

ECT*, Trento, October 12-16, 2015

PRîSMA

Joint Physics Analysis Center (JPAC)

Adam Szczepaniak (IU/JLab)
Mike Pennington (JLab)
Tim Londergan (IU)
Geoffrey Fox (IU)
Emilie Passemar (IU/JLab)
Cesar Fernandez-Ramirez (JLab)
Vincent Mathieu (IU)

Vladyslav Pauk (Mainz - JLab)
Alessandro Pilloni (Rome - JLab)
Astrid Blin (Valencia)
Andrew Jackura (IU)
Lingyun Dai (IU/JLab - Valencia)
Meng Shi (JLab - Beijing)
Igor Danilkin (JLab - Mainz)
Peng Guo (IU/JLab -CA)

CLAS collaboration

Diane Schott (GWU/JLab)
Viktor Mokeev (JLab) HASPECT

Marco Battaglieri (Genova)
Derek Glazier (Glasgow)

GlueX collaboration
Matthew Shepherd (IU)
Justin Stevens (JLab)

COMPASS collaboration
Mikhail Mikhasenko (Bonn)
Fabian Krinner (TUM)
Boris Grube (TUM)

...

Joint Pbysics Analysis Center (JPAC)

Projects

$$
\begin{aligned}
\pi N & \rightarrow \pi N \\
\pi N & \rightarrow \eta N \\
K N & \rightarrow K N \\
\gamma N & \rightarrow \pi N
\end{aligned}
$$

$$
X Y Z, \text { etc. }
$$

Formalisms

Regge Theory
Dispersive Relations
\& Unitarity
Dual Models
Isobar Models

- Introduction \& motivation
- First principle constraints
- Current projects
- Prospects for $\gamma \mathrm{NN} \mathrm{N}^{*}$
- Summary

Hadron Spectroscopy

$n^{2 s+1} \ell_{J}$	$J^{P C}$	$I=1$	$I=1 / 2$	$I=0$	$I=0$	EXD
$1^{1} S_{0}$	0^{-+}	π	K	η	η^{\prime}	$R 2$
$1^{3} S_{0}$	1^{--}	$\rho(770)$	$K^{*}(982)$	$\omega(782)$	$\phi(1020)$	$R 1$
$1^{1} P_{1}$	1^{+-}	$b_{1}(1235)$	$K_{1}(1400)$	$h_{1}(1170)$	$h_{1}(1380)$	$R 2$
$1^{3} P_{0}$	0^{++}	$a_{0}(1450)$	$K_{0}^{*}(1430)$	$f_{0}(1370)$	$f_{0}(1710)$	$R 4$
$1^{3} P_{1}$	1^{++}	$a_{1}(1260)$	$K_{1}(1270)$	$f_{1}(1285)$	$f_{1}(1420)$	$R 3$
$1^{3} P_{2}$	2^{++}	$a_{2}(1320)$	$K_{2}^{* *}(1430)$	$f_{2}(1270)$	$f_{2}^{\prime}(1525)$	$R 1$
$1^{1} D_{2}$	2^{-+}	$\pi_{2}(1670)$	$K_{2}(1770)$	$\eta_{2}(1645)$	$\eta_{2}(1870)$	$R 2$
$1^{3} D_{1}$	1^{--}	$\rho(1700)$	$K^{*}(1680)$	$\omega(1650)$		$R 4$
$1^{3} D_{2}$	2^{--}		$K_{2}^{*}(1820)$			$R 3$
$1^{3} D_{3}$	3^{--}	$\rho_{3}(1690)$	$K_{3}^{*}(1780)$	$\omega_{3}(1670)$	$\phi_{3}(1850)$	$R 1$
$1^{1} F_{3}$	3^{+-}	\sim				$R 2$
$1^{3} F_{2}$	2^{++}		$K_{2}^{*}(1980)$	$f_{2}(1910)$	$f_{2}(2010)$	$R 4$
$1^{3} F_{3}$	3^{++}		$K_{3}(2320)$			$R 3$
$1^{3} F_{4}$	4^{++}	$a_{4}(2040)$	$K_{4}^{* *}(2045)$		$f_{4}(2050)$	$R 1$

