [61]
0.135 0.201 0.138 0.204 0.101 [62]

0.852 0.224 0.288 0.148 0.212 0.084 [63]
0.607 0.356 0.249 0.360 0.253 0.136 This work (“fit 2”)

no internal spatial excitations, thus in S wave [38,39]. Then,
its color-spin-flavor wave functions must be antisymmetric.
Rainbow-ladder DSE calculations confirmed that the first
spatially excited diquark, the vector diquark, has a mass much
larger than those of the scalar and axial-vector diquark, i.e.,
the ground-state diquarks [53–55]. Moreover, as we take only
light baryons into account, composed of u, d, s quarks, the
internal group is restricted to SUsf(6). Using the conventional
notation of denoting spin by its value and flavor and color
by the dimension of the representation, the quark has spin
s2 = 1

2 , flavor F2 = 3, and color C2 = 3. Since the hadron
must be colorless, the diquark must transform as 3 under
SUc(3) and therefore one can have only the symmetric SUsf(6)
representation 21sf(S), containing s1 = 0, F1 = 3, and s1 = 1,
F1 = 6, i.e., the scalar and axial-vector diquarks, respectively.

In the following, we will indicate the possible diquark
states by their constituent quarks (denoted by s if strange or n
otherwise) in square (scalar diquarks) or curly brackets (axial-
vector diquarks). The possible scalar diquark configurations
are thus [n,n] and [n,s], while the possible axial-vector
diquark configurations are {n,n}, {n,s}, and {s,s} [29]. For
quark-diquark states, we use the notation

|[q,q]q; (F1,F2)F; (t1,t2)T ; (s1,s2)S⟩ (1a)

or

|{q,q}q; (F1,F2)F; (t1,t2)T ; (s1,s2)S⟩, (1b)

where the SUf(3) representations of the diquark, F1 = 3
or 6, and the quark, F2 = 3, are coupled to the SUf(3)
representation of the baryon, F. Similarly, the spins (isospins)
of the diquark, s1 (t1), and of the quark, s2 (t2), are coupled to
the total spin (isospin) of the baryon, S (T ).

Finally, the quark-diquark basis states for N -, !-, "-, #-,
$-, and %-type baryons, written in the notation of Eq. (1), are
given in the Appendix. See also Table I, where we report some
estimations of the masses of axial-vector and scalar diquarks
according to some previous studies [28,29,38,39,53–63].

III. THE MASS OPERATOR

We consider a quark-diquark system, where r⃗ and q⃗ are
the relative coordinate between the two constituents and its
conjugate momentum, respectively. The baryon rest-frame
mass operator we consider is

M =E0+
√

q⃗2 + m2
1+

√
q⃗2 + m2

2+Mdir(r) + Mex(r), (2)

where E0 is a constant, Mdir(r) and Mex(r) respectively are the
direct and the exchange diquark-quark interactions, m1 and m2
stands for diquark and quark masses, where m1 is either m[q,q]
or m{q,q} depending if the mass operator acts on a scalar or
axial-vector diquark [28,29,53,61–66], with [q,q] = [n,n] or
[n,s] and {q,q} = {n,n}, {n,s} or {s,s}.

The direct term we consider,

Mdir(r) = −τ

r
(1 − e−µr ) + βr , (3)

is the sum of a Coulomb-like interaction with a cutoff and a
linear confinement term.

We also need an exchange interaction, since this is
the crucial ingredient of a quark-diquark description of

TABLE II. Resulting values of the model parameters. The values
denoted as “fit 1” are obtained by fitting the mass formula to
nonstrange and strange baryons, those denoted as “fit 2” are fitted
to the strange sector only.

Parameter Value Value Parameter Value Value
(fit 1) (fit 2) (fit 1) (fit 2)

mn 200 MeV 159 MeV ms 550 MeV 213 Mev
m[n,n] 600 MeV 607 MeV m[n,s] 900 MeV 856 MeV
m{n,n} 950 MeV 963 MeV m{n,s} 1200 MeV 1216 MeV
m{s,s} 1580 MeV 1352 MeV τ 1.20 1.02
µ 75.0 fm−1 28.4 fm−1 β 2.15 fm−2 2.36 fm−2

AS 350 MeV −436 MeV AF 100 MeV 193 MeV
AI 250 MeV 791 MeV σ 2.30 fm−1 2.25 fm−1

E0 141 MeV 150 MeV ϵ 0.37
D 6.13 fm2 η 11.0 fm−1

025202-2
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baryons [38,67]. Thus, we consider the following interaction,
inspired by Gürsey-Radicati [47]:

Mex(r) = (−1)L+1e−σ r
[
ASs⃗1 · s⃗2+AF λ⃗

f
1 · λ⃗

f
2 +AI t⃗1 · t⃗2

]
,

(4)

where s⃗ and t⃗ are the spin and isospin operators and λ⃗f are the
SUf(3) Gell-Mann matrices. In the nonstrange sector, we also
have a contact interaction

Mcont =
(

m1m2

E1E2

)1/2+ϵ
η3D

π3/2
e−η2r2

δL,0δs1,1

(
m1m2

E1E2

)1/2+ϵ

,

(5)

which was introduced in the mass operator of Ref. [39]
to reproduce the ' − N mass splitting. It is worthwhile to
compare the exchange interactions of Eq. (4) and that of

Ref. [39],

Mex(r) = (−1)L+1e−σ r [ASs⃗1 · s⃗2 + AI t⃗1 · t⃗2

+ASI (s⃗1 · s⃗2)(t⃗1 · t⃗2)]; (6)

one can notice that the spin-isospin (s⃗1 · s⃗2)(t⃗1 · t⃗2) term of
Eq. (6) has here been substituted with a flavor-dependent one.
The isospin dependence is still necessary in Eq. (4), because
there are resonances which have the same quantum numbers
except the isospins. These baryons, belonging to the same
SUf(3) representation, have different isospins that result from
different combinations of the isospins of the quark and the
diquark, like ((1600) and )(1193) (see Tables V and VII).
Thus, without the introduction of an isospin dependence into
the exchange interaction, the previous states, ((1600) and
)(1193), would become degenerate and lie at the same energy.

TABLE III. Comparison between the experimental [17] values of non strange baryon resonances masses (up to 2 GeV) and the numerical
ones, from ”Fit 1”. J P and LP are respectively the total angular momentum and the orbital angular momentum of the baryon, including the
parity P ; S is the total spin, obtained coupling the spin of the diquark, s1, and that of the quark; finally nr is the number of nodes in the radial
wave function. Since in the nonstrange sector we can only have two type of diquarks, the scalar, [n,n], and axial-vector diquark, {n,n}, with
spin s1 = 0 and 1, respectively, for simplicity here we use the notation of Refs. [39,42].

Resonance Status Mexp. (MeV) J P LP S s1 nr Mcalc. (fit 1) (MeV)

N (939) P11 **** 939 1
2

+
0+ 1

2 0 0 939
N (1440) P11 **** 1420–1470 1

2
+

0+ 1
2 0 1 1511

N (1520) D13 **** 1515–1525 3
2

−
1− 1

2 0 0 1537
N (1535) S11 **** 1525–1545 1

2
−

1− 1
2 0 0 1537

N (1650) S11 **** 1645–1670 1
2

−
1− 1

2 1 0 1625

N (1675) D15 **** 1670–1680 5
2

−
1− 3

2 1 0 1746

N (1680) F15 **** 1680–1690 5
2

+
2+ 1

2 0 0 1799
N (1700) D13 *** 1650–1750 3

2
−

1− 1
2 1 0 1625

N (1710) P11 *** 1680–1740 1
2

+
0+ 1

2 1 0 1776
N (1720) P13 **** 1700–1750 3

2
+

0+ 3
2 1 0 1648

Missing 1
2

−
1− 3

2 1 0 1746
Missing 3

2
−

1− 3
2 1 0 1746

Missing 3
2

+
2+ 1

2 0 0 1799
N (1875) D13 *** 1820–1920 3

2
−

1− 1
2 0 1 1888

N (1880) P11 ** 1835–1905 1
2

+
0+ 1

2 0 2 1890
N (1895) S11 ** 1880–1910 1

2
−

1− 1
2 0 1 1888

N (1900) P13 *** 1875–1935 3
2

+
0+ 3

2 1 1 1947

'(1232) P33 **** 1230–1234 3
2

+
0+ 3

2 1 0 1247
'(1600) P33 *** 1500–1700 3

2
+

0+ 3
2 1 1 1689

'(1620) S31 **** 1600–1660 1
2

−
1− 1

2 1 0 1830
'(1700) D33 **** 1670–1750 3

2
−

1− 1
2 1 0 1830

'(1750) P31 * 1708–1780 1
2

+
0+ 1

2 1 0 1489
'(1900) S31 ** 1840–1920 1

2
−

1− 3
2 1 0 1910

'(1905) F35 **** 1855–1910 5
2

+
2+ 3

2 1 0 2042
'(1910) P31 **** 1860–1920 1

2
+

2+ 3
2 1 0 1827

'(1920) P33 *** 1900–1970 3
2

+
2+ 3

2 1 0 2042

'(1930) D35 *** 1900–2000 5
2

−
1− 3

2 1 0 1910
'(1940) D33 ** 1940–2060 3

2
−

1− 3
2 1 0 1910

'(1950) F37 **** 1915–1950 7
2

+
2+ 3

2 1 0 2042
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baryons [38,67]. Thus, we consider the following interaction,
inspired by Gürsey-Radicati [47]:

