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Hadron Spectroscopy

Aim to: 
Complete understanding of the hadron 
spectrum and 
discover new resonances 

JPAC:
Provide theoretical support needed to 
analyse the data

CLAS, GlueX,
MAMI, ELSA,
COMPASS,
BES, LHCb, PANDA,…
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Amplitude analysis

t1

t2

s1

s2
s

Physics of interest (e.g. resonance poles …) resides in A evaluated at values of 
kinematical variables outside the experimentally accessible region  

In Amplitude analysis a model of A is constructed  
(based on phys. constraints), fitted to data and 
continued to regions of interest

d5� ⇠ |A(s, s1, s2, t1, t2, {�}|2

Im E 

Re E 

E 

resonance pole 

analyticity & complex energy plane 

�N ! (MM)N, ⇡N ! (MM)N, etc.
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Collaborative efforts
Theory Experiment

Amplitudes are 
1. fitted on data
2. checked constrains (proba. cons, causality, CPT inv.)
3. continued on sheet II

iterative
procedure

http://www.indiana.edu/
~jpac/index.html
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Amplitude analysis vs p.w. Amplitude analysis

t

s

A(s,t,{λ}): amplitude expressed in 
terms of kinematical variables

Partial Wave Amplitudes: decomposition in 
terms of rotational functions

Enter comparison 
with data

These “diagonalize unitarity” 
and contain resonance information

Entire dynamical information that does not depend on the underlying theory (e.g. QCD) 
comes from unitarity

µ = �1 � �2, ⌫ = �̄1 � �̄2

A(s, t, {�}) =
1X

J

(2J + 1) dJµ,⌫(✓s) f
J(s, {�})
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Unitarity defines singularities of partial waves

t

s

When is this a bad thing to do?

a

b

c

d

for small s

Isobar model = truncate the partial waves: Isobars = partial waves 

For large-s, s-channel unitarity is hopeless. It is the low-J t-channel p.w. which become 
relevant (Regge physics).

J
max

=
1X

J=0

J PJ(cos ✓)

Disc fJ(s) = ⇢(s) fJ(s+) fJ(s�)

A(s, t) =
1X

J=0

(2J + 1)PJ(cos ✓) fJ(s)



Suppose the s1 series is truncated  

Then                  becomes “wild” for high energies

The correct behaviour A ~ s2α  < s2  can only emerge 
if 

The “machinery” to account for the contribution to 
infinite number of terms from cross-channel 
exchanges is due to Regge and Mandelstam
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Truncated partial wave series
t1

t2

s1

s2
s

analyticity in
 complex 
angular 

momentum

t

us

A =
X

J1,J2,�

dJ2
�b��t,���r

(✓2) d
J1
�0(✓1) e

i��1fJ1,J2,�(s1, s)

1X

J1

!
J
maxX

J1

A ⇠ sJmax

2

J
max

J
max

= 1

s1

s2
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Isobar model

t1

t2

s1

s2
s

If all s1, s2, s are small it is OK to truncate

A =
X

J1,J2,�

dJ2
�b��t,���r

(✓2) d
J1
�0(✓1) e

i��1fJ1,J2,�(s1, s)



Reconstruction theorem:  
crossing symmetry, analyticity up to NNLO

η,ω,φ⇾3π

Khuri, Treiman 
(1960)  

Aitchison (1977)

A(s, t) =
1X

J=0

(2J + 1)PJ(cos ✓) fJ(s)
Truncate p.w. series

J
max

A(s, t, u) =
J
maxX

J

...fJ(s) +
J
maxX

J

...fJ(t) +
J
maxX

J

...fJ(u)

Unitarity

ππ scattering 
Fuchs, Sazdjian, 

Stern (1993)

π

ππ

π

π
Vinput

π

π

π

Vinput
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Case 1: 
(L,I)=(0,0), (1,1) -  1 real par.
 
Case 2:
(L,I)=(0,0), (0,2), (1,1) 2 real par.

Case1 Case2

no 3b  
effects

1,45 0,94

with 3b 
effects

0,96 0,9

�

2
/d.o.f.

