A Relativistic Model for the Electromagnetic Structure of Baryons from the 3rd Resonance Region

Gilberto Ramalho

International Institute of Physics, UFRN, Federal University of Rio Grande do Norte, Brazil

gilberto.ramalho2013@gmail.com

GR and K Tsushima, PRD 89, 073010 (2014); GR, PRD 90, 033010 (2014)

Collaborators: F. Gross (Jlab), M.T. Peña (Lisbon) and K. Tsushima (UCS/São Paulo)

Nucleon Resonances: From Photoproduction to High Photon Virtualities ECT*, Trento, Italy

October 15, 2015

Gilberto Ramalho (IIP/UFRN, Natal, Brazil) E.M. Structure of Baryons – 3rd Resonance

э

Modern accelerators

(Jlab, Mainz, ...) provide accurate data associated with N^* states with increasing W (1.4–1.8 GeV) and large Q^2 (2–6 GeV²)

Gilberto Ramalho (IIP/UFRN, Natal, Brazil) E.M. Structure of Baryons – 3rd Resonance

 Modern accelerators (Jlab, Mainz, ...) provide accurate data associated with N* states with increasing W (1.4–1.8 GeV) and large Q² (2–6 GeV²)

• Challenges:

 Modern accelerators (Jlab, Mainz, ...) provide accurate data associated with N* states with increasing W (1.4–1.8 GeV) and large Q² (2–6 GeV²)

• Challenges:

 Interpret the data (theory/models)

 Modern accelerators (Jlab, Mainz, ...) provide accurate data associated with N* states with increasing W (1.4–1.8 GeV) and large Q² (2–6 GeV²)

Challenges:

- Interpret the data (theory/models)
- Provide predictions (higher Q², higher W)

 Modern accelerators (Jlab, Mainz, ...) provide accurate data associated with N* states with increasing W (1.4–1.8 GeV) and large Q² (2–6 GeV²)

Challenges:

- Interpret the data (theory/models)
- Provide predictions (higher Q², higher W)
 Jlab-12 GeV-upgrade

 Modern accelerators (Jlab, Mainz, ...) provide accurate data associated with N* states with increasing W (1.4–1.8 GeV) and large Q² (2–6 GeV²)

Challenges:

- Interpret the data (theory/models)
- Provide predictions (higher Q², higher W)
 Jlab-12 GeV-upgrade
- Improve description of the **3rd resonance region** & Extend calculations for higher Q^2

• Study of $\gamma^*N \to N^*$ reactions

- Covariant Spectator Quark Model
 Wave functions, quark current, transition current
- Predictions for the N(1710) (2nd radial excitation of the nucleon)
- Results for N(1535), N(1520) (S11 and D13)
- Single Quark Transition Model Simple relation between the helicity transition amplitudes of the same SU(6) supermultiplet
- Application:

Input: amplitudes for the $N(1520)\frac{3}{2}^{-}$ and $N(1535)\frac{1}{2}^{-}$ **Output:** amplitudes for $N(1650), N(1700), \Delta(1620), \Delta(1700)$

• Study of $\gamma^*N \to N^*$ reactions

- Covariant Spectator Quark Model
 Wave functions, quark current, transition current
- Predictions for the N(1710) (2nd radial excitation of the nucleon)
- Results for N(1535), N(1520) (S11 and D13)
- Single Quark Transition Model Simple relation between the helicity transition amplitudes of the same SU(6) supermultiplet
- Application:

Input: amplitudes for the $N(1520)\frac{3}{2}^-$ and $N(1535)\frac{1}{2}^-$ **Output:** amplitudes for $N(1650), N(1700), \Delta(1620), \Delta(1700)$

Valence quark models: appropriated for large Q^2

• Study of $\gamma^*N \to N^*$ reactions

- Covariant Spectator Quark Model
 Wave functions, quark current, transition current
- Predictions for the N(1710) (2nd radial excitation of the nucleon)
- Results for N(1535), N(1520) (S11 and D13)
- Single Quark Transition Model Simple relation between the helicity transition amplitudes of the same SU(6) supermultiplet
- Application:

Input: amplitudes for the $N(1520)\frac{3}{2}^-$ and $N(1535)\frac{1}{2}^-$ **Output:** amplitudes for $N(1650), N(1700), \Delta(1620), \Delta(1700)$

Valence quark models: appropriated for large Q^2 May fails for small Q^2 – meson cloud effects

• Study of $\gamma^*N \to N^*$ reactions

- Covariant Spectator Quark Model Wave functions, quark current, transition current
- Predictions for the N(1710) (2nd radial excitation of the nucleon)
- Results for N(1535), N(1520) (S11 and D13)
- Single Quark Transition Model Simple relation between the helicity transition amplitudes of the same SU(6) supermultiplet
- Application:

Input: amplitudes for the $N(1520)\frac{3}{2}^-$ and $N(1535)\frac{1}{2}^-$ **Output:** amplitudes for $N(1650), N(1700), \Delta(1620), \Delta(1700)$