Mex(r) = (−1)L+1e−σ r
[
ASs⃗1 · s⃗2+AF λ⃗

f
1 · λ⃗

f
2 +AI t⃗1 · t⃗2

]
,

(4)

where s⃗ and t⃗ are the spin and isospin operators and λ⃗f are the
SUf(3) Gell-Mann matrices. In the nonstrange sector, we also
have a contact interaction

Mcont =
(

m1m2

E1E2

)1/2+ϵ
η3D

π3/2
e−η2r2

δL,0δs1,1

(
m1m2

E1E2

)1/2+ϵ

,

(5)

which was introduced in the mass operator of Ref. [39]
to reproduce the ' − N mass splitting. It is worthwhile to
compare the exchange interactions of Eq. (4) and that of

Ref. [39],

Mex(r) = (−1)L+1e−σ r [ASs⃗1 · s⃗2 + AI t⃗1 · t⃗2

+ASI (s⃗1 · s⃗2)(t⃗1 · t⃗2)]; (6)

one can notice that the spin-isospin (s⃗1 · s⃗2)(t⃗1 · t⃗2) term of
Eq. (6) has here been substituted with a flavor-dependent one.
The isospin dependence is still necessary in Eq. (4), because
there are resonances which have the same quantum numbers
except the isospins. These baryons, belonging to the same
SUf(3) representation, have different isospins that result from
different combinations of the isospins of the quark and the
diquark, like ((1600) and )(1193) (see Tables V and VII).
Thus, without the introduction of an isospin dependence into
the exchange interaction, the previous states, ((1600) and
)(1193), would become degenerate and lie at the same energy.

TABLE III. Comparison between the experimental [17] values of non strange baryon resonances masses (up to 2 GeV) and the numerical
ones, from ”Fit 1”. J P and LP are respectively the total angular momentum and the orbital angular momentum of the baryon, including the
parity P ; S is the total spin, obtained coupling the spin of the diquark, s1, and that of the quark; finally nr is the number of nodes in the radial
wave function. Since in the nonstrange sector we can only have two type of diquarks, the scalar, [n,n], and axial-vector diquark, {n,n}, with
spin s1 = 0 and 1, respectively, for simplicity here we use the notation of Refs. [39,42].

Resonance Status Mexp. (MeV) J P LP S s1 nr Mcalc. (fit 1) (MeV)

N (939) P11 **** 939 1
2

+
0+ 1

2 0 0 939
N (1440) P11 **** 1420–1470 1

2
+

0+ 1
2 0 1 1511

N (1520) D13 **** 1515–1525 3
2

−
1− 1

2 0 0 1537
N (1535) S11 **** 1525–1545 1

2
−

1− 1
2 0 0 1537

N (1650) S11 **** 1645–1670 1
2

−
1− 1

2 1 0 1625

N (1675) D15 **** 1670–1680 5
2

−
1− 3

2 1 0 1746

N (1680) F15 **** 1680–1690 5
2

+
2+ 1

2 0 0 1799
N (1700) D13 *** 1650–1750 3

2
−

1− 1
2 1 0 1625

N (1710) P11 *** 1680–1740 1
2

+
0+ 1

2 1 0 1776
N (1720) P13 **** 1700–1750 3

2
+

0+ 3
2 1 0 1648

Missing 1
2

−
1− 3

2 1 0 1746
Missing 3

2
−

1− 3
2 1 0 1746

Missing 3
2

+
2+ 1

2 0 0 1799
N (1875) D13 *** 1820–1920 3

2
−

1− 1
2 0 1 1888

N (1880) P11 ** 1835–1905 1
2

+
0+ 1

2 0 2 1890
N (1895) S11 ** 1880–1910 1

2
−

1− 1
2 0 1 1888

N (1900) P13 *** 1875–1935 3
2

+
0+ 3

2 1 1 1947

'(1232) P33 **** 1230–1234 3
2

+
0+ 3

2 1 0 1247
'(1600) P33 *** 1500–1700 3

2
+

0+ 3
2 1 1 1689

'(1620) S31 **** 1600–1660 1
2

−
1− 1

2 1 0 1830
'(1700) D33 **** 1670–1750 3

2
−

1− 1
2 1 0 1830

'(1750) P31 * 1708–1780 1
2

+
0+ 1

2 1 0 1489
'(1900) S31 ** 1840–1920 1

2
−

1− 3
2 1 0 1910

'(1905) F35 **** 1855–1910 5
2

+
2+ 3

2 1 0 2042
'(1910) P31 **** 1860–1920 1

2
+

2+ 3
2 1 0 1827

'(1920) P33 *** 1900–1970 3
2

+
2+ 3

2 1 0 2042

'(1930) D35 *** 1900–2000 5
2

−
1− 3

2 1 0 1910
'(1940) D33 ** 1940–2060 3

2
−

1− 3
2 1 0 1910

'(1950) F37 **** 1915–1950 7
2

+
2+ 3

2 1 0 2042
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baryons [38,67]. Thus, we consider the following interaction,
inspired by Gürsey-Radicati [47]:

Mex(r) = (−1)L+1e−σ r
[
ASs⃗1 · s⃗2+AF λ⃗

f
1 · λ⃗

f
2 +AI t⃗1 · t⃗2

]
,

(4)

where s⃗ and t⃗ are the spin and isospin operators and λ⃗f are the
SUf(3) Gell-Mann matrices. In the nonstrange sector, we also
have a contact interaction

Mcont =
(

m1m2

E1E2

)1/2+ϵ
η3D

π3/2
e−η2r2

δL,0δs1,1

(
m1m2

E1E2

)1/2+ϵ

,

(5)

which was introduced in the mass operator of Ref. [39]
to reproduce the ' − N mass splitting. It is worthwhile to
compare the exchange interactions of Eq. (4) and that of

Ref. [39],

Mex(r) = (−1)L+1e−σ r [ASs⃗1 · s⃗2 + AI t⃗1 · t⃗2

+ASI (s⃗1 · s⃗2)(t⃗1 · t⃗2)]; (6)

one can notice that the spin-isospin (s⃗1 · s⃗2)(t⃗1 · t⃗2) term of
Eq. (6) has here been substituted with a flavor-dependent one.
The isospin dependence is still necessary in Eq. (4), because
there are resonances which have the same quantum numbers
except the isospins. These baryons, belonging to the same
SUf(3) representation, have different isospins that result from
different combinations of the isospins of the quark and the
diquark, like ((1600) and )(1193) (see Tables V and VII).
Thus, without the introduction of an isospin dependence into
the exchange interaction, the previous states, ((1600) and
)(1193), would become degenerate and lie at the same energy.

TABLE III. Comparison between the experimental [17] values of non strange baryon resonances masses (up to 2 GeV) and the numerical
ones, from ”Fit 1”. J P and LP are respectively the total angular momentum and the orbital angular momentum of the baryon, including the
parity P ; S is the total spin, obtained coupling the spin of the diquark, s1, and that of the quark; finally nr is the number of nodes in the radial
wave function. Since in the nonstrange sector we can only have two type of diquarks, the scalar, [n,n], and axial-vector diquark, {n,n}, with
spin s1 = 0 and 1, respectively, for simplicity here we use the notation of Refs. [39,42].