⌘,⇡ ⇠ Isospin violating decay: sensitive to quark mass difference

η→π+π-π0

P. Guo et al (JPAC)  
PRD92 5 054016

WASA-at-COSY  
PRC90 4 045207 
1.2⤫107 decays



|A⌘!3⇡0 |2 / 1 + 2↵z + 2�z3/2 sin�

Dalitz plot expansion:

Q = 21.4± 0.4
WASA@COSY

CLAS@CEBAF

KLOE@DAPHNE

in preparation

in preparation

Case 2

Case 1

0.0 0.2 0.4 0.6 0.8 1.0

0.92

0.94

0.96

0.98

1.00

Z

RHZ
L

in
pu

t
R
(z
)
/

Z
2
⇡

0
d�

|A
⌘
!

3
⇡
0
|2

η→3π0

Quark mass 
double ratio:

Q2 =
m2

s � (mu +md)2/4

m2
d �m2

u

Predictions

fit event by event 
g12 CLAS data

↵ = �0.022± 0.004

Crystal Ball at MAMI 
Phys.Rev. C79 035204
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! ! 3⇡
d2�

ds dt
/ |~p+ ⇥ ~p�|2|F (s, t)|2

ω⇾3π:  fit event by event g12 CLAS data 
 in progress

φ⇾3π:                     = 1.11 (no 3b)  
                               = 1.09 (with 3b)

�

2
/d.o.f.

KLOE Collaboration / Physics Letters B 561 (2003) 55–60 57

Fig. 1. Distributions of Mmiss (top), Mγ γ , and cos θγ γ (bottom
left and right) for a sample of selected events. The rms widths
of the Mmiss and Mγ γ distributions are 5.5 MeV and 17 MeV,
respectively. The solid lines are Gaussian fits.

tracks with opposite sign of curvature and polar an-
gle θ > 40◦ which intersect the interaction region.
The acollinearity cut (#θ < 175◦) removes e+e−γ
events without incurring an acceptance loss for the
signal. We then compute the missing mass, Mmiss =
√

(Eφ − Eπ+ − Eπ−)2 − |p⃗φ − p⃗π+ − p⃗π− |2 where
E and p⃗ are laboratory energies and momenta. Mmiss
is required to be within 20 MeV of the π0 mass. This
requirement corresponds to an effective energy cut of
! 20 MeV on the total energy radiated because of ini-
tial state radiation (ISR). Two photons in the calorime-
ter are also required. A photon is defined as an en-
ergy deposit larger than 10 MeV with 21◦ < θ < 159◦

and an arrival time compatible with a particle trav-
eling at the speed of light, within 5σ (t). The two-
photon opening angle in the π0 rest frame must satisfy
cos θγ γ < −0.98.
Fig. 1 shows the distributions of the missing mass

Mmiss, of the γ γ invariant mass, and of cosθγ γ for
a sample of selected events. Due to the large cross
section3 for this final state with respect to other

3 Here and in the following we consider visible cross sections,
not corrected for the effect of the radiative corrections.

Fig. 2. Distribution of the number of events corrected for the
efficiency and divided by |p⃗∗+ × p⃗∗−|2. The gray scale is in
arbitrary units. The plot contains 1.98 millions events in 1874 bins
8.75 × 8.75 MeV2 each. Three broad bands corresponding to the
three ρ states are indicated. The kinematical boundary is also shown.

processes (σφ × BR(φ → π+π−π0) = 460 nb) and
to the clean signature, the background to this process
after the selection described is! 10−5. The Dalitz plot
variables x and y are evaluated using the measured
momenta of the charged pions, boosted to the center
of mass system: x = E∗

+ − E∗
− and y = E∗

φ − E∗
+ −

E∗
− − Mπ0 = Tπ0 . Eφ and p⃗φ are measured run by

run using Bhabha scattering events. ISR lowers the
mean π+π−π0 total energy by ∼ 130 keV. This value
is used in the analysis with negligible effect on the
results. The resolution on x and y is about 1 MeV over
the full kinematical range.
The Dalitz plot density distribution is shown in

Fig. 2. In the plot the number of events corrected for
the efficiency is shown divided by |p⃗∗