Valence quark models: appropriated for large Q^2 May fails for small Q^2 – meson cloud effects

SQTM has $SU_F(2)$; CSQM breaks $SU_F(2) \Rightarrow$ react. proton targets

Nucleon Resonance Structure

Methods

Methods to study the $\gamma^*N \to N^*$ reactions

- QCD (only practical at high Q^2)
- Lattice QCD (large m_{π} , euclidean space ...)
- (Effective) Chiral Perturbation Theory (baryons and mesons and degrees of freedom) small energy and momentum
- Baryon-Meson coupled channel reaction models
- Dyson-Schwinger (non-perturbative; quarks and gluons, euclidean)
- Constituent quark models and chiral quark models quarks with structure, quark-quark interaction
- Covariant Spectator Quark Model (Minkowski) Wave function determined phenomenologically (no dynamical eq.) Parametrization of the wave function by FF (M_B not predicted)

Covariant Spectator Quark Model – Applications †

F Gross, GR, MT Peña, K Tsushima, ...

Int. J. Mod. Phys. E 22, 1330015 (2013)- (pages 89-92); arXiv:1008.0371 [hep-ph]

- Nucleon and Δ electromagnetic form factors PRC 77, 015202 (2008); PLB 678, 355 (2009); PLB 690, 183 (2010); JPG 36, 085004 (2009); PRD 86, 093022 (2012)
- Electromagnetic transition form factors $\gamma^* N \rightarrow N^*$ $N^* = \Delta(1232), N^*(1440), N^*(1520), N^*(1535), \Delta(1600), N^*(1710), \dots$ EPJA 36, 329 (2008); PRD 78, 114017 (2008); PRD 82, 073007 (2010); PRD 81, 074020 (2010); PRD 84, 051301 (2011); PRD 89, 073010 (2014)
- Octet baryon and decuplet baryon e.m. form factors: physical regime, nuclear medium and extension to lattice QCD
 PRD, 033004 80 (2009); JPG 36, 115011 (2009); PRD 80, 013008 (2009); PRD 83, 054011 (2011); PRD 84, 054014 (2011); PRD 87, 093011 (2013); JPG 40, 015102 (2013)
- $\Delta(1232)$ mass distribution for the Dalitz decay: $\Delta \rightarrow Ne^+e^- (pp \rightarrow e^+e^-pp)$ PRD 85, 113014 (2012) Timelike regime
- Nucleon Deep Inelastic Scattering PRC 77, 015202 (2008); PRD 85 093006 (2012)

Covariant Spectator Quark Model – Introduction

 Quarks with electromagnetic structure (impulse approximation)

$$j_q^{\mu} = \left(\frac{1}{6}f_{1+} + \frac{1}{2}f_{1-}\tau_3\right)\gamma^{\mu} + \left(\frac{1}{6}f_{2+} + \frac{1}{2}f_{2-}\tau_3\right)\frac{i\sigma^{\mu\nu}q_{\nu}}{2M_N}$$

form factors $f_{i\pm}$ parametrized according with vector meson dominance simulate structure associated with $q\bar{q}$ and gluon dressing

- Use QM symmetries to represent the structure of the wave functions
- Shape (radial structure) determined phenomenologically by experimental data or lattice data of some ground state systems
- constraints from valence quark d.o.f. \Rightarrow Calibrate model
- Make predictions for $\gamma^*N \to N^*$ form factors/helicity amplitudes

Quark current $j^{\mu}_{a} \oplus$ Baryon wave function $\Psi_{B} \Rightarrow J^{\mu}$

Transition current J^{μ} in spectator formalism F Gross et al PR 186 (1969); PRC 45, 2094 (1992)

Relativistic impulse approximation:

$$J^{\mu} = 3 \sum_{\lambda} \int_{k} \bar{\Psi}_{f}(P_{+}, k) j_{q}^{\mu} \Psi_{i}(P_{-}, k) \xrightarrow{P_{+}} \Psi_{f} \underbrace{\Psi_{f}}_{N^{*}} \underbrace{\Psi_{i}}_{N} \underbrace{\Psi_{i}}_{N}$$

integrate spectator q

$$q = P_{+} - P_{-}, \quad P = \frac{1}{2}(P_{+} + P_{-}), \qquad Q^{2} = -q^{2}$$

Quark current $j^{\mu}_{a} \oplus$ Baryon wave function $\Psi_{B} \Rightarrow J^{\mu}$

Transition current J^{μ} in spectator formalism F Gross et al PR 186 (1969); PRC 45, 2094 (1992)

Relativistic impulse approximation:

$$J^{\mu} = 3 \sum_{\lambda} \int_{k} \bar{\Psi}_{f}(P_{+},k) j_{q}^{\mu} \Psi_{i}(P_{-},k) \xrightarrow{P_{+}} \Psi_{f} \underbrace{\Psi_{f}}_{N} k \underbrace{\Psi_{i}}_{N} \underbrace{P_{-}}_{N}$$

diquark on-shell

$$q = P_{+} - P_{-}, \quad P = \frac{1}{2}(P_{+} + P_{-}), \qquad Q^{2} = -q^{2}$$