Resonance Status Mexp. (MeV) J P LP S s1 nr Mcalc. (fit 1) (MeV)

N (939) P11 **** 939 1
2

+
0+ 1

2 0 0 939
N (1440) P11 **** 1420–1470 1

2
+

0+ 1
2 0 1 1511

N (1520) D13 **** 1515–1525 3
2

−
1− 1

2 0 0 1537
N (1535) S11 **** 1525–1545 1

2
−

1− 1
2 0 0 1537

N (1650) S11 **** 1645–1670 1
2

−
1− 1

2 1 0 1625

N (1675) D15 **** 1670–1680 5
2

−
1− 3

2 1 0 1746

N (1680) F15 **** 1680–1690 5
2

+
2+ 1

2 0 0 1799
N (1700) D13 *** 1650–1750 3

2
−

1− 1
2 1 0 1625

N (1710) P11 *** 1680–1740 1
2

+
0+ 1

2 1 0 1776
N (1720) P13 **** 1700–1750 3

2
+

0+ 3
2 1 0 1648

Missing 1
2

−
1− 3

2 1 0 1746
Missing 3

2
−

1− 3
2 1 0 1746

Missing 3
2

+
2+ 1

2 0 0 1799
N (1875) D13 *** 1820–1920 3

2
−

1− 1
2 0 1 1888

N (1880) P11 ** 1835–1905 1
2

+
0+ 1

2 0 2 1890
N (1895) S11 ** 1880–1910 1

2
−

1− 1
2 0 1 1888

N (1900) P13 *** 1875–1935 3
2

+
0+ 3

2 1 1 1947

'(1232) P33 **** 1230–1234 3
2

+
0+ 3

2 1 0 1247
'(1600) P33 *** 1500–1700 3

2
+

0+ 3
2 1 1 1689

'(1620) S31 **** 1600–1660 1
2

−
1− 1

2 1 0 1830
'(1700) D33 **** 1670–1750 3

2
−

1− 1
2 1 0 1830

'(1750) P31 * 1708–1780 1
2

+
0+ 1

2 1 0 1489
'(1900) S31 ** 1840–1920 1

2
−

1− 3
2 1 0 1910

'(1905) F35 **** 1855–1910 5
2

+
2+ 3

2 1 0 2042
'(1910) P31 **** 1860–1920 1

2
+

2+ 3
2 1 0 1827

'(1920) P33 *** 1900–1970 3
2

+
2+ 3

2 1 0 2042

'(1930) D35 *** 1900–2000 5
2

−
1− 3

2 1 0 1910
'(1940) D33 ** 1940–2060 3

2
−

1− 3
2 1 0 1910

'(1950) F37 **** 1915–1950 7
2

+
2+ 3

2 1 0 2042
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Group, is given by [39]

|p1,p2,λ1,λ2⟩, (7)

where p1 and p2 are the four-momenta of the diquark and the
quark, respectively, while λ1 and λ2 are, respectively, the z
projections of their spins.

The velocity states are introduced as [39,43,44]

|v,k⃗1,λ1,k⃗2,λ2⟩ = UB(v)|k1,s1,λ1,k2,s2,λ2⟩0, (8)

where the suffix 0 means that the diquark and the quark three-
momenta k⃗1 and k⃗2 satisfy the condition

k⃗1 + k⃗2 = 0 . (9)

Following the standard rules of the point-form approach, the
boost operator UB(v) is taken as a canonical one, showing that
the transformed four-momenta are given by p1,2 = B(v)k1,2
and satisfy

p
µ
1 + p

µ
2 = P

µ
N

MN

(√
q⃗ 2 + m2

1 +
√

q⃗ 2 + m2
2

)
, (10)

where P
µ
N is the observed nucleon four-momentum and MN

is its mass. The important point is that Eq. (8) redefines the
single-particle spins. Since canonical boosts are applied, the
conditions for a point-form approach [43,70] are satisfied.
Thus, the spins on the left-hand state of Eq. (8) perform the
same Wigner rotations as k⃗1 and k⃗2, allowing us to couple the
spin and the orbital angular momentum as in the nonrelativistic
case [43], while the spins in the ket on the right-hand side of
Eq. (8) undergo the single-particle Wigner rotations.

In point-form dynamics, Eq. (2) corresponds to a good
mass operator as it commutes with the Lorentz generators and
with the four-velocity. We diagonalize (2) in the Hilbert space
spanned by the velocity states. Instead of the internal momenta
k⃗1 and k⃗2, one can also use the relative momentum q⃗, conjugate
to the relative coordinate r⃗ = r⃗1 − r⃗2, thus considering the
following velocity basis states:

|v,q⃗,λ1,λ2⟩ = UB(v)|k1,s1,λ1,k2,s2,λ2⟩0 . (11)
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FIG. 1. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ " and "∗ resonances (up
to 2 GeV; from fit 2) and the experimental masses from PDG [17]
(blue [gray] boxes).
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FIG. 2. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ # and #∗ resonances (up
to 2 GeV; from fit 2) and the experimental masses from PDG [17]
(blue [gray] boxes).

IV. RESULTS AND DISCUSSION

In this section, we show our results for the strange and
nonstrange baryon spectra. Because this paper is mainly
focused on the extension of the interacting quark-diquark
model to strange baryons, here we present the results of two
fits to the experimental data [17]. In the first, “fit 1,” we fit
the model mass formula to the strange and nonstrange baryon
spectra, while in the second, “fit 2,” we focus our attention
on the strange sector only. Obviously, in this second case
we expect to get a better reproduction of the experimental
data in the strange baryon sector and, perhaps, to increase
the predictive power of our model for still unobserved strange
baryon resonances. Using the set of parameters of Table II
(fit 1), Tables III and IV show the comparison between the
experimental data and the results of our quark-diquark model
calculation. In this case, the rms deviation is 146 MeV. This
value corresponds to the rms deviation corrected for the
number of free parameters of the model (fit 1). Figures 1–3 and
Tables V–VII show our quark-diquark model results, obtained
with the set of parameters of Table II (fit 2). In this second
case, the rms deviation is 89 MeV. This value corresponds to
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FIG. 3. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ $, $∗, and % resonances (up to
2 GeV; from fit 2) and the experimental masses from PDG [17] (blue
[gray] boxes).
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Group, is given by [39]

|p1,p2,λ1,λ2⟩, (7)

where p1 and p2 are the four-momenta of the diquark and the
quark, respectively, while λ1 and λ2 are, respectively, the z
projections of their spins.

The velocity states are introduced as [39,43,44]

|v,k⃗1,λ1,k⃗2,λ2⟩ = UB(v)|k1,s1,λ1,k2,s2,λ2⟩0, (8)

where the suffix 0 means that the diquark and the quark three-
momenta k⃗1 and k⃗2 satisfy the condition

k⃗1 + k⃗2 = 0 . (9)

Following the standard rules of the point-form approach, the
boost operator UB(v) is taken as a canonical one, showing that
the transformed four-momenta are given by p1,2 = B(v)k1,2
and satisfy

p
µ
1 + p

µ
2 = P

µ
N

MN

(√
q⃗ 2 + m2

1 +
√

q⃗ 2 + m2
2

)
, (10)

where P
µ
N is the observed nucleon four-momentum and MN

is its mass. The important point is that Eq. (8) redefines the
single-particle spins. Since canonical boosts are applied, the
conditions for a point-form approach [43,70] are satisfied.
Thus, the spins on the left-hand state of Eq. (8) perform the
same Wigner rotations as k⃗1 and k⃗2, allowing us to couple the
spin and the orbital angular momentum as in the nonrelativistic
case [43], while the spins in the ket on the right-hand side of
Eq. (8) undergo the single-particle Wigner rotations.

In point-form dynamics, Eq. (2) corresponds to a good
mass operator as it commutes with the Lorentz generators and
with the four-velocity. We diagonalize (2) in the Hilbert space
spanned by the velocity states. Instead of the internal momenta
k⃗1 and k⃗2, one can also use the relative momentum q⃗, conjugate
to the relative coordinate r⃗ = r⃗1 − r⃗2, thus considering the
following velocity basis states:

|v,q⃗,λ1,λ2⟩ = UB(v)|k1,s1,λ1,k2,s2,λ2⟩0 . (11)
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FIG. 1. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ " and "∗ resonances (up
to 2 GeV; from fit 2) and the experimental masses from PDG [17]
(blue [gray] boxes).
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FIG. 2. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ # and #∗ resonances (up
to 2 GeV; from fit 2) and the experimental masses from PDG [17]
(blue [gray] boxes).