+ × p⃗∗
−|2. Three

bands corresponding to the three ρ states are clearly
evident. The two-dimensional distribution is plotted in
8.75×8.75MeV2 bins. There are 1874 bins within the
kinematic boundary. The bin width is larger than the x

and y resolution, but is small compared to the density
variations of the Dalitz plot as can be seen in the x and
y projections shown in Fig. 3. Smearing effects due to
the resolution are negligible.
Trigger and selection efficiencies have been evalu-

ated as functions of x and y . A full Monte Carlo sim-
ulation of the detector has been used with corrections
based on control samples of data. Corrections to the
detection efficiency for low energy photons have been

KLOE Coll.
PLB 561 55-60

� ! 3⇡

I.V. Danilkin et al 
(JPAC)  

PRD91 9 094029

 Carlos Salgado,  
Volker Crede, Chris 

Zeoli, etc.
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C0 fixed from 
Γexp(ω→πγ)

Nature of the steep 
rise?  
 
1. Upcoming data from     
CLAS g12 & MAMI 
 
2. Exp. analysis of 
φ→πγ is very important

fV ⇡(s) =

Z si

s⇡

ds0

⇡

Disc fV ⇡(s0)

s0 � s
+

NX

i=0

Ci !(s)
i

l+

l−

V

π

π

π

11

FIG. 8: The Electromagnetic form factor for ! ! ⇡

0
�

⇤ (left panel), the di↵erential decay rate ! ! ⇡

0
e

+
e

� (top right) and the
di↵erential decay rate ! ! ⇡

0
e

+
e

� (bottom right). Data for the form factor is taken from [55], while for the single-di↵erential
decay rate were calculated using Eq.(45). The dotted line is the VMD approach (50), while the solid, dash-dotted and dashed
lines correspond to a truncation in the expansion (49) at order 0, 1, 2 respectively.

to the NA60 data (dashed curve in Fig. 8). The re-
sulting parameters are b

1

= �23.7 and b
2

= 484.4 with
�2/N w 1.15. As you can see, the fit suggests the signif-
icant change of parameter b

1

(even di↵erent sign), which
we do not find very reliable. In order to disentangle
the nature of the steep rise, the experimental analysis
of � ! ⇡0l+l� is needed.

Figure 9 shows the results for the � meson decays.
Since there is no experimental measurements, we keep
only one terms in the conformal expansion (49) and
fix it from the experimental rela-photon decay width
�exp

�!⇡

0
�

= 5.41 keV [1]. It yields the following branch
ratios

Bth(� ! ⇡0e+e�) = 1.45 · 10�5

Bexp(� ! ⇡0e+e�) = (1.12 ± 0.28) · 10�5 (54)

and

Bth(� ! ⇡0µ+µ�) = 3.9 · 10�6 , (55)

where we found satisfactory agreement for � ! ⇡0e+e�

and unfortunately there is no data available for � !
⇡0µ+µ�. In Fig. 9 we also show the sensitivity to the
three-body e↵ects. We confirm the findings of [61], that
the there is a two-pion threshold enhancement when you
turn on cross-channel rescattering e↵ects in V ! 3⇡ am-
plitude.

VI. CONCLUSIONS

In this paper we have analyzed three-pion decays and
electromagnetic form factors of !/� within a dispersive
formalism that is based on the generalized isobar decom-
position and sub-energy unitarity. The important input
is the p-wave ⇡⇡ scattering amplitude that is available
from [19]. By means of the dispersion relation we sepa-
rated the contribution from the elastic and inelastic chan-
nels. The latter was modeled by a series in a suitable
conformal variable and the coe�cients of this expansion
play the role of the subtraction constants. This is an al-
ternative way for incorporating three-body e↵ects with-
out assuming any high energy asymptotic behavior of
the two-body amplitude. The unknown coe�cients can
be either fitted to the data or determined from the Lat-
tice of EFT-based studies. We note that the solution of
dispersive integrals is not unique and this has to do with
asymptotic behavior. When the p.w. expansion is trun-
cated, the high energy behavior is spoiled. To cure the
high-energy behavior one has to apply Regge theory and
smoothly connect it to the low energies. This analysis is
clearly far beyond the scope of the present paper.