J^{P}	$M_{\text {CQM }}$	$M_{\text {PDG }}$	Rating	J^{P}	$M_{\text {CQM }}$	$M_{P D G}$	Rating
1/2	1460	1535	****	1/2 ${ }^{+}$	1540	1440	****
1/2-	1535	1650	***	1/2+	1770	1710	***
1/2-	1945	2090	*	$1 / 2^{+}$	1880		
$1 / 2^{-}$	2030			$1 / 2^{+}$	1975		
$1 / 2^{-}$	2070			$1 / 2^{+}$	2065	2100	*
$1 / 2^{-}$	2145			$1 / 2^{+}$	2210		
$1 / 2^{-}$	2195						
3/2-	1495	1520	****	3/2 ${ }^{+}$	1795	1720	****
$3 / 2^{-}$	1625	1700	**	$3 / 2^{+}$	1870		
$3 / 2^{-}$	1960	2080	**	$3 / 2^{+}$	1910		
$3 / 2^{-}$	2055			$3 / 2^{+}$	1950		
$3 / 2^{-}$	2095			$3 / 2^{+}$	2030		
3/2-	2165						
$3 / 2^{-}$	2180						
5/2-	1630	1675	***	5/2 ${ }^{+}$	1770	1680	*
5/2-	2080			5/2+	1980	2000	**
5/2-	2095	2200	**	5/2+	1995		
5/2-	2180						
5/2-	2235						
5/2-	2260			PDG \& Quark model			
5/2-	2295						
5/2-	2305			Capstic			

Hadron Spectroscopy

CLAS, GlueX, MAMI, ELSA, COMPASS, BES, LHCb, PANDA,...

Aim to:
Complete understanding of the hadron spectrum and discover new resonances

JPAC:
Provide theoretical support needed to analyse the data

Amplitude analysis

$$
d^{5} \sigma \sim \mid A\left(s, s_{1}, s_{2}, t_{1}, t_{2},\left.\{\lambda\}\right|^{2}\right.
$$

$\gamma N \rightarrow(M M) N, \pi N \rightarrow(M M) N$, etc.

- Physics of interest (e.g. resonance poles ...) resides in A evaluated at values of kinematical variables outside the experimentally accessible region
- In Amplitude analysis a model of A is constructed (based on phys. constraints), fitted to data and continued to regions of interest
analyticity \& complex energy plane

Collaborative efforts

Theory

*)
*)

dunestion porractive
anate couster mel

A. Mol
revor
ools Brought to you by: mashephe

Experiment

Name Last modified Size Description

Parent Directory

17) gl2 data-EBin26 95.txt.gz 05-Aug-2014 08:27 349M
```
12) gl2 mc gen.txt.gz
05-Aug-2014 12:13 385M
```


Amplitudes are

iterative procedure

I. fitted on data

2. checked constrains (proba. cons, causality, CPT inv.)
3. continued on sheet II
indiana.edu

Joint Physics Analysis Center

Joint Physics Analysis Center

II INDIANA UNIVERSITY bloomington
http://www.indiana.edu/ ~jpac/index.html

Joint Physics Analysis Center

Amplitude analysis os p.w. Amplitude analysis

$$
\begin{gathered}
A(s, t,\{\lambda\})=\sum_{J}^{\infty}(2 J+1) d_{\mu, \nu}^{J}\left(\theta_{s}\right) f^{J}(s,\{\lambda\}) \\
\mu=\lambda_{1}-\lambda_{2}, \quad \nu=\bar{\lambda}_{1}-\bar{\lambda}_{2}
\end{gathered}
$$

$A(s, t,\{\lambda\})$: amplitude expressed in terms of kinematical variables

Enter comparison with data

Partial Wave Amplitudes: decomposition in terms of rotational functions

These "diagonalize unitarity" and contain resonance information

Entire dynamical information that does not depend on the underlying theory (e.g. QCD) comes from unitarity

Unitarity defines singularities of partial waves

$$
\begin{aligned}
& A(s, t)=\sum_{J=0}^{\infty}(2 J+1) P_{J}(\cos \theta) f_{J}(s) \\
& \operatorname{Disc} f_{J}(s)=\rho(s) f_{J}(s+) f_{J}(s-) \quad \text { for small s }
\end{aligned}
$$

- Isobar model = truncate the partial waves: Isobars = partial waves

> When is this a bad thing to do?

For large-s, s-channel unitarity is hopeless. It is the low-J t-channel p.w. which become relevant (Regge physics).

Truncated partial wave series

$$
A=\sum_{J_{1}, J_{2}, \lambda} d_{\lambda_{b}-\lambda_{t}, \lambda-\lambda_{r}}^{J_{2}}\left(\theta_{2}\right) d_{\lambda 0}^{J_{1}}\left(\theta_{1}\right) e^{i \lambda \phi_{1}} f_{J_{1}, J_{2}, \lambda}\left(s_{1}, s\right)
$$

Suppose the sı series is truncated $\sum_{J_{1}}^{\infty} \rightarrow \sum_{J_{1}}^{J_{\max }}$

- Then $A \sim s_{2}^{J_{\text {max }}}$ becomes "wild" for high energies

The correct behaviour $A \sim s_{2}{ }^{\alpha}<s_{2}$ can only emerge if $J_{\max }=\infty$

- The "machinery" to account for the contribution to infinite number of terms from cross-channel exchanges is due to Regge and Mandelstam