Quark current $j^{\mu}_{a} \oplus$ Baryon wave function $\Psi_{B} \Rightarrow J^{\mu}$

Transition current J^{μ} in spectator formalism F Gross et al PR 186 (1969); PRC 45, 2094 (1992)

Relativistic impulse approximation:

$$J^{\mu} = 3\sum_{\lambda} \int_{k} \bar{\Psi}_{f}(P_{+},k) j_{q}^{\mu} \Psi_{i}(P_{-},k) \xrightarrow{P_{+}} \Psi_{f} \underbrace{\Psi_{f}}_{N} \underbrace{k}_{V_{i}} \underbrace{\Psi_{i}}_{N}$$

diquark on-shell

$$q = P_{+} - P_{-}, \quad P = \frac{1}{2}(P_{+} + P_{-}), \qquad Q^{2} = -q^{2}$$

If $q \cdot J \neq 0$: Landau prescription: $J^{\mu} \rightarrow J^{\mu} - \frac{q \cdot J}{q^2} q^{\mu}$ JJ Kelly, PRC 56, 2672 (1997); Z Batiz and F Gross, PRC 58, 2963 (1998)

• Baryon: 3 constituent quark system

- Baryon: 3 constituent quark system
- $\bullet\,$ Covariant Spectator Theory: wave function Ψ defined in terms of a
 - 3-quark vertex Γ with 2 on-mass-shell quarks

$$\Psi_{\alpha}(P,k_3) = \left(\frac{1}{m_q - k_3 - i\varepsilon}\right)_{\alpha\beta} \Gamma^{\beta}(P,k_1,k_2)$$

Gross and Agbakpe PRC 73, 015203 (2006); Gross, GR and Peña PRC 77, 015202 (2008)

- Baryon: 3 constituent quark system
- Covariant Spectator Theory: wave function Ψ defined in terms of a 3-quark vertex Γ with 2 on-mass-shell quarks

$$\begin{array}{c} \overset{k_{3}}{\underset{k_{2}}{\overset{}}{\underset{k_{1}}{\overset{}}{\underset{k_{1}}{\overset{}}{\underset{k_{1}}{\overset{}}{\underset{k_{1}}{\overset{}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\underset{k_{2}}{\overset{}}{\underset{k_{2}}{\atopk_{2}}{\underset{k_{2}}{\underset{k_{2}}{\underset{k_{2}}{\underset{k_{2}}{\underset{k_{2}}{\underset{k_{2}}{\atopk_{2}}{\underset{k_{2}}{\underset{k_{2}}{\underset{k_{2}}{\underset{k_{2}}{\atopk_{2}}{\underset{k_{2}}{\underset{k_{2}}{\underset{k_{2}}{\atopk_{2}}{\underset{k_{2}}{\atopk_{2}}{\underset{k_{2}}{\atopk_{2}}{\underset{k_{2}}{\atopk_{2}}{\underset{k_{2}}{\atopk_{2}}{\underset{k_{2}}{\atopk_{$$

Gross and Agbakpe PRC 73, 015203 (2006); Gross, GR and Peña PRC 77, 015202 (2008) • Ψ is **free** of singularities (3q on-shell $\Gamma \equiv 0$) \Rightarrow parametrize Ψ Stadler, Gross and Frank PRC 56, 2396 (1998); Savkli and Gross PRC 63, 035208 (2001)

- Baryon: 3 constituent quark system
- Covariant Spectator Theory: wave function Ψ defined in terms of a 3-quark vertex Γ with 2 on-mass-shell quarks

$$\Psi_{\alpha}(P,k_3) = \left(\frac{1}{m_q - k_3 - i\varepsilon}\right)_{\alpha\beta} \Gamma^{\beta}(P,k_1,k_2)$$

Gross and Agbakpe PRC 73, 015203 (2006); Gross, GR and Peña PRC 77, 015202 (2008) • Ψ is **free** of singularities (3q on-shell $\Gamma \equiv 0$) \Rightarrow parametrize Ψ Stadler, Gross and Frank PRC 56, 2396 (1998); Savkli and Gross PRC 63, 035208 (2001)

• On-shell integration $(k_1, k_2) \Rightarrow k = k_1 + k_2$, $r = \frac{1}{2}(k_1 - k_2)$ \Rightarrow integration in **k** and $s = (k_1 + k_2)^2$

Gross, GR and Peña, PRC 77, 015202 (2008); PRD 85, 093005 (2012)

$$\int_{k_1} \int_{k_2} = \frac{\pi}{4} \int d\Omega_{\hat{\mathbf{r}}} \int_{4m_q^2}^{+\infty} ds \sqrt{\frac{s - 4m_q^2}{s}} \int \frac{d^3 \mathbf{k}}{2\sqrt{s + \mathbf{k}^2}} \to \int \frac{d^3 \mathbf{k}}{2\sqrt{m_D^2 + \mathbf{k}^2}}$$

Mean value theorem: $\sqrt{s} \rightarrow m_D$; cov. int. in diquark **on-shell** mom.