IV. RESULTS AND DISCUSSION

In this section, we show our results for the strange and
nonstrange baryon spectra. Because this paper is mainly
focused on the extension of the interacting quark-diquark
model to strange baryons, here we present the results of two
fits to the experimental data [17]. In the first, “fit 1,” we fit
the model mass formula to the strange and nonstrange baryon
spectra, while in the second, “fit 2,” we focus our attention
on the strange sector only. Obviously, in this second case
we expect to get a better reproduction of the experimental
data in the strange baryon sector and, perhaps, to increase
the predictive power of our model for still unobserved strange
baryon resonances. Using the set of parameters of Table II
(fit 1), Tables III and IV show the comparison between the
experimental data and the results of our quark-diquark model
calculation. In this case, the rms deviation is 146 MeV. This
value corresponds to the rms deviation corrected for the
number of free parameters of the model (fit 1). Figures 1–3 and
Tables V–VII show our quark-diquark model results, obtained
with the set of parameters of Table II (fit 2). In this second
case, the rms deviation is 89 MeV. This value corresponds to
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FIG. 3. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ $, $∗, and % resonances (up to
2 GeV; from fit 2) and the experimental masses from PDG [17] (blue
[gray] boxes).
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TABLE V. Comparison between the experimental values [17] of !- and !∗-type resonance masses (up to 2 GeV) and the numerical ones
(all values are expressed in MeV), from fit 2. J P and LP are respectively the total angular momentum and the orbital angular momentum of
the baryon, including the parity P ; S is the total spin, obtained by coupling the spin of the diquark s1 and that of the quark; Q2q stands for the
diquark-quark structure of the state; F and F1 are the dimensions of the SUf(3) representations for the baryon and the diquark, respectively; I

and t1 are the isospins of the baryon and the diquark, respectively; finally nr is the number of nodes in the radial wave function.

Resonance Status Mexp. J P LP S s1 Q2q F F1 I t1 nr Mcalc. (fit 2)
(MeV) (MeV)

!(1193) P11 **** 1189—1197 1
2

+
0+ 1

2 0 [n,s]n 8 3̄ 1 1
2 0 1211

!(1620) S11 ** ≈1620 1
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1753
!(1660) P11 *** 1630–1690 1

2
+

0+ 1
2 1 {n,n}s 8 6 1 1 0 1546

!(1670) D13 **** 1665–1685 3
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1753
!(1750) S11 *** 1730–1800 1

2
−

1− 1
2 0 [n,s]n 8 3̄ 1 1

2 0 1868
!(1770) P11 * ≈1770 1

2
+

0+ 1
2 1 {n,s}n 8 6 1 1

2 0 1668

!(1775) D15 **** 1770–1780 5
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1753
!(1880) P11 ** ≈1880 1

2
+

0+ 1
2 0 [n,s]n 8 3̄ 1 1

2 1 1801

!(1915) F15 **** 1900–1935 5
2

+
2+ 1

2 0 [n,s]n 8 3̄ 1 1
2 0 2061

!(1940) D13 *** 1900–1950 3
2

−
1− 1

2 0 [n,s]n 8 3̄ 1 1
2 0 1868

Missing 3
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1895
!(2000) S11 * ≈2000 1

2
−

1− 3
2 1 {n,n}s 8 6 1 1 0 1895

!∗(1385) P13 **** 1382–1388 3
2

+
0+ 3

2 1 {n,n}s 10 6 1 1 0 1334
!∗(1840) P13 * ≈1840 3

2
+

0+ 3
2 1 {n,s}n 10 6 1 1

2 0 1439
!∗(2080) P13 ** ≈2080 3

2
+

0+ 3
2 1 {n,n}s 10 6 1 1 1 1924

the rms deviation corrected for the number of free parameters
of the model (fit 2).

There is a certain difference between the values of the model
parameters used in the two fits. This is especially evident
in the case of the quark masses and the exchange potential
parameters. The values of the parameters strongly depend
from one another. Thus, if we modify those for the exchange
potential, this will also have an effect on the constituent quark
masses. Moreover, and most important, some parameters are
present in the first fit and not in second, because they were
introduced to reproduce the " − N mass splitting, and thus
they are inessential in the strange sector. In fact, we can say
that the nonstrange sector is a special case. This is because spin
forces are stronger in this sector than in the others. This can

be seen not only in baryons, but also in meson spectroscopy,
where light meson masses result from very large hyperfine
contributions, while, for example, in the strange or charmed
sectors spin forces are much weaker. This is the reason
why we expect to get better results for heavy baryons [46],
where spin forces are weaker and can be treated more
easily.

It is also interesting to note that in our model #(1116) and
#∗(1520) are described as bound states of a scalar diquark
[n,n] and a quark s, where the quark-diquark system is in
S or P wave, respectively. This is in accordance with the
observations of Refs. [29,30] on #’s fragmentation functions,
that the two resonances can be described as [n,n] − s systems.
See Table VII.

TABLE VI. As Table V, but for $-, $∗-, and %-type resonances.

Resonance Status Mexp. J P LP S s1 Q2q F F1 I t1 nr Mcalc. (fit 2)
(MeV) (MeV)

$(1318) P11 **** 1315–1322 1
2

+
0+ 1

2 0 [n,s]s 8 3̄ 1
2

1
2 0 1317

Missing 1
2

+
0+ 1

2 1 {n,s}s 8 6 1
2

1
2 0 1772

$(1820) D13 *** 1818–1828 3
2

−
1− 1

2 0 [n,s]s 8 3̄ 1
2

1
2 0 1861

Missing 1
2

+
0+ 1

2 0 [n,s]s 8 3̄ 1
2

1
2 1 1868

Missing 1
2

+
0+ 1

2 1 {s,s}n 8 6 1
2 0 0 1874

Missing 3
2

−
1− 3

2 1 {n,s}s 8 6 1
2

1
2 0 1971

$∗(1530) P13 **** 1531–1532 3
2

+
0+ 3

2 1 {n,s}s 10 6 1
2

1
2 0 1552

Missing 3
2

+
0+ 3

2 1 {s,s}n 10 6 1
2 0 0 1653

%(1672) P03 **** 1672–1673 3
2

+
0+ 3

2 1 {s,s}s 10 6 0 0 0 1672

025202-6
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TABLE V. Comparison between the experimental values [17] of !- and !∗-type resonance masses (up to 2 GeV) and the numerical ones
(all values are expressed in MeV), from fit 2. J P and LP are respectively the total angular momentum and the orbital angular momentum of
the baryon, including the parity P ; S is the total spin, obtained by coupling the spin of the diquark s1 and that of the quark; Q2q stands for the
diquark-quark structure of the state; F and F1 are the dimensions of the SUf(3) representations for the baryon and the diquark, respectively; I

and t1 are the isospins of the baryon and the diquark, respectively; finally nr is the number of nodes in the radial wave function.

Resonance Status Mexp. J P LP S s1 Q2q F F1 I t1 nr Mcalc. (fit 2)
(MeV) (MeV)

!(1193) P11 **** 1189—1197 1
2

+
0+ 1

2 0 [n,s]n 8 3̄ 1 1
2 0 1211

!(1620) S11 ** ≈1620 1
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1753
!(1660) P11 *** 1630–1690 1

2
+

0+ 1
2 1 {n,n}s 8 6 1 1 0 1546

!(1670) D13 **** 1665–1685 3
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1753
!(1750) S11 *** 1730–1800 1

2
−

1− 1
2 0 [n,s]n 8 3̄ 1 1

2 0 1868
!(1770) P11 * ≈1770 1

2
+

0+ 1
2 1 {n,s}n 8 6 1 1

2 0 1668

!(1775) D15 **** 1770–1780 5
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1753
!(1880) P11 ** ≈1880 1

2
+

0+ 1
2 0 [n,s]n 8 3̄ 1 1

2 1 1801

!(1915) F15 **** 1900–1935 5
2

+
2+ 1

2 0 [n,s]n 8 3̄ 1 1
2 0 2061

!(1940) D13 *** 1900–1950 3
2

−
1− 1

2 0 [n,s]n 8 3̄ 1 1
2 0 1868

Missing 3
2

−
1− 3

2 1 {n,n}s 8 6 1 1 0 1895
!(2000) S11 * ≈2000 1

2
−

1− 3
2 1 {n,n}s 8 6 1 1 0 1895

!∗(1385) P13 **** 1382–1388 3
2

+
0+ 3

2 1 {n,n}s 10 6 1 1 0 1334
!∗(1840) P13 * ≈1840 3

2
+

0+ 3
2 1 {n,s}n 10 6 1 1

2 0 1439
!∗(2080) P13 ** ≈2080 3

2
+

0+ 3
2 1 {n,n}s 10 6 1 1 1 1924

the rms deviation corrected for the number of free parameters
of the model (fit 2).