Isobar model

If all s_{1}, s_{2}, s^{s} are small it is OK to truncate

$\eta, \omega, \varphi \rightarrow 3 \pi$

- Truncate p.w. series

$$
A(s, t)=\sum_{J=0}^{J_{\max }}(2 J+1) P_{J}(\cos \theta) f_{J}(s)
$$

- Reconstruction theorem: crossing symmetry, analyticity up to NNLO

$$
A(s, t, u)=\sum_{J}^{J_{\max }} \ldots f_{J}(s)+\sum_{J}^{J_{\max }} \ldots f_{J}(t)+\sum_{J}^{J_{\max }} \ldots f_{J}(u)
$$

- Unitarity

Isospin violating decay: sensitive to quark mass difference

$\eta \rightarrow \pi^{+} \pi^{2} \pi^{0}$

WASA-at-COSY PRC90 4045207
1.2 K 10^{7} decays

Case 1:
$(\mathrm{L}, \mathrm{I})=(0,0),(1,1)-1$ real par.
Case 2:
$(L, I)=(0,0),(0,2),(1,1) \underline{2}$ real par.

$\chi^{2} /$ d.o.f.	Case I	Case2
no $3 b$ effects	1,45	0,94
with 3b effects	0,96	0,9

$\eta \rightarrow 3 \pi \pi^{0}$

Dalitz plot expansion:

$$
\left|A_{\eta \rightarrow 3 \pi^{0}}\right|^{2} \propto 1+2 \alpha z+2 \beta z^{3 / 2} \sin \phi
$$

Quark mass double ratio:

$$
Q^{2}=\frac{m_{s}^{2}-\left(m_{u}+m_{d}\right)^{2} / 4}{m_{d}^{2}-m_{u}^{2}}
$$

Predictions

$$
\alpha=-0.022 \pm 0.004
$$

WASA@COSY

$$
Q=21.4 \pm 0.4
$$

CLAS@CEBAF
KLOE@DAPHNE
in preparation in preparation

$$
\omega, \varphi \rightarrow 3 \pi
$$

$$
\frac{d^{2} \Gamma}{d s d t} \propto\left|\vec{p}_{+} \times \vec{p}_{-}\right|^{2}|F(s, t)|^{2}
$$

$\omega \rightarrow 3 \pi$: fit event by event gl2 CLAS data
in progress
Carlos Salgado, Volker Crede, Chris Zeoli, etc.

$$
\begin{aligned}
\varphi \rightarrow 3 \pi: \quad \chi^{2} / \text { d.o.f. } & =1.11(\text { no } 3 \mathrm{~b}) \\
& =1.09(\text { with } 3 \mathrm{~b})
\end{aligned}
$$

$\omega \rightarrow \pi \pi^{0} j^{\circ}$

$$
f_{V \pi}(s)=\int_{s_{\pi}}^{s_{i}} \frac{d s^{\prime}}{\pi} \frac{\operatorname{Disc} f_{V \pi}\left(s^{\prime}\right)}{s^{\prime}-s}+\sum_{i=0}^{N} C_{i} \omega(s)^{i}
$$

- C_{0} fixed from
$\Gamma_{\exp }(\omega \rightarrow \pi \gamma)$
Nature of the steep rise?

1. Upcoming data from CLAS g12 \& MAMI
2. Exp. analysis of $\phi \rightarrow \pi \gamma$ is very important

$\varphi \rightarrow \pi^{0} \boldsymbol{q}^{*}$

$$
f_{V \pi}(s)=\int_{s_{\pi}}^{s_{i}} \frac{d s^{\prime}}{\pi} \frac{\operatorname{Disc} f_{V \pi}\left(s^{\prime}\right)}{s^{\prime}-s}+\sum_{i=0}^{N} C_{i} \omega(s)^{i}
$$

Co fixed from
$\Gamma_{\exp }(\phi \rightarrow \pi \gamma)$
Grey: no 3b effects

$K N$ scattering (resonance region)

- P.w. analysis

- Coupled channel unitarity:

$$
\bar{K} N, \pi \Sigma, \pi \Lambda, \eta \Lambda, \eta \Sigma, \pi \Sigma(1385), \pi \Lambda(1520), \bar{K} \Delta(1232), \bar{K}^{*} N, \sigma \Lambda, \sigma \Sigma
$$

- Resonances and backgrounds are incorporated through analytic K-matrices search for poles in the complex s-plane
- Right threshold behaviour (angular momentum barrier)
(in preparation)
- Fit single-energy p.w. up to $J=7 / 2$ and 2.15 GeV

```
C. Zhang et al.,
PRC }8803520
```


KN scattering (resonance region)

$K N$ scattering (resonance region)

KN scattering (resonance region)