- Effective diquark justified by the Impulse approximation
- Baryon wave functions: B = diquark ⊕ quark
 Combination of diquark (12) and single quark (3) states, using SU(6) ⊗ O(3):

$$\Psi_{B} = \sum_{\substack{\text{(color)} \otimes (\text{flavor}) \otimes \\ (\text{spin-orbital}) \otimes \underbrace{\psi_{B}(P,k)}_{\text{radial}}} \varepsilon_{P}^{*} \underbrace{\psi_{B}}_{k} P$$

- Wave function Ψ_B expressed at the rest frame
- **Covariant** generalization of Ψ_B in terms **baryon** properties after *integration* on the diquark internal variables
- Phenomenology included on the quark-diquark radial wave function

$$\psi_N(\chi) = \frac{N_0}{m_D(\beta_1 + \chi)(\beta_2 + \chi)}, \quad \chi = \frac{(M - m_D)^2 - (P - k)^2}{Mm_D}$$

 β_1, β_2 : momentum scale parameters

Spectator QM: Nucleon wave function †

Nucleon wave function: [PRC 77,015202 (2008); EPJA 36, 329 (2008)] Simplest structure –S-state in quark-diquark system (rest frame)

$$\Psi_N(P,k) = \frac{1}{\sqrt{2}} \left[\Phi_I^0 \Phi_S^0 + \Phi_I^1 \Phi_S^1 \right] \psi_N(P,k)$$

Isospin states: $\Phi_I^{0,1}$

Spin states: defined in terms of Nucleon-Dirac spinor u(P); diquark polarization vector ε_{λ}

$$\Phi^0_S(s) \equiv u(P,s)$$
 $\Phi^1_S(s) \equiv -(\varepsilon^*_\lambda)_{\alpha} U^{\alpha}(P,s)$

$$U^{\alpha}(P,s) = \sum_{\lambda s'} \langle \frac{1}{2}s'; 1\lambda | \frac{1}{2}s \rangle \varepsilon^{\alpha}_{\lambda} u(P,s') \to \frac{1}{\sqrt{3}} \gamma_5 \left(\gamma^{\alpha} - \frac{P^{\alpha}}{M}\right) u(P,s)$$

 $\varepsilon_{\lambda} = \varepsilon_{\lambda P}$ function of nucleon momentum F Gross, GR and MT Peña,PRC 77, 035203 (2008)

Nucleon form factors [F Gross, GR and MT Peña, PRC 77, 015202 (2008)]

- Model calibrated by Nucleon form factor data
- Quark current fix 4 parameters; Scalar wave function (2 parameters)
- No pion cloud (explicit);

October 15, 2015 12 / 41

Nucleon form factors [F Gross, GR and MT Peña, PRC 77, 015202 (2008)]

- Model calibrated by Nucleon form factor data
- Quark current fix 4 parameters; Scalar wave function (2 parameters)
- No pion cloud (explicit); can be extended to the lattice QCD regime

GR and MT Peña, JPG 36, 115011 (2009); PRD 80 (2009) 013008; GR, K Tsushima and AW Thomas, JPG 40 015102 (2013), o

Gilberto Ramalho (IIP/UFRN, Natal, Brazil) E.M. Structure of Baryons – 3rd Resonance

October 15, 2015

$\gamma^*N \rightarrow R$, R = radial excitation of the nucleon

- N0 =Nucleon $N1 = N(1440) \equiv$ Roper, 1st radial excitation $N2 = N(1710) \approx$ 2nd radial excitation Same spin and isospin structure as the nucleon
- States distinguished by radial wave function: $\psi_{N0}, \, \psi_{N1}, \, \psi_{N2}$ (and masses)
- Orthogonality given at $Q^2 = 0$ by

$$\int_{k} \psi_{N1} \psi_{N0} = 0, \quad \int_{k} \psi_{N2} \psi_{N0} = 0, \quad \int_{k} \psi_{N2} \psi_{N1} = 0,$$

- \Rightarrow Define ψ_{N1} , ψ_{N2} , from ψ_{N0} with the same short-range structure: $\psi_{Nj} \propto \frac{1}{\beta_2 + \gamma}$
- No adjustable parameters \longrightarrow predictions

GR and K Tsushima, PRD 81, 074020 (2010); PRD 89 073010 (2014)

$\gamma^*N \to R$, R = radial excitation of the nucleon (2)