There is a certain difference between the values of the model
parameters used in the two fits. This is especially evident
in the case of the quark masses and the exchange potential
parameters. The values of the parameters strongly depend
from one another. Thus, if we modify those for the exchange
potential, this will also have an effect on the constituent quark
masses. Moreover, and most important, some parameters are
present in the first fit and not in second, because they were
introduced to reproduce the " − N mass splitting, and thus
they are inessential in the strange sector. In fact, we can say
that the nonstrange sector is a special case. This is because spin
forces are stronger in this sector than in the others. This can

be seen not only in baryons, but also in meson spectroscopy,
where light meson masses result from very large hyperfine
contributions, while, for example, in the strange or charmed
sectors spin forces are much weaker. This is the reason
why we expect to get better results for heavy baryons [46],
where spin forces are weaker and can be treated more
easily.

It is also interesting to note that in our model #(1116) and
#∗(1520) are described as bound states of a scalar diquark
[n,n] and a quark s, where the quark-diquark system is in
S or P wave, respectively. This is in accordance with the
observations of Refs. [29,30] on #’s fragmentation functions,
that the two resonances can be described as [n,n] − s systems.
See Table VII.

TABLE VI. As Table V, but for $-, $∗-, and %-type resonances.

Resonance Status Mexp. J P LP S s1 Q2q F F1 I t1 nr Mcalc. (fit 2)
(MeV) (MeV)

$(1318) P11 **** 1315–1322 1
2

+
0+ 1

2 0 [n,s]s 8 3̄ 1
2

1
2 0 1317

Missing 1
2

+
0+ 1

2 1 {n,s}s 8 6 1
2

1
2 0 1772

$(1820) D13 *** 1818–1828 3
2

−
1− 1

2 0 [n,s]s 8 3̄ 1
2

1
2 0 1861

Missing 1
2

+
0+ 1

2 0 [n,s]s 8 3̄ 1
2

1
2 1 1868

Missing 1
2

+
0+ 1

2 1 {s,s}n 8 6 1
2 0 0 1874

Missing 3
2

−
1− 3

2 1 {n,s}s 8 6 1
2

1
2 0 1971

$∗(1530) P13 **** 1531–1532 3
2

+
0+ 3

2 1 {n,s}s 10 6 1
2

1
2 0 1552

Missing 3
2

+
0+ 3

2 1 {s,s}n 10 6 1
2 0 0 1653

%(1672) P03 **** 1672–1673 3
2

+
0+ 3

2 1 {s,s}s 10 6 0 0 0 1672
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Group, is given by [39]

|p1,p2,λ1,λ2⟩, (7)

where p1 and p2 are the four-momenta of the diquark and the
quark, respectively, while λ1 and λ2 are, respectively, the z
projections of their spins.

The velocity states are introduced as [39,43,44]

|v,k⃗1,λ1,k⃗2,λ2⟩ = UB(v)|k1,s1,λ1,k2,s2,λ2⟩0, (8)

where the suffix 0 means that the diquark and the quark three-
momenta k⃗1 and k⃗2 satisfy the condition

k⃗1 + k⃗2 = 0 . (9)

Following the standard rules of the point-form approach, the
boost operator UB(v) is taken as a canonical one, showing that
the transformed four-momenta are given by p1,2 = B(v)k1,2
and satisfy

p
µ
1 + p

µ
2 = P

µ
N

MN

(√
q⃗ 2 + m2

1 +
√

q⃗ 2 + m2
2

)
, (10)

where P
µ
N is the observed nucleon four-momentum and MN

is its mass. The important point is that Eq. (8) redefines the
single-particle spins. Since canonical boosts are applied, the
conditions for a point-form approach [43,70] are satisfied.
Thus, the spins on the left-hand state of Eq. (8) perform the
same Wigner rotations as k⃗1 and k⃗2, allowing us to couple the
spin and the orbital angular momentum as in the nonrelativistic
case [43], while the spins in the ket on the right-hand side of
Eq. (8) undergo the single-particle Wigner rotations.

In point-form dynamics, Eq. (2) corresponds to a good
mass operator as it commutes with the Lorentz generators and
with the four-velocity. We diagonalize (2) in the Hilbert space
spanned by the velocity states. Instead of the internal momenta
k⃗1 and k⃗2, one can also use the relative momentum q⃗, conjugate
to the relative coordinate r⃗ = r⃗1 − r⃗2, thus considering the
following velocity basis states:

|v,q⃗,λ1,λ2⟩ = UB(v)|k1,s1,λ1,k2,s2,λ2⟩0 . (11)
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FIG. 1. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ " and "∗ resonances (up
to 2 GeV; from fit 2) and the experimental masses from PDG [17]
(blue [gray] boxes).
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FIG. 2. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ # and #∗ resonances (up
to 2 GeV; from fit 2) and the experimental masses from PDG [17]
(blue [gray] boxes).

IV. RESULTS AND DISCUSSION

In this section, we show our results for the strange and
nonstrange baryon spectra. Because this paper is mainly
focused on the extension of the interacting quark-diquark
model to strange baryons, here we present the results of two
fits to the experimental data [17]. In the first, “fit 1,” we fit
the model mass formula to the strange and nonstrange baryon
spectra, while in the second, “fit 2,” we focus our attention
on the strange sector only. Obviously, in this second case
we expect to get a better reproduction of the experimental
data in the strange baryon sector and, perhaps, to increase
the predictive power of our model for still unobserved strange
baryon resonances. Using the set of parameters of Table II
(fit 1), Tables III and IV show the comparison between the
experimental data and the results of our quark-diquark model
calculation. In this case, the rms deviation is 146 MeV. This
value corresponds to the rms deviation corrected for the
number of free parameters of the model (fit 1). Figures 1–3 and
Tables V–VII show our quark-diquark model results, obtained
with the set of parameters of Table II (fit 2). In this second
case, the rms deviation is 89 MeV. This value corresponds to
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FIG. 3. (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ $, $∗, and % resonances (up to
2 GeV; from fit 2) and the experimental masses from PDG [17] (blue
[gray] boxes).
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TABLE VII. As Table V, but for !- and !∗-type resonances.

Resonance Status Mexp. J P LP S s1 Q2q F F1 I t1 nr Mcalc. (fit 2)
(MeV) (MeV)

