From Resonance Extraction to LQCD and N* Excitations of Neutron

T.-S. Harry Lee Argonne National Laboratory

Extraction of Nucleon resonances

Why?

N* are unstable and coupled with meson-baryon continuum to form nucleon resonances

• N* can only be studied by extracting resonances from the data of meson production reactions:

 $\pi N, \gamma N \longrightarrow N^* \longrightarrow \pi N, \eta N, KY, \pi \pi N(\pi \Delta, \rho N, \sigma N)....$

<u>Theoretical formulation of Resonances</u>: (Gamow, Peierls, Dalitz, Moorhouse, Bohm....)

Resonances are the eigenstates of the Hamiltonian of the underlying fundamental theory with outgoing-wave boundary condition :

$$H |\psi_{R}\rangle = E_{R} |\psi_{R}\rangle; \quad \psi_{R}(r) \xrightarrow[r \to \infty]{} \frac{e^{ikr}}{r}$$

$$M_{R} - i M_{I} = [m_{M}^{2} + k^{2}]^{1/2} + [m_{B}^{2} + k^{2}]^{1/2}$$

Scattering amplitude:

$$T(E \rightarrow E_R) \longrightarrow \frac{\Gamma_R}{E - E_R}$$

Pole on complex-E-plane

Procedures of Resonance Extraction

- 1. Determine partial-wave amplitudes (PWA) from the available data
- Extract resonances by analytic continuation of PWA to complex-E plane

Determination of PWA

Theorem :

PWA can be determined up to an overall phase from data of all observables from complete experiment

Ideal situation: Perform complete experiments

A complete measurement of $\gamma N \rightarrow \pi N$, $K\Lambda : d\sigma/d\Omega$, T, P, Σ (un-polarized γ) $O_{x',}O_{z'}$ (linear-polarized γ) $C_{x'}$, $C_{z'}$ (circular-polarized γ)

at all angles at each energy

Reality :

1. Data are incomplete

2. Even data are complete, many solutions are possible in determining PWA

Intrinsic difficulty: bi-linear relations: $d\sigma/d\Omega = |f^{R}(\Theta) + i f^{I}(\Theta)|^{2}$

Example:

Study CLAS data of 8 observables of $\gamma p \rightarrow K \Lambda$

Treat $E_{L+,} E_{L-,} M_{L+,} M_{L-}$ as parameters to fit the data by Monte-Carlo sampling

Sandorfi, Hoblit, Kamano, Lee, J. of Phys. G38, 053001 (2011)

Monte-Carlo Fits (Sandorfi, Hobit, Kamano, Lee, J. of Phys. (2011)

CLAS data of γ p -> K Λ

PWA with L > 3 are fixed by Born terms

Need theoretical constraints in determining PWA from data

Next Step:

- Use analytic functions F(E) to fit the determined PWA f^{data}(W) in the E = W physical region.
- Extract resonance poles and residues from F (E) Im(E) **F(E)** E -> W 🕻 data Re(E) W (physical region)

Important condition:

The extracted resonance parameters should be independent of the parameterization of F(E)

To check this condition, study $\pi\pi \rightarrow \pi \pi$, K K reactions with three models for F(E)

Wu, Lee (2014)

PWA of a dynamical model of $\pi\pi \rightarrow \pi \pi$, K K

T_{i,j} (E) = h_i(k_i)τ(E)h_j(k_j) +
$$\frac{g_i(k_i)g_j(k_j)}{E - m_0 - \Sigma(E)}$$

$\tau(E)$, $\Sigma(E)$: determined by $h_i(k_i)$, $g_i(k_i)$

I, j = ππ, K K

 $g(k) = exp(-(ck)^2)$ $h(k) = exp(-(dk)^2)$

 $g(k) = 1/(1+(ck)^2)^2$ $h(k) = 1/(1+(dk)^2)^4$

 $g(k) = 1/(1+(ck)^2)$ $h(k) = 1/(1+(dk)^2)^2$

Parameterizations of H'

Adjust parameters c, d, and m₀

Compare the extracted poles and residues of resonances

PWA from models A, B, and C

Model	Pole Position(MeV)	Residue of $\pi\pi$	Residue of $K\bar{K}$
II sheet-1		$ imes 10^{-4}$	
I-A	639.3 - i158.9	5.295 - i2.153	_
I-B	637.8 - i159.9	5.368 - i2.285	_
I-C	634.5 - i156.2	5.076 - i2.556	_

TABLE II: The pole positions and residue of Models I-A, I-B, I-C.