Radial wave functions $\beta_2 > \beta_1$ (β_2 – short range)

$$\psi_{N0}(\chi_{N0}) = N_0 \times \frac{1}{m_D(\beta_1 + \chi_N)(\beta_2 + \chi_N)}$$

$$\psi_{N1}(\chi_{N1}) = N_1 \frac{\beta_3 - \chi_{N1}}{\beta_1 + \chi_{N1}} \times \frac{1}{m_D(\beta_1 + \chi_{N1})(\beta_2 + \chi_{N1})}$$

$$\psi_{N2}(\chi_{N2}) = N_2 \frac{\chi_{N2}^2 - \beta_4 \chi_{N2} + \beta_5}{(\beta_1 + \chi_{N2})^2} \times \frac{1}{m_D(\beta_1 + \chi_{N2})(\beta_2 + \chi_{N2})}$$

 $\beta_3, \beta_4, \beta_5 \Leftarrow \text{Orthogonality conditions}$

$\gamma^*N ightarrow N(1440)$: Helicity amplitudes [PRD 81, 074020 (2010)] †

• CLAS data - Aznauryan et al PRC 80, 055203 (2009), MAID fit

- Good agreement for $Q^2 > 1.5 \text{ GeV}^2$
- \bullet Difference for $Q^2 < 1.5 \ {\rm GeV^2}$ –manifestation of meson cloud
- Good description also of lattice data Valence q d.o.f.

$\gamma^*N \rightarrow N(1710)$: Helicity amplitudes [PRD 89 073010 (2014)] (1)

• Prediction of N(1710) compared with Roper amplitudes

- Results similar with Roper for $Q^2 > 4$ GeV² Same short-range structure
- Low Q^2 : no prediction dominance of meson cloud

$\gamma^*N \rightarrow N(1710)$: Helicity amplitudes [PRD 89 073010 (2014)] (2)

• Compare with nucleon form factors (\mathcal{R} - Roper) $\mathcal{R} = \frac{e}{2} \sqrt{\frac{(M_R - M)^2 + Q^2}{M_R M K}}, K = \frac{M_R^2 - M^2}{2M_R}, \tau \to \frac{Q^2}{4M^2}$

• Equivalent amplitudes (extra factor $\sqrt{2}$)

$$A_{1/2} \to \sqrt{2}\mathcal{R}G_M, \quad S_{1/2} \to \sqrt{2}\frac{\mathcal{R}}{\sqrt{2}}\sqrt{\frac{1+\tau}{\tau}}G_E,$$

$\gamma^*N \rightarrow N(1710)$: Helicity amplitudes [PRD 89 073010 (2014)] (2)

• Compare with nucleon form factors (\mathcal{R} - Roper) $\mathcal{R} = \frac{e}{2} \sqrt{\frac{(M_R - M)^2 + Q^2}{M_R M K}}, K = \frac{M_R^2 - M^2}{2M_R}, \tau \rightarrow \frac{Q^2}{4M^2}$

• Equivalent amplitudes (extra factor $\sqrt{2}$) Prediction $A_{1/2} \rightarrow \sqrt{2}\mathcal{R}G_M, \quad S_{1/2} \rightarrow \sqrt{2}\frac{\mathcal{R}}{\sqrt{2}}\sqrt{\frac{1+\tau}{\tau}}G_E,$

$\gamma^*N \rightarrow N(1710)$: Helicity amplitudes [PRD 89 073010 (2014)]

Amplitude $A_{1/2}$: Roper, $N(1710) \approx G_M$ (Nucleon)

Data: J. Arrington, W. Melnitchouk and J. A. Tjon, PRC 76, 035205 (2007)

October 15, 2015 18 / 41

$\gamma^* N \rightarrow N(1710)$: Helicity amplitudes [PRD 89 073010 (2014)] (3)

CLAS data: K Park et al, **PRC 91, 045203 (2015)** —--- model predictions fail for intermediate Q^2 Amplitude $S_{1/2}$: difference of sign ...

October 15, 2015 19 / 41

Possible interpretations:

- $\bullet\,$ Our results are valid only for larger Q^2
- N(1710) it is not just a radial excitation
- There are mixture of (close) states
- *N*(1710) is a dynamically generated resonance (EBAC): *N*(1820)
 N Suzuki *et al*, PRL 104, 042302 (2010)

Discussion

- We can test the if there is a dominance of the **valence quark** effects: large Q^2 : $A_{1/2} \propto \frac{1}{Q^3}$, $S_{1/2} \propto \frac{1}{Q^3}$
- Dominance of meson cloud $qqq (q\bar{q})$: suppression $\propto 1/Q^4$ – stronger falloff Baryon-meson molecule $(\pi N - \pi \pi N; \pi N - \sigma N; \sigma_v N, gN, ...)$
- Most quark models predict $A_{1/2} > 0, S_{1/2} > 0$ T Melde et al, PRD 77 114002 (2008);

M Ronniger et al, EPJA 49, 8 (2013)

• Hyperspherical QM predicts $S_{1/2} < 0$ Santopinto and Giannini, PRC 86, 065202 (2012) good description of the data