!(1116) P01 **** 1116 1
2

+
0+ 1

2 0 [n,n]s 8 3̄ 0 0 0 1116
!(1600) P01 *** 1560–1700 1

2
+

0+ 1
2 0 [n,s]n 8 3̄ 0 1

2 0 1518
!(1670) S01 **** 1660–1680 1

2
−

1− 1
2 0 [n,n]s 8 3̄ 0 0 0 1650

!(1690) D03 **** 1685–1695 3
2

−
1− 1

2 0 [n,n]s 8 3̄ 0 0 0 1650
Missing 3

2
−

1− 1
2 0 [n,s]n 8 3̄ 0 1

2 0 1732
Missing 1

2
−

1− 3
2 1 {n,s}n 8 6 0 1

2 0 1785
Missing 3

2
−

1− 1
2 0 [n,n]s 8 3̄ 0 0 1 1785

!(1800) S01 *** 1720–1850 1
2

−
1− 1

2 0 [n,s]n 8 3̄ 0 1
2 0 1732

!(1810) P01 *** 1750–1850 1
2

+
0+ 1

2 0 [n,n]s 8 3̄ 0 0 1 1666

!(1820) F05 **** 1815–1825 5
2

+
2+ 1

2 0 [n,n]s 8 3̄ 0 0 0 1896

!(1830) D05 **** 1810–1830 5
2

−
1− 3

2 1 {n,s}n 8 6 0 1
2 0 1785

!(1890) P03 **** 1850–1910 3
2

+
0+ 3

2 1 {n,s}n 8 6 0 1
2 0 1896

Missing 1
2

+
0+ 1

2 1 {n,s}n 8 6 0 1
2 0 1955

Missing 1
2

+
0+ 1

2 0 [n,s]n 8 3̄ 0 1
2 1 1960

Missing 1
2

−
1− 1

2 1 {n,s}n 8 6 0 1
2 0 1969

Missing 3
2

−
1− 1

2 1 {n,s}n 8 6 0 1
2 0 1969

!∗(1405) S01 **** 1402–1410 1
2

−
1− 1

2 0 [n,n]s 1 3̄ 0 0 0 1431
!∗(1520) D03 **** 1519–1521 3

2
−

1− 1
2 0 [n,n]s 1 3̄ 0 0 0 1431

Missing 1
2

−
1− 1

2 0 [n,s]n 1 3̄ 0 1
2 0 1443

Missing 3
2

−
1− 1

2 0 [n,s]n 1 3̄ 0 1
2 0 1443

Missing 1
2

−
1− 1

2 0 [n,n]s 1 3̄ 0 0 1 1854
Missing 3

2
−

1− 1
2 0 [n,n]s 1 3̄ 0 0 1 1854

Missing 1
2

−
1− 1

2 0 [n,s]n 1 3̄ 0 1
2 1 1928

Missing 3
2

−
1− 1

2 0 [n,s]n 1 3̄ 0 1
2 1 1928

The presence of more diquark types, with respect to the
nonstrange case of Ref. [39], makes the reproduction of the
experimental data below the energy of 2 GeV more difficult
than before. In particular, one can notice that in the present
case (see results from fit 2, Tables V–VII) there are 19 missing
resonances below the energy of 2 GeV, while in the nonstrange
sector [39] there were no missing states under 2 GeV. Indeed, in
the strange sector one has two scalar diquarks, [n,n] and [n,s],
and three axial-vector diquarks, {n,n}, {n,s}, and {s,s}, while
in the nonstrange sector one only has a scalar diquark, [n,n],
and an axial-vector diquark, {n,n}. Nevertheless, we think that
the number of missing resonances of our model may decrease
when experimental data from more powerful experiments and
more precise data analyses are extracted. The search for these
resonances should be one of the main goals of the baryon
research programs at JLab, BES, ELSA, Crystal Barrel, and
TAPS. See also the latest multichannel Bonn-Gatchina partial
wave analysis results, including data from Crystal Barrel and
TAPS at ELSA and other laboratories [71].

Baryon resonance problems have already been treated with
an algebraic U(4) quark-diquark models [63], unquenched
quark models [7–16], and hypercentral models [4,72], but in
the end baryon resonances still remain an open problem [73].
In three-quark QMs for baryons, light baryons are ordered
according to the approximate SUf(3) symmetry. Nevertheless,

on one hand many unseen excited resonances are predicted
by every three-quark model; on the other hand, states with
certain quantum numbers appear in the spectrum at excitation
energies much lower than predicted [17]. For example, in the
nonstrange sector up to an excitation energy of 2.41 GeV, on
average about 45 N states are predicted, but only 12 have been
established (four- or three-star) and 7 are tentative (two- or
one-star) [17]. A possible solution to the puzzle of missing
resonances is the introduction of a new effective degree of
freedom: the diquark. This is what we tried to do in the present
paper and in Ref. [39] in the nonstrange sector.

While the absolute values of the diquark masses are model
dependent, their difference is not. Comparing our result for the
mass difference between the axial-vector and scalar diquarks
to those of Table I, it is interesting to note that our estimations
are comparable with the other ones. The main deviation from
the evaluations reported in the table arises in the difference
{n,s} − [n,s].

The whole mass operator of Eq. (2) has been diagonalized
by means of a numerical variational procedure, based on
harmonic oscillator trial wave functions. With a variational
basis of 100 harmonic oscillator shells, the results converge
very well.

The present work can be expanded to include charmed
and/or bottomed baryons [46], which can be quite interesting
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ters increases only by one, since there are two new pa-
rameters, V0 and ν [see Eq. (5)], while the parameter
ϵ of the contact interaction [see Eqs. (4) and (8)] has
been removed. Finally, it has to be noted that in the

mq = 140 MeV mS = 150 MeV mAV = 360 MeV
τ = 1.23 µ = 125 fm−1 β = 1.57 fm−2

AS = 125 MeV AI = 85 MeV ASI = 350 MeV
σ = 0.60 fm−1 E0 = 826 MeV D = 2.00 fm2

η = 10.0 fm−1 V0 = 1450 MeV ν = 0.35 fm−1

TABLE I: Resulting values for the model parameters.

present work all the calculations are performed without
any perturbative approximation, as in Ref. [20].
The eigenfunctions of the mass operator of Eq. (1) can

be thought as eigenstates of the mass operator with in-
teraction in a Bakamjian-Thomas construction [59]. The
interaction is introduced adding an interaction term to
the free mass operator M0 =

√

q⃗ 2 +m2
1+

√

q⃗ 2 +m2
2, in

such a way that the interaction commutes with the non
interacting Lorenz generators and with the non interact-
ing four velocity [60].
The dynamics is given by a point form Bakamjian-

Thomas construction. Point formmeans that the Lorentz
group is kinematic. Furthermore, since we are doing a
point form Bakamjian-Thomas construction, here P =
MV0 where V0 is the noninteracting four-velocity (whose
eigenvalue is v).
The general quark-diquark state, defined on the prod-

uct space H1 ⊗ H2 of the one-particle spin s1 (0 or 1)
and spin s2 (1/2) positive energy representations H1 =

L2(R3)⊗S0
1 orH1 = L2(R3)⊗S1

1 andH2 = L2(R3)⊗S
1/2
2

of the Poincaré Group, can be written as [20]

|p1, p2,λ1,λ2⟩ , (9)

where p1 and p2 are the four-momenta of the diquark and
the quark, respectively, while λ1 and λ2 are, respectively,
the z-projections of their spins.
We introduce the velocity states as [20, 44]

|v, k⃗1,λ1, k⃗2,λ2⟩ = UB(v)|k1, s1,λ1, k2, s2,λ2⟩0 , (10)

where the suffix 0 means that the diquark and the quark
three-momenta k⃗1 and k⃗2, called internal momenta, sat-
isfy:

k⃗1 + k⃗2 = 0 . (11)

Following the standard rules of the point form approach,
the boost operator UB(v) is taken as a canonical one,
obtaining that the transformed four-momenta are given
by p1,2 = B(v)k1,2 and satisfy the point form relation

pµ1 + pµ2 =
Pµ
N

MN

(

√

q⃗ 2 +m2
1 +

√

q⃗ 2 +m2
2

)

, (12)

where Pµ
N is the observed nucleon four-momentum and

MN is its mass. It is worthwhile noting that Eq. (10) re-
defines the single particle spins. Having applied canonical
boosts, the conditions for a point form approach [44, 61]
are satisfied. Therefore, the spins on the left hand state
of Eq. (10) perform the same Wigner rotations as k⃗1 and
k⃗2, allowing to couple the spin and the orbital angular
momentum as in the non relativistic case [44], while the
spins in the ket on the right hand of Eq. (10) undergo
the single particle Wigner rotations.
In Point form dynamics, Eq. (1) corresponds to a good

mass operator since it commutes with the Lorentz gen-
erators and with the four velocity. We diagonalize Eq.
(1) in the Hilbert space spanned by the velocity states.

Finally, instead of the internal momenta k⃗1 and k⃗2 we
use the relative momentum q⃗, conjugate to the relative
coordinate r⃗ = r⃗1 − r⃗2, thus considering the following
velocity basis states:

|v, q⃗,λ1,λ2⟩ = UB(v)|k1, s1,λ1, k2, s2,λ2⟩0 . (13)
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FIG. 1: (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ non strange baryon res-
onances (up to 2 GeV) and the experimental masses from
PDG [43] (boxes).

III. RESULTS AND DISCUSSION

Figure 1 and Table II show the comparison between the
experimental data [43, 62] and the results of our quark-
diquark model calculation, obtained with the set of pa-
rameters of Table I. In addition to the experimental data
from PDG [43], we also consider the latest multi-channel
Bonn-Gatchina partial wave analysis results, including
data from Crystal Barrel/TAPS at ELSA and other lab-
oratories [62]. In particular, these data differ from those
of the PDG [43] in the case of the ∆(1940)D33.
The spin-isospin transition interaction of Eq. (5)

mixes quark-scalar diquark and quark-axial-vector di-
quark states, i.e. states with s1 = 0 (t1 = 0) and s1 = 1
(t1 = 1), whose total spin (isospin) is S = 1

2 (T = 1
2 ).