II sheet-2		$\times 10^{-5}$	$\times 10^{-5}$
I-A	1000.30 - i8.89	-3.514 - i3.088	1.822 + i33.81
I-B	1000.14 - i8.88	-3.493 - i3.111	2.140 + i34.62
I-C	1000.04 - i8.83	-3.467 - i3.162	2.955 + i35.39

Models A, B, and C agree well

Finding:

If PWA have no error and are fitted perfectly

The extracted resonance parameters are independent of the parameterization of F(E)

Reality :

- Determined $\pi\pi \rightarrow \pi\pi$ PWA have errors
- KK -> KK PWA are not available

Finding :

The extracted resonance parameters depend on the parameterization of amplitudes

Fits of the current $\pi\pi \rightarrow \pi\pi$ data

Models A, B, and C get equally good fits

TABLE VI: The pole positions and residue of Models II-A, II-B, II-C.

Reliable amplitude determinations and resonance extractions (poles, residues) must Include theoretical constraints

ANL-Osaka approach:

Implement meson-exchange mechanisms within

Hamiltonian Formulation of reactions

Outcome of ANL-Osaka analysis:

a. PWA of πN , $\gamma N \rightarrow \pi N$, ηN , KY, $\pi \pi N(\pi \Delta, \rho N, \sigma N)$

b. Poles and N-N* form factors of N*up to W=2 GeV

Will be reported by Hiroyuki Kamano

Outcome of ANL-Osaka analysis:

c. A determined Hamiltonian:

1. Provide interpretations of N*:

Example:

Q²-dependence of meson cloud effects within Constituent Quark model Dyson-Schwinger model

2.New direction : generate data to test LQCD

Adelaide's Finite-Volume Hamiltonian Method

J. M. M. Hall, A. C.-P. Hsu, D. B. Leinweber, A. W. Thomas and R. D. Young, Phys. Rev.D 87, 094510 (2013)

- a method to relate the Experimental data to LQCD
- In one-channel case, it is equivalent to the approach based on Lüscher's formula

Finite-Volume Hamiltonian approach

Necessary step to test N* from LQCD :

Extend Adelaide's Finite-Volume Method to multi-channel

Example: P₁₁(1440) : πN, ππN(πΔ, ρN,σN)

J. Wu, T.-S. H. Lee, A. W. Thomas, R.D. Young, Phy. Rev. C90, 055209 (2014)

Testing case : ππ, KK scattering

Model Hamiltonian with $\pi\pi$, KK, σ

Finite-Volume with size L

k :
$$k_i = n_i \begin{bmatrix} 2\pi \\ L \end{bmatrix}^{3/2}$$

G :
$$g_a(k_i) = G_a(k_i) \left[\frac{2\pi}{L}\right]^{3/2}$$

V :
$$v_{ab}(k_i,k_j) \begin{bmatrix} 2\pi \\ L \end{bmatrix}^3$$

Full results

Two methods are equivalent for two-channel case

 Finite-volume Hamiltonian method is equivalent to Lüscher's method for one-channel and two-channel cases

Finite-volume Hamiltonian method can readily
be used for multi-channel cases

Can be applied to ANL-Osaka Hamiltonian for predicting spectrum to test LQCD

First step (Wu, Lee, 2015):

One-channel limit of ANL-Osaka Model: SL Model

Extraction of N* excitation of neutron

No neutron target

Perform analysis of

d(γ, π)NN d(e,e'π)NN **Developments:**

1. Apply SL Model

K. Hafidi, T.-S. H. Lee, Phys. Rev. C (2001) Jiajun Wu, T. Sato, T.-S. H. Lee, Phys. Rev. C 91, 035203 (2014)

2. Apply ANL-Osaka Model

In progress with preliminary results

Model Hamiltonian with N, π , Δ , and γ

Lee, Matsuyama (1985-1992)