- Results for $N(1535)\frac{1}{2}^{-}, N(1520)\frac{3}{2}^{-}$
- Single Quark Transition Model
- Predictions for $N(1650)\frac{1}{2}^-, N(1700)\frac{3}{2}^-, \Delta(1620)\frac{1}{2}^-, \Delta(1700)\frac{1}{2}^-$

Wave functions N(1520), N(1535) [N² : $s_q = 1/2$; N⁴ : $s_q = 3/2$] †

Using the $SU(6) \otimes O(3)$ structure; flavor wf: $\Phi_I^{0,1}$; spin wf: $X_{\lambda,\rho}^S$, $S = \frac{1}{2}, \frac{3}{2}$

 $\lambda =$ symmetric $\rho =$ anti-symmetric

$$\begin{vmatrix} N^2, \frac{1}{2}^- \\ N^2, \frac{3}{2}^- \end{vmatrix} = N_{1/2} \left[\Phi_I^0 X_\rho^{1/2} + \Phi_I^1 X_\lambda^{1/2} \right] \psi_{S11} \\ \begin{vmatrix} N^2, \frac{3}{2}^- \\ N^2, \frac{3}{2}^- \end{vmatrix} = N_{3/2} \left[\Phi_I^0 X_\rho^{3/2} + \Phi_I^1 X_\lambda^{3/2} \right] \psi_{D13} \\ \begin{vmatrix} N^4, S^- \\ N^2 \end{vmatrix} = \dots$$

diquark: $k_{\lambda} = k_1 + k_2$, diquark internal momentum $k_{\rho} = \frac{1}{2}(k_1 - k_2)$,

$$\begin{split} X^{S}_{\rho}(s) &= \sum_{ms'} \left\langle 1\frac{1}{2}; ms' | Ss \right\rangle \left[Y_{1m}(k_{\rho}) \left| s' \right\rangle_{\lambda} + Y_{1m}(k_{\lambda}) \left| s' \right\rangle_{\rho} \right] \\ X^{S}_{\lambda}(s) &= \sum_{ms'} \left\langle 1\frac{1}{2}; ms' | Ss \right\rangle \left[Y_{1m}(k_{\rho}) \left| s' \right\rangle_{\rho} - Y_{1m}(k_{\lambda}) \left| s' \right\rangle_{\lambda} \right], \end{split}$$

 $\implies \text{covariant generalization: } \mathbf{k} \to k - \frac{k \cdot P}{P^2} P; \ Y_{lm}(k_{\rho}) \underset{=}{\to} \xi^m_{\underline{a}}; \ |s'_{\underline{b}\rho,\lambda_{\underline{a}}}$

Gilberto Ramalho (IIP/UFRN, Natal, Brazil) E.M. Structure of Baryons – 3rd Resonance

23 / 41

 $\gamma^*N
ightarrow N(1535)$ [GR and MT Peña, PRD 84, 033007 (2011)]

- Spin 1/2 dominance $\cos \theta_S \simeq 0.85 \rightarrow 1$ $|N(1535)\rangle \simeq \left|N^2, \frac{1}{2}^-\right\rangle$
- Pointlike diquark $Y_{10}(k_{\rho}) \rightarrow 0$ $k_{\rho} = \frac{1}{2}(k_1 - k_2) \rightarrow 0$
- $\psi_{S11} \approx \psi_N$ $\mathcal{I}_{S11}(Q^2) = \int_k \frac{k_z}{|\mathbf{k}|} \psi_{S11} \psi_N$
- Approximated orthogonality $\mathcal{I}_{S11}(0) \neq 0 \ (\Rightarrow F_1^*(0) \neq 0)$
- $\bullet \ F_1^*$ good model for large Q^2
- F₂^{*} model fails, ... describes EBAC data (quark core)

• Data (
$$Q^2>1.5~{\rm GeV^2}$$
): $F_2^*\approx 0$

Gilberto Ramalho (IIP/UFRN, Natal, Brazil) E.M. Structure of Baryons – 3rd Resonance

 $\frac{1}{2}$

 $\gamma^*N
ightarrow N(1535)$ [GR and MT Peña, PRD 84, 033007 (2011)] (2)

- Spin 1/2 dominance $\cos \theta_S \simeq 0.85 \rightarrow 1$ $|N(1535)\rangle \simeq \left|N^2, \frac{1}{2}^-\right\rangle$
- Pointlike diquark $Y_{10}(k_{\rho}) \rightarrow 0$ $k_{\rho} = \frac{1}{2}(k_1 - k_2) \rightarrow 0$
- $\psi_{S11} \approx \psi_N$ $\mathcal{I}_{S11}(Q^2) = \int_k \frac{k_z}{|\mathbf{k}|} \psi_{S11} \psi_N$
- Approximated orthogonality $\mathcal{I}_{S11}(0) \neq 0 \ (\Rightarrow F_1^*(0) \neq 0)$
- $\bullet \ F_1^*$ good model for large Q^2
- F_2^* model fails, ... describes EBAC data (quark core)

• Data (
$$Q^2>1.5~{\rm GeV^2}$$
): $F_2^*pprox 0$

When
$$F_{2}^{*}=0$$
 $(A_{1/2}\propto F_{1}^{*})$

$$A_{1/2} = -\frac{2}{3}F_S(f_{1+} + 2f_{1-}\tau_3)\mathcal{I}_{S11}$$

$\gamma^*N \rightarrow N(1535) - \mathsf{Updated} \ \mathsf{model}$

- No pointlike diquark change normalization
- Orthogonality imposed $\mathcal{I}_{S11}(0) \equiv 0$ Redefine ψ_{S11} (new parameter β_3)
- ψ_{S11} adjusted to high Q^2 data
- Then $F_1^*(0) = 0$ But cannot describe low Q^2 (meson cloud !!)