Thus, in this version of the model the nucleon state, as
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ters increases only by one, since there are two new pa-
rameters, V0 and ν [see Eq. (5)], while the parameter
ϵ of the contact interaction [see Eqs. (4) and (8)] has
been removed. Finally, it has to be noted that in the

mq = 140 MeV mS = 150 MeV mAV = 360 MeV
τ = 1.23 µ = 125 fm−1 β = 1.57 fm−2

AS = 125 MeV AI = 85 MeV ASI = 350 MeV
σ = 0.60 fm−1 E0 = 826 MeV D = 2.00 fm2

η = 10.0 fm−1 V0 = 1450 MeV ν = 0.35 fm−1

TABLE I: Resulting values for the model parameters.

present work all the calculations are performed without
any perturbative approximation, as in Ref. [20].
The eigenfunctions of the mass operator of Eq. (1) can

be thought as eigenstates of the mass operator with in-
teraction in a Bakamjian-Thomas construction [59]. The
interaction is introduced adding an interaction term to
the free mass operator M0 =

√

q⃗ 2 +m2
1+

√

q⃗ 2 +m2
2, in

such a way that the interaction commutes with the non
interacting Lorenz generators and with the non interact-
ing four velocity [60].
The dynamics is given by a point form Bakamjian-

Thomas construction. Point formmeans that the Lorentz
group is kinematic. Furthermore, since we are doing a
point form Bakamjian-Thomas construction, here P =
MV0 where V0 is the noninteracting four-velocity (whose
eigenvalue is v).
The general quark-diquark state, defined on the prod-

uct space H1 ⊗ H2 of the one-particle spin s1 (0 or 1)
and spin s2 (1/2) positive energy representations H1 =

L2(R3)⊗S0
1 orH1 = L2(R3)⊗S1

1 andH2 = L2(R3)⊗S
1/2
2

of the Poincaré Group, can be written as [20]

|p1, p2,λ1,λ2⟩ , (9)

where p1 and p2 are the four-momenta of the diquark and
the quark, respectively, while λ1 and λ2 are, respectively,
the z-projections of their spins.
We introduce the velocity states as [20, 44]

|v, k⃗1,λ1, k⃗2,λ2⟩ = UB(v)|k1, s1,λ1, k2, s2,λ2⟩0 , (10)

where the suffix 0 means that the diquark and the quark
three-momenta k⃗1 and k⃗2, called internal momenta, sat-
isfy:

k⃗1 + k⃗2 = 0 . (11)

Following the standard rules of the point form approach,
the boost operator UB(v) is taken as a canonical one,
obtaining that the transformed four-momenta are given
by p1,2 = B(v)k1,2 and satisfy the point form relation

pµ1 + pµ2 =
Pµ
N

MN

(

√

q⃗ 2 +m2
1 +

√

q⃗ 2 +m2
2

)

, (12)

where Pµ
N is the observed nucleon four-momentum and

MN is its mass. It is worthwhile noting that Eq. (10) re-
defines the single particle spins. Having applied canonical
boosts, the conditions for a point form approach [44, 61]
are satisfied. Therefore, the spins on the left hand state
of Eq. (10) perform the same Wigner rotations as k⃗1 and
k⃗2, allowing to couple the spin and the orbital angular
momentum as in the non relativistic case [44], while the
spins in the ket on the right hand of Eq. (10) undergo
the single particle Wigner rotations.
In Point form dynamics, Eq. (1) corresponds to a good

mass operator since it commutes with the Lorentz gen-
erators and with the four velocity. We diagonalize Eq.
(1) in the Hilbert space spanned by the velocity states.

Finally, instead of the internal momenta k⃗1 and k⃗2 we
use the relative momentum q⃗, conjugate to the relative
coordinate r⃗ = r⃗1 − r⃗2, thus considering the following
velocity basis states:

|v, q⃗,λ1,λ2⟩ = UB(v)|k1, s1,λ1, k2, s2,λ2⟩0 . (13)
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FIG. 1: (Color online) Comparison between the calculated
masses (black lines) of the 3∗ and 4∗ non strange baryon res-
onances (up to 2 GeV) and the experimental masses from
PDG [43] (boxes).

III. RESULTS AND DISCUSSION

Figure 1 and Table II show the comparison between the
experimental data [43, 62] and the results of our quark-
diquark model calculation, obtained with the set of pa-
rameters of Table I. In addition to the experimental data
from PDG [43], we also consider the latest multi-channel
Bonn-Gatchina partial wave analysis results, including
data from Crystal Barrel/TAPS at ELSA and other lab-
oratories [62]. In particular, these data differ from those
of the PDG [43] in the case of the ∆(1940)D33.
The spin-isospin transition interaction of Eq. (5)

mixes quark-scalar diquark and quark-axial-vector di-
quark states, i.e. states with s1 = 0 (t1 = 0) and s1 = 1
(t1 = 1), whose total spin (isospin) is S = 1

2 (T = 1
2 ).

Thus, in this version of the model the nucleon state, as
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Resonance Status Mexp. JP LP S s1 nr Mcalc.

(MeV) (MeV)

N(939) P11 **** 939 1

2

+
0+ 1

2
0,1 0 939

N(1440) P11 **** 1420 - 1470 1

2

+
0+ 1

2
0,1 1 1412

N(1520) D13 **** 1515 - 1525 3

2

−
1− 1

2
0,1 0 1533

N(1535) S11 **** 1525 - 1545 1

2

−
1− 1

2
0,1 0 1533

N(1650) S11 **** 1645 - 1670 1

2

−
1− 3

2
1 0 1667

N(1675) D15 **** 1670 - 1680 5

2

−
1− 3

2
1 0 1667

N(1680) F15 **** 1680 - 1690 5

2

+
2+ 1

2
0,1 0 1694

N(1700) D13 *** 1650 - 1750 3

2

−
1− 3

2
1 0 1667

N(1710) P11 *** 1680 - 1740 1

2

+
0+ 1

2
0,1 2 1639

N(1720) P13 **** 1700 - 1750 3

2

+
2+ 1

2
0,1 0 1694

N(1875) D13 *** 1820 - 1920 3

2

−
1− 1

2
0,1 1 1866

N(1880) P11 ** 1835 - 1905 1

2

+
0+ 1

2
0,1 3 1786

N(1895) S11 ** 1880 - 1910 1

2

−
1− 1

2
0,1 1 1866

N(1900) P13 *** 1875 - 1935 3

2

+
0+ 3

2
0 0 1780

missing – – 3

2

+
2+ 1

2
0,1 1 1990

N(2000) F15 ** 1950 - 2150 5

2

+
2+ 1

2
0,1 1 1990

∆(1232) P33 **** 1230 - 1234 3

2

+
0+ 3

2
1 0 1236

∆(1600) P33 *** 1500 - 1700 3

2

+
0+ 3

2
1 1 1687

∆(1620) S31 **** 1600 - 1660 1

2

−
1− 1

2
1 0 1600

∆(1700) D33 **** 1670 - 1750 3

2

−
1− 1

2
1 0 1600

∆(1750) P31 * 1708 - 1780 1

2

+
0+ 1

2
1 0 1857

∆(1900) S31 ** 1840 - 1920 1

2

−
1− 1

2
1 1 1963

∆(1905) F35 **** 1855 - 1910 5

2

+
2+ 3

2
1 0 1958

∆(1910) P31 **** 1860 - 1920 1

2

+
2+ 3

2
1 0 1958

∆(1920) P33 *** 1900 - 1970 3

2

+
2+ 3

2
1 0 1958

∆(1930) D35 *** 1900 - 2000 5

2

−
1− 3

2
1 0 2064

∆(1940) D33 ** 1940 - 2060 3

2

−
1− 1

2
1 1 1963

∆(1950) F37 **** 1915 - 1950 7

2

+
2+ 3

2
1 0 1958

TABLE II: Comparison between the experimental [43] values
of non strange baryon resonances masses (up to 2 GeV) and
the numerical ones (all values are expressed in MeV ). Ten-
tative assignments of 2∗ and 1∗ resonances are shown in the
second part of the table. JP and LP are respectively the total
angular momentum and the orbital angular momentum of the
baryon, including the parity P ; S is the total spin, obtained
coupling the spin of the diquark s1 and that of the quark;
finally nr is the number of nodes in the radial wave function.