CLAS data of p(e, e' π^0)p (From Joo, 2000)

Pion electroproduction Structure functions

(data CLAS from C. Smith, 2004)

Calculations include :

- Fermi motion effects
- Spin rotaion effects $|p_L, m_s >_d = R_w(\Lambda) |p_{c,} m_s >$
- Lorentz transformaion of currents $[J]_d = \Lambda [j]_N \Lambda^{-1}$
- Exact loop-integrations of FSI terms

Apply the SL model to study

γd-> π⁻ pp γd-> π⁰np

J. Wu, T. Sato, T.-S. H. Lee Phys. Rv. C91, 035203 (2014)

In the $\Delta(1232)$ region

γd -> π⁰ np

γd -> π⁻ nn

FSI is large for T=0 NN state FSI is weak for T=1 NN state

Apply ANL-Osaka Model

Make Predictions for the analysis of JLab data

- $d(\gamma, \pi^{-})nn$, $E_{\gamma} = 250 1600 \text{ MeV}$
- d(e,e'π⁻)nn, E_e = 2.039 GeV, Q² < 2.0 (GeV/c)²
 W = 1.236, 1.600 GeV

neutron-N* form factors are determined by simultaneous fits to the data of a. inclusive d(e,e') X total cross sections b. σ_T + $\epsilon\sigma_L$ of p(e,e' π^0)p, p(e,e' π^+)n

Compare the predictions with

Data from JLab-g14-E06-101 (from A. Sandorfi)

φ-dependence of the spectator proton
 Double polarization E

Preliminary conclusions:

- Can describe unpolarized $d\sigma/d\Omega$
- Need to tune ANL-Osaka model to fit polarization data P, Σ, Ε, G...

can improve γ n -> π^- p amplitudes which are needed to determine the isospin structure of γ N -> N* transitions

d(e,e' π⁻) pp (Ralf Gothe's talk)

Predictions have been made for

$E_e = 2.039 \text{ GeV}, Q^2 < 2.0 (GeV/c)^2$ W = 1.236, 1.600 GeV

 $\frac{d\sigma_T}{d\Omega_\pi dk}(Q^2, W, k, \theta_\pi, \phi_\pi = 0)$

$$\frac{d\sigma_{T,L}}{d\Omega_{\pi}}(Q^2, W, \theta_{\pi}, \phi_{\pi} = 0) = \int dk \frac{d\sigma_T}{d\Omega_{\pi} dk}(Q^2, W, k, \theta_{\pi}, \phi_{\pi} = 0)$$

FIG. 1. $d(e, e'\pi^-)pp$ at W = 1.236 GeV.

FIG. 2. $d(e, e'\pi^-)pp$ at W = 1.601 GeV.

$$\sigma_{T,L}(Q^2, W) = (2\pi) \times \int d \cos\theta_{\pi} \frac{d\sigma_{T,L}}{d\Omega}(Q^2, W, k, \theta_{\pi}, \phi_{\pi} = 0)$$

 $\frac{d\sigma}{d\Omega_{e'}dE'_e} = \Gamma_v[\sigma_T(Q^2, W) + \epsilon\sigma_L(Q^2, W)]$

To be tested by the Jlab data being analyzed by Ye Tian, Ralf Gothe ...

First comparisons (Oct. 7, 2015) : Structure functions of $n(e,e' \pi^{-})$ p from

a. Extracted from d(e,e' π^{-})pp data (Gothe's talk) b. Calculated from ANL-Osaka model

Preliminary data from Ye Tian

Preliminary data from Ye Tian

Much more works are needed to extract quantitative Information on the N* excitations of the neutron

Summary

 An approach including final state interactions has been developed to extract N* of neutron from meson production data on deuteron target

Interactions between theoretical calculations and data analysis are essential

- 2. Theoretical constraints must be included in the partial-wave analysis of data and the extractions of nucleon resonances
- 3. Resonance poles are related to the eigenstates of the underlying fundamental Theory and should be extracted by each analysis group to minimize the errors

4. New development:

Including $\pi\pi N$ channels for N* study