When
$$F_2^*=0~~(A_{1/2}\propto F_1^*)$$

$$A_{1/2} = -\frac{\sqrt{2}}{3}F_S(f_{1+} + 2f_{1-}\tau_3)\mathcal{I}_{S11}$$

Gilberto Ramalho (IIP/UFRN, Natal, Brazil) E.M. Structure of Baryons – 3rd Resonance

October 15, 2015

27 / 41

- ψ_{D13} fitted to high Q^2 data
 - ψ_{D13} fitted to high Q^2 data
 - Orthogonality: $\mathcal{I}_{D13}(0) = 0$

• Amplitudes: $\mathcal{I}_{D13} = \int_k \frac{k_z}{|\mathbf{k}|} \psi_{D13} \psi_N$

$$\begin{array}{rcl} A_{1/2} & \propto & (f_{1+}+2f_{1-}\tau_3)\mathcal{I}_{D13} \\ & + & (f_{2+}+2f_{2-}\tau_3)\mathcal{I}_{D13} \\ & & (\text{valence}) \end{array}$$

 $\gamma^*N o N(1520)$ [GR and MT Peña, PRD 89, 094016 (2014)] $rac{3}{2}^-$

$\gamma^*N ightarrow N(1520)$ [GR and MT Peña, PRD 89, 094016 (2014)]

- Spin 1/2 dominance $(\cos \theta_D \simeq 1)$
- Amplitudes: $\mathcal{I}_{D13} = \int_k \frac{k_z}{|\mathbf{k}|} \psi_{D13} \psi_N$
 - $\begin{array}{rcl} A_{1/2} & \propto & (f_{1+} + 2f_{1-}\tau_3)\mathcal{I}_{D13} \\ & + & (f_{2+} + 2f_{2-}\tau_3)\mathcal{I}_{D13} \\ & & (\text{valence}) \\ A_{3/2} & = & \displaystyle \frac{\sqrt{3}}{4}F_DG_4^{\pi} \\ & & (\text{meson cloud}) \end{array}$
- ψ_{D13} fitted to high Q^2 data
- Orthogonality: $\mathcal{I}_{D13}(0) = 0$

October 15, 2015 27 / 41

 $\frac{3}{2}$

$$\psi_R(P,k) = \frac{N_R}{m_D(\beta_2 + \chi)} \left\{ \frac{1}{\beta_1 + \chi} - \frac{\lambda_R}{\beta_3 + \chi} \right\}$$

New short range parameter β_3 – determined by large Q^2 data

- Model for N(1520), N(1535) that include diquark structure
- Model describes the high Q^2 regime (adding a adjustable parameter β_i for resonance)
- For N(1520) the amplitude $A_{3/2}$ is the consequence of meson cloud (zero contribution from valence quarks) $\Rightarrow A_{3/2}$ phenomenological parametrization
- Small Q^2 : failure of the model; **no** meson cloud effects included (except for $A_{3/2}^{D13}$)

Single Quark Transition Model

- Wave function given by $SU(6) \otimes O(3)$ group: supermultiplets $[SU(6), L^P]$ - SU(6): number of particles (inc. spin proj.) Hey and Weyers, PL 48B, 69(1974); Cottingham and Dunbar, ZPC 2, 41 (1979); Burkert et al, PRC 67, 035204 (2003)
- Photon interaction with the quarks in impulse approximation
- Transverse current:

$$J^+ = \mathbf{A}L^+ + \mathbf{B}\sigma^+ L_z + \mathbf{C}\sigma_z L^+ + \mathbf{D}\sigma^- L^+ L^-$$

A, B, C, D functions of Q^2 for the same $[SU(6), L^P]$

- supermultiplet $[70, 1^-]$ (negative parity): $N(1520), N(1535), N(1650), N(1700), \Delta(1620), \Delta(1700)$
 - only 3 independent coefficients: A, B, C