We presented the single-di↵erential and Dalitz plot dis-
tributions, where we found non negligible three body ef-
fects. We also found our results very similar to ones of

VMD

N=1

N=2

N=0
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l+

l−

V

π

π

π

12

FIG. 9: The Electromagnetic form factor for � ! ⇡

0
�

⇤ (left panel), the di↵erential decay rate � ! ⇡

0
e

+
e

� (top right) and the
di↵erential decay rate � ! ⇡

0
e

+
e

� (bottom right). The dotted line is the VMD approach (50), the solid line corresponds to a
truncation in the expansion (49) at 0th order and the dashed line is the same as the solid line but without three body e↵ects.

[33] where standard subtraction procedure were applied.
As a straightforward application of the three-body am-
plitude we studied electromagnetic form factors for !/�
mesons. The obtained results improve the simple VMD
finding, however, our theoretical analysis and the other
studies [17, 61] predict the EM transition form factor for
! ! ⇡�⇤ to be smaller at s = (M

!

�m
⇡

)2 than that mea-
sured one by NA60 collaboration. To shed more light on
the intrinsic dynamics of hadrons at low energies the ex-
perimental analysis of OZI-suppressed decay � ! ⇡0l+l�

is very desirable. The shape of the latter is predicted
within our framework.

As a next step we plan to perform the data analysis
of the upcoming ! ! 3⇡ JLab g12 data. Note, that the
same method can be applied to treat D and B mesons
three body decays. Another prospect is the hadronic
light-by-light contribution to the anomalous magnetic
moment of the muon [63], where !/� ! ⇡�⇤ serve as
input ingredients to pion transition form factor F

⇡

0
�

⇤
�

⇤

and �⇤�⇤ ! ⇡⇡ partial waves.
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Appendix A: Spin formalism

In this appendix we outline the derivation of the dis-
continuity relation in the spin formalism. The general
form of the isobar decomposition for V ! 3⇡ in the spin
formalism of Jacob and Wick [40] (for the similar appli-
cations see also [35, 64–66]) is

Habc

�

=
X

I,s,l,µ

N
⇣
Dj⇤

�µ

(R
s

) ds
µ0

(✓
s

)P I

abc

Fj

Ils

(s)

+ Dj⇤
�µ

(R
t

) ds
µ0

(✓
t

)P I

cba

Fj

Ils

(t)

+ Dj⇤
�µ

(R
u

) ds
µ0

(✓
u

)P I

acb

Fj

Ils

(u)
⌘
, (A1)

where N = (2s + 1)1/2(2l + 1)1/2hs µ l 0 | j µi/4⇡ is the
normalization factor which includes the Clebsch-Gordan
coe�cient coming from the relation between helicity and
ls amplitudes [67]. Each term of the amplitude (A1) is
a product of two parts: the first part depends on angles
only, while the second part is responsible for the dynam-
ics of the decay. In (A1) the Wigner Dj⇤

�µ

(R) function,

C0 fixed from 
Γexp(φ→πγ)

Grey: no 3b effects

fV ⇡(s) =

Z si

s⇡

ds0

⇡

Disc fV ⇡(s0)

s0 � s
+

NX

i=0

Ci !(s)
i
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P.w. analysis

Coupled channel unitarity:  
 

Resonances and backgrounds are incorporated through analytic K-matrices       search 
for poles in the complex s-plane  

Right threshold behaviour (angular momentum barrier)  

Fit single-energy p.w. up to J=7/2 and 2.15 GeV  
 

Scattering Matrix (p.w.)

9

S = I + 2i T

T = TB +BT TR B

SR = I + 2i TR

SB = BT B = I + 2i TB

K̄N,⇡⌃,⇡⇤, ⌘⇤, ⌘⌃,⇡⌃(1385),⇡⇤(1520), K̄�(1232), K̄⇤N,�⇤,�⌃

C. Fernandez-Ramirez 
et.al. (JPAC)  

(in preparation)