Regge physics

If all s_{1}, s_{2}, s^{2} are large it is NOT OK to truncate

$\rho p \rightarrow K^{+} K^{-p}$

Deck model

B5 model

$K^{-} p \rightarrow K^{-} p$
low energy fit
C. Fernandez-Ramirez
et.al. (JPAC)
(in preparation)
$K^{-} p \rightarrow K^{-} p$
high energy fit
V. Mathieu et.al.
(JPAC)
(in preparation)

Analytical continuation between the two regions via dispersion relations (FESR)

FESR: $\pi N \rightarrow \pi N$

P.w. analysis

Sum over Regge poles + background integral

One can take advantages of both: analyticity implies FESR

$$
\int_{\nu_{0}}^{\Lambda} \operatorname{Im} A^{(-)}\left(\nu^{\prime}, t\right) \nu^{\prime 2 k} d \nu^{\prime}=\beta(t) \frac{\Lambda^{\alpha_{\rho}(t)+2 k+1}}{\alpha_{\rho}(t)+2 k+1}
$$

$$
\operatorname{Im} A^{(-)}(\nu, t) \longrightarrow \beta(t) \nu^{\alpha_{\rho}(t)}, \quad \nu=\frac{s-u}{4 m}>\Lambda
$$

FESR: $\pi N \rightarrow \pi N$

$$
\int_{\nu_{0}}^{\Lambda} \operatorname{Im} A^{(-)}\left(\nu^{\prime}, t\right) \nu^{\prime 2 k} d \nu^{\prime}=\beta(t) \frac{\Lambda^{\alpha_{\rho}(t)+2 k+1}}{\alpha_{\rho}(t)+2 k+1}
$$

p.w. analysis

SAID, Workman et.al.

sum over Regge poles

V. Mathieu et.al. (JPAC)
arXiv: 1506.01764

FESR: $\pi N \rightarrow \pi N$

Construct $\operatorname{Im}(A(s, t))$ from $[s, \infty]$ via FESR Reconstruct $\operatorname{Re}(A(s, t))$ from dispersion relation

$$
A^{(-)}(\nu, t)=\frac{2 \nu}{\pi} \int_{\nu_{0}}^{\infty} \frac{\operatorname{Im} A^{(-)}\left(\nu^{\prime}, t\right)}{\nu^{\prime 2}-\nu^{2}} d \nu^{\prime}
$$

$g p \rightarrow K^{+} K^{-} p:$ double Regge limit

Prospects for ${ }_{8} N N^{*}$

$$
\gamma^{(*)} N \rightarrow \pi N, \gamma^{(*)} N \rightarrow(\pi \pi) N
$$

- FESR calculation for $\gamma \mathrm{N} \rightarrow \pi \mathrm{N}$ and extension to $\gamma^{*} \mathrm{~N} \rightarrow \pi \mathrm{~N}$:

Use it as a constraint from high energy

- Final state interactions between $\pi \pi N$ (Khuri Treiman dispersive calculation)
- Extension of Dual models to $\pi T \mathrm{~N}$

Joint Physics Analysis Center (JPAC)

Low energy, unitarity etc.

$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$
PRD92 5054016
$\omega, \phi \rightarrow \pi^{+} \pi^{-} \pi^{0} \quad$ PRD9I 9094029

$$
\rightarrow \gamma^{*} \pi^{0}
$$

$K N \rightarrow K N \quad$ in preparation
$\gamma p \rightarrow \pi^{0} p \quad$ arXiv:I505.0232I
$\pi N \rightarrow \pi N$
$K N \rightarrow K N$
arXiv:I506.01764 in preparation

"Technology"

Khuri-Treiman eq.
arXiv: I 409.8652
Traingle singl. \& XYZ
PLB747 4I0-4I6
arXiv:I5I0.01789
arXiv:I5I0.00695

Dual models

$$
\begin{array}{ll}
\gamma p \rightarrow K^{+} K^{-} p & \text { PRD91 3 034007 } \\
J / \psi\left(\psi^{\prime}\right) \rightarrow 3 \pi & \text { PLB 737 283-288 }
\end{array}
$$

Joint Physics Analysis Center
\square
NEWS
ABOUT JPAC
Joint Physics Analysis Center
III INDIANA UNIVERSITY
bloomington
http://www.indiana.edu/ ~jpac/index.html

```
HOME PROJECTS PUBLICATIONS LINKS
```


Spares

$J / \Psi \rightarrow 3 \pi$

Dual model

$$
A(s, t)=\sum_{n, m} c_{n, m} \frac{\Gamma\left(n-\alpha_{s}\right) \Gamma\left(n-\alpha_{t}\right)}{\Gamma\left(n+m-\alpha_{s}-\alpha_{t}\right)}
$$

Parameters:

trajectory

$$
\alpha(s)
$$

couplings $\quad C_{n, m}$

$$
J / \psi, \psi^{\prime} \rightarrow 3 \pi
$$

A. Szczepaniak M. Pennington arXiv:1403.5782