well as states such as the D13(1520), the S11(1535) and
the P11(1440), contains both a s1 = 0 and a s1 = 1 com-
ponent. See Table IV. In particular, the nucleon state,
obtained by solving the eigenvalue problem of Eq. (1),
in a schematic notation can be written as

|N⟩ = aS |qDS , L = 0⟩+ aAV |qDAV , L = 0⟩ , (14)

where DS and DAV stand for the scalar and axial-vector
diquarks, respectively, and q for the quark. The coeffi-
cients aS and aAV , obtained by solving the eigenvalue

mS (MeV) mAV −mS (MeV) Source

730 210 Bloch et al. [26]
750÷860 10÷170 Oettel et al. [29]

- 290 Wilczek [6]
- 210 Jaffe [5]

600 350 Ferretti et al. [20]
852 224 Galatà and Santopinto [21]
- 200÷300 Lichtenberg et al. [47]

770 140 de Castro et al. [48]
420 520 Schäfer et al. [49]
692 330 Cahill et al. [50]
595 205 Lichtenberg et al. [51]
737 212 Burden et al. [52]
688 202 Maris [53]
- 360 Orginos [54]

750 100 Flambaum et al. [55]
590 210
- 162 Babich et al. [12]
- 270 Eichmann et al. [56]

740 210 Hecht et al. [65]
- 135 Santopinto and Galatà [66]

710 199 Ebert et al. [67]
– 183 Chakrabarti et al. [68]

780 280 Roberts et al. [45]
150 210 This work

TABLE III: Mass difference (in MeV) between scalar and
axial-vector diquarks, according to some previous studies.

problem of Eq. (1), are:

aS = 0.727 , (15a)

aAV = 0.687 . (15b)

The radial wave functions (in momentum space) of the
quark-scalar diquark [ΦS(q)] and quark-axial-vector di-
quark [ΦAV (q)] systems of Eq. (14) can be fitted by
harmonic oscillator wave functions,

ΦS(q) =
2α3/2

S

π1/4
e−

1

2
α2

Sq2 , (16a)

ΦAV (q) =
2α3/2

AV

π1/4
e−

1

2
α2

AV q2 , (16b)

with αS = 3.29 GeV−1 and αAV = 3.04 GeV−1. The
same can be done for the ∆(1232) radial wave function,

Φ∆(q) =
2α3/2

∆

π1/4
e−

1

2
α2

∆
q2 , (17)

where α∆ = 3.14 GeV−1. This parametrization can then
be used to compute observables, such as the nucleon elec-
tromagnetic form factors. See also App. A, where we
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TABLE II: Comparison between the experimental [43] values
of non strange baryon resonances masses (up to 2 GeV) and
the numerical ones (all values are expressed in MeV ). Ten-
tative assignments of 2∗ and 1∗ resonances are shown in the
second part of the table. JP and LP are respectively the total
angular momentum and the orbital angular momentum of the
baryon, including the parity P ; S is the total spin, obtained
coupling the spin of the diquark s1 and that of the quark;
finally nr is the number of nodes in the radial wave function.
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2

between the two diquark configurations (scalar and axial-
vector) in the nucleon wave function should improve our
previous results for the nucleon electromagnetic form fac-
tors in a quark-diquark model [35].

II. THE MASS OPERATOR

We consider a quark-diquark system, where r⃗ is the
relative coordinate between the two constituents and q⃗ is
the conjugate momentum to r⃗. We propose a relativistic
quark-diquark model, based on the following baryon rest
frame mass operator

M = E0 +
√

q⃗ 2 +m2
1 +

√

q⃗ 2 +m2
2 +Mdir(r)

+ Mcont(q, r) +Mex(r) +Mtr(r) ,
(1)

where E0 is a constant, Mdir(r) and Mex(r) respectively
the direct and the exchange diquark-quark interaction,
m1 and m2 stand for diquark and quark masses, where
m1 is either mS or mAV according if the part of the mass
operator diagonal in the diquark spin [i.e. the whole mass
operator of Eq. (1) without the interaction Mtr(r)] acts
on a scalar or an axial-vector diquark [5, 6, 12, 47–56],
Mcont(q, r) is a contact interaction and Mtr(r) is a spin-
isospin transition interaction.
The direct term is a Coulomb-like interaction with a

cut off plus a linear confinement term

Mdir(r) = −
τ

r

(

1− e−µr
)

+ βr . (2)

One needs also an exchange interaction [18, 57], since
this is the crucial ingredient of a quark-diquark descrip-
tion of baryons. We have

Mex(r) = (−1)l+1e−σr
[

AS s⃗1 · s⃗2 +AI t⃗1 · t⃗2
+ ASI s⃗1 · s⃗2 t⃗1 · t⃗2

]

, (3)

where s⃗ and t⃗ are the spin and the isospin operators.
Moreover, we consider a contact interaction similar to

that introduced by Godfrey and Isgur [58]

Mcont =
(

m1m2

E1E2

)1/2
η3D
π3/2 e

−η2r2 δL,0δs1,1

(

m1m2

E1E2

)1/2
,

(4)
whereEi =

√

q⃗ 2 +m2
i (i = 1, 2), η andD are parameters

of the model.
Finally we consider a spin-isospin transition interac-

tion, Mtr(r), in order to mix quark-scalar diquark and
quark-axial-vector diquark states. Mtr(r) is chosen as

Mtr(r) = V0 e−
1

2
ν2r2(s⃗2 · S⃗)(⃗t2 · T⃗ ) , (5)

where V0 and ν are free parameters. The matrix elements
of the spin transition operator, S⃗, are defined as:

⟨ s′1,m′
s1 |S[1]

µ |s1,ms1⟩ ̸= 0 for s′1 ̸= s1 , (6a)
where

⟨1∥S1 ∥0⟩ = 1 , (6b)

⟨0∥S1 ∥1⟩ = −1 (6c)

and the same holds for those of the isospin transition
operator, T⃗ . Thus one has:
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where Φ(r⃗) stands for the spatial wave function of the
generic state, |Φ⟩.
The mass formula of the previous version of the rela-

tivistic quark-diquark model [20] is
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The main difference between the mass operator of Eq. (1)
and that of Eq. (8) [20] is the presence of the spin-isospin
transition interaction, Mtr, in Eq. (1). We expect that
the introduction of Mtr(r) in Eq. (1) should improve our
quark-diquark description of the electromagnetic elastic
form factors of the nucleon [35, 46]. Indeed, Mtr(r)
makes it possible to introduce a quark-axial-vector di-
quark component in the nucleon wave function in ad-
dition to the quark-scalar diquark one. At the same
time, Mtr(r) improves the description of the non strange
baryon spectrum [20] (see Fig. 1).

One can also notice that the values of the model pa-
rameters change significantly from those of Ref. [20, 35]
after the introduction of the interaction (5) into the mass
formula. In particular, one can see that the masses of the
two constituents (the quark and the diquark) are now
smaller than before, which is good in a relativistic QM,
and the mass difference between the scalar and the axial-
vector diquark is smaller too (it goes from 350 MeV to
210 MeV). The same happens for the string tension, that
goes from 2.15 fm−2 to 1.57 fm−2.

It is worth noting that the number of model parame-
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between the two diquark configurations (scalar and axial-
vector) in the nucleon wave function should improve our
previous results for the nucleon electromagnetic form fac-
tors in a quark-diquark model [35].

II. THE MASS OPERATOR

We consider a quark-diquark system, where r⃗ is the
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Point Form Relativistic Dynamics

Point Form is one of the Relativistic Hamiltonian Dynamics
                   for a fixed number of particles    (Dirac)

Construction of a representation of the Poincaré generators
     Pµ (tetramomentum), Jk (angular momenta), Ki (boosts)
 obeying the Poincaré group commutation relations
    in particular             
                                           [Pk , Ki ] = i δkj H

Three forms:
Light (LF), Instant (IF), Point (PF)

Differ in the number and type of (interaction) free generators

32 



Point form:         Pµ interaction dependent
                             Jk  and Ki free

Composition of angular momentum states as in the 
non relativistic case 

M = M0 + MIMass operator

M0 = Σi pi
2 + m2   Σi pi = 0

Pi undergo the same Wigner rotation -> M0 is invariant

The eigenstates of the relativistic qD Model are interpreted as
eigenstates of the mass operator M

Moving three-quark states are obtained through 
(interaction free) Lorentz boosts   (velocity states)
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