C. Zhang et al., 
PRC 88 035205

a

b

c

d
=

1X

`=0

`

L
max

= 5

Pl(cos✓)
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FIG. 1. (color online) Partial waves S01 (left column), P01 (center-left column), P03 (center-right column) and D03 (right
column) together with the T matrix pole positions (last row) compared to the single-energy partial waves from KSU analysis
[33] for channels K̄N ! K̄N and K̄N ! ⇡⌃ (real part: red triangles; imaginary part: green squares). Red band stands for
the real part of the partial wave and green band for the imaginary part of our model. For the S01 and P01 waves we provide an
estimation of the systematic error: bottom-red histogram for the real part of the partial wave and top-green for the imaginary.
The resonances (poles of the T matrix) computed are the closest to the physical axis in the corresponding Riemann sheet. One
additional pole in the S01 partial wave at 2.45� i 0.47 GeV2 is not shown and believed to be an artifact of the fits (see Section
III B 1). Another pole in the D03 partial wave at (4.24± 0.48)� i (2.38± 0.58) GeV2 is not shown in the bottom right figure.
Error bars for ⇤(1520), ⇤(1690) and ⇤(1890) are smaller than the size of the dots.

B. T matrix poles

The structure found in the partial waves is due to the
appearance of poles (resonances) in the T matrix when
extended to the unphysical Riemann sheets. These res-
onances are shown at the bottom in Figs. 1-4. The
poles are obtained by computing zeros of D(s) = 0 in the
nearest unphysical Riemann sheet defined by the cross-
ing of all the available unitarity cuts. D(s) is defined in
Eq. (A3). In Tables II and III we summarized the ob-
tained pole positions, –in the usual notation of masses
and widths–, and we compare our results to the KSU
model [3] and models A and B from Kamano et al. [5]
(referred to as KA and KB models in what follows). We
also give a possible relation to the resonances listed by the
PDG [1]. The poles in the analyses of Kamano et al. are
based on a dynamical coupled-channel model described
in [4]. Because we use the same single-energy partial

waves as the KSU model one would expect a fairly good
agreement between the two analyses. There indeed is an
agreement for some of the well-established resonances,
but several important discrepancies are found in the re-
maining states, which we discuss in this section. In Fig.
5 we show the resonances from Tables II and III (except
those with very large imaginary part and those believed
to be artifacts of the fits) and in Fig. 6 we show the real
part of the pole positions on the Chew-Frautschi plot.

As explained in Section II F, in our model there are no
poles on the first Riemann sheet except for those on the
real axis below thresholds parameterizing the left-hand
cut. These poles, in most of the cases were found to be
far away from the physical region. The poles closest to
the physical region are found in F05 at �0.45 GeV2, D13

at �0.41 GeV2, P03 at 0.08 GeV2, S11 at 0.31 GeV2, S01

at 0.38 GeV2, and P13 at 0.88 GeV2, and they all produce
a smooth behavior in the physical region.

[lI 2J ]
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FIG. 2. (color online) Same as in Fig. 1 for D05 (left column), F05 (center-left column), F07 (center-right column) and G07

(right column) partial waves. An additional pole in the D05 partial wave at (4.75± 0.19)� i (1.24± 0.41) GeV2 is not shown
in the bottom left figure. The ⇤(1820) state is found to be highly correlated with a close resonance ⇤(2110) located at higher
energy and deeper in the complex plane.

The resonances poles are mainly responsible for giving
structure to the partial waves on the real axis. Therefore,
when the fit is not very good the model tries to smear out
the structures that is not able to reproduce. If we take
a set of parameters (far from the best-fit parameters but
not too far) in a certain partial wave and we do a pole
search it is likely that we find fewer resonances than for
the best fit. As �

2
/dof improves more resonances show

up. If we overfit the data, we start to identify as struc-
ture some variations in the data that could potentially
be identified as a statistical noise instead of genuine res-
onances. Hence, pole extraction from under-fitted and
over-fitted waves has to be treated with care.

1. ⇤⇤ Resonances

All the ⇤⇤ resonances obtained are summarized in Ta-
ble II and almost all are displayed in Figs. 5(a) and 6(a)
(see respective captions for details). Throughout this sec-
tion pole masses and widths are reported in MeV unless
stated otherwise.

S01 poles. Besides the ⇤(1405) (which was imposed

as explained in Section IIIA) we find four resonances
in our best fit of the S01 partial wave. The first one at
1573�i300/2 is close to the one obtained by model KB at
1512�i370/2 and is not obtained by any other model. We
believe it is an artifact of the fit because when we perform
the bootstrap to obtain the error bars, it does disappears
from most of the fits. Hence, we do not quote an error bar
for it in Table II and we do not show it in Figs. 1, 5(a),
and 6(a). Two of the other poles can be associated with
⇤(1670) and ⇤(2000) states in the PDG. The ⇤(2000)
pole agrees with KSU analysis and is not found either
by KA or KB. The ⇤(1670) has a four-star status in
the PDG. The mass we obtain is within a reasonable
range when compared to the KSU, KA, and KB analyses,
although our width is larger with a sizable uncertainty.
This pole appears in the energy region where our model
does not reproduce properly the abrupt change in the
K̄N ! ⇡⌃ channel around 2.8 GeV2 (see left column in
Fig. 1) so the width we obtain is not very reliable. We
also find a higher-energy resonance that no other analysis
finds. Further confirmation of its existence is needed.
Neither us nor KA nor KB find a pole close to the 1729�
i 198/2, ⇤(1800), found in KSU analysis. This pole has
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FIG. 5. (color online) Poles for I = 0 (a) and I = 1 (b)
partial waves from Tables II and III except those with a very
large imaginary part and those marked with ‡ (believed to be
artifacts of the fits). Poles are computed in the unphysical
Riemann sheet where all the available cuts have been crossed
(nearest Riemann sheet to the physical amplitude) and their
`I 2J quantum numbers are provided. The di↵erent thresholds
are highlighted as vertical dashed lines and in the physical
axis as filled black boxes where K

⇤ stands for K

⇤(892), �
for �(1232), ⌃⇤ for ⌃(1385) and ⇤⇤ for ⇤(1520). The last
is treated as a stable state and therefore an accessible decay
channel in the I = 1 channels although in the I = 0 it is a
resonance whose properties emerge from our analysis.

the three-star state ⌃(1660) and its status should be re-
considered by the PDG. Neither our calculation nor KA
nor KB find the higher energy state that KSU assigns to
⌃(1880).

P13 poles. States that contribute to the P13 are con-
troversial. We find two resonances in this partial wave,
KSU also finds two resonances at di↵erent locations and
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FIG. 6. (color online) Chew-Frautschi plot for the ⇤⇤ (a) and
⌃⇤ (b) resonances. Poles are displayed according to positive
(natural) or negative (unnatural) naturality (⌘). Poles colored
in red, i.e. ⇤(1116), ⌃(1192) and ⌃(1385), are taken from
PDG [1]. Dashed lines are displayed to guide the eye through
the projected Regge trajectories. Blue lines guide the eye
through the parent Regge trajectories while red and green
guide through the daughter trajectories.

KA and KB find no resonances. The strongest argument
in favor of the existence of these states comes from the
unnatural parity daughter ⌃⇤ Regge trajectories in Fig.
6(b) which requires two states at the approximate masses
we report.

D13 poles. To describe the D13 partial wave we em-
ployed one pole and two backgroundK matrices. We find
only one resonance at 1666.3� i26/2 that corresponds to
the four-star ⌃(1670) resonance. The same state is also
found in KSU, KA and KB analyses with a larger width
on average, although all compatible within errors. In
[5] a low-lying state in both their KA and KB models
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FESR calculation for γN⇾πN and extension to γ*N⇾πN:  
Use it as a constraint from high energy

Final state interactions between ππN (Khuri Treiman dispersive calculation)  

Extension of Dual models to ππN  

�(⇤)N ! ⇡N, �(⇤)N ! (⇡⇡)N
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Low energy, unitarity etc. “Technology”

PRD92 5 054016
PRD91 9 094029
 

in preparation

Regge & FESR Dual models

PRD91 3 034007  
PLB 737 283-288

arXiv:1505.02321  
arXiv:1506.01764
in preparation

⌘ ! ⇡+⇡�⇡0

!,� ! ⇡+⇡�⇡0

! �⇤⇡0

KN ! KN

�p ! ⇡0p
⇡N ! ⇡N

�p ! K+K�p

J/ ( 0) ! 3⇡

http://www.indiana.edu/
~jpac/index.html

Khuri-Treiman eq.        arXiv:1409.8652      
Traingle singl. & XYZ   PLB747 410-416

             arXiv:1510.01789
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J/Ψ⇾3π
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Dual model

A(s, t) =
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Parameters: 
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