•
$$SU(6)$$
 breaking: $\theta_S \approx 31^\circ, \theta_D \approx 6^\circ (1/2^- = S11, 3/2^- = D13)$
 $|N(1535)\rangle = \cos\theta_S \overline{\left|N^2, \frac{1}{2}^-\right\rangle} - \sin\theta_S \overline{\left|N^4, \frac{1}{2}^-\right\rangle}, \quad |N(1520)\rangle = \cos\theta_D \overline{\left|N^2, \frac{3}{2}^-\right\rangle} - \sin\theta_D \overline{\left|N^4, \frac{3}{2}^-\right\rangle}$
 $|N(1650)\rangle = \sin\theta_S \left|N^2, \frac{1}{2}^-\right\rangle + \cos\theta_S \left|N^4, \frac{1}{2}^-\right\rangle, \quad |N(1700)\rangle = \sin\theta_D \left|N^2, \frac{3}{2}^-\right\rangle + \cos\theta_D \left|N^4, \frac{3}{2}^-\right\rangle$

October 15, 2015

30

Gilberto Ramalho (IIP/UFRN, Natal, Brazil) E.M. Structure of Baryons – 3rd Resonance

State	Amplitude	
$S_{11}(1535)$	$A_{1/2}$	$\frac{1}{6}(A+B-C)\cos\theta_S$
$D_{13}(1520)$	$A_{1/2}$	$\frac{1}{6\sqrt{2}}(A - 2B - C)\cos\theta_D$
	$A_{3/2}$	$\frac{1}{2\sqrt{6}}(A+C)\cos\theta_D$
$S_{11}(1650)$	$A_{1/2}$	$\frac{1}{6}(A+B-C)\sin\theta_S$
$S_{31}(1620)$	$A_{1/2}$	$\frac{1}{18}(3A - B + C)$
$D_{13}(1700)$	$A_{1/2}$	$\frac{1}{6\sqrt{2}}(A-2B-C)\sin\theta_D$
	$A_{3/2}$	$\frac{1}{2\sqrt{6}}(A+C)\sin\theta_D$
$D_{33}(1700)$	$A_{1/2}$	$\frac{1}{18\sqrt{2}}(3A+2B+C)$
	$A_{3/2}$	$\frac{1}{6\sqrt{6}}(3A-C)$

Gilberto Ramalho (IIP/UFRN, Natal, Brazil) E.M. Structure of Baryons – 3rd Resonance

SQTM: Functions A, B and C

—— include meson cloud $(A_{3/2}^{D13})$ – Model 2

Based in results for S11 and D13: \Rightarrow predictions for $Q^2 > 2 \text{ GeV}^2$

October 15, 2015 32 / 41

Data

Data:

• CLAS:

I G Aznauryan, et al, PRC 72, 045201 (2005); M. Dugger et al. (CLAS Collaboration), PRC 79, 065206 (2009)

• CLAS-2: preliminary CLAS data

V Mokeev et al, arXiv:1509.05460; V Mokeev, NSTAR 2015

• MAID:

D. Drechsel et al EJPA, 34, 69 (2007); L. Tiator et al, Chin. Phys. C 33, 1069 (2009); Eur. Phys. J. Spec. Top. 198, 141 (2011) http://www.kph.unimainz.de/MAID//maid2007/data.html.

• NSTAR:

V D Burkert et al PRC 67, 035204 (2003);

V. Burkert, T.-S. H. Lee, R. Gothe, and V. Mokeev, Electromagnetic N-N* Transition Form Factors Workshop, Jlab, Newport News, 2008 (unpublished)

Results for N(1650), N(1700)

Data from CLAS, preliminary CLAS (CLAS-2), MAID and PDG

Gilberto Ramalho (IIP/UFRN, Natal, Brazil) E.M. Structure of Baryons – 3rd Resonance

Results for N(1650), N(1700)

Data from CLAS, preliminary CLAS (CLAS-2), MAID and PDG • Model 2: better for $A_{3/2} - N(1700)$

October 15, 2015 34 / 41

Results for N(1650), N(1700)

Data from CLAS, preliminary CLAS (CLAS-2), MAID and PDG

- Model 2: better for $A_{3/2} N(1700)$
- Both models: good for N(1650): $Q^2 > 2 \text{ GeV}^2$

Results for $\Delta(1620), \Delta(1700)$

Data from CLAS, preliminary CLAS (CLAS-2), MAID, PDG and NSTAR (proceedings and conferences)

Results for $\Delta(1620), \Delta(1700)$

Data from CLAS, preliminary CLAS (CLAS-2), MAID, PDG and NSTAR (proceedings and conferences)

• $\Delta(1700):$ both models with similar results $Q^2\gtrsim 1~{\rm GeV^2}$

Results for $\Delta(1620), \Delta(1700)$

 $A_{1/2}$ $A_{1/2}$ $A_{3/2}$ 100 140120 80 CLAS-1
 CLAS-2
 MAID CLAS CLAS MAID CLAS-2 MAID NSTAR $A_{1/2} (10^{-3} \, \text{GeV}^{-1/2})$ $A_{1/2} (10^{-3} \text{ GeV}^{-1/2})$ $A_{3/2} (10^{-3} \, {\rm GeV}^{-1/2})$ 100 60 $\Delta(1700)$ $\Delta(1700)$ $\Delta(1620)$ 40 6(60 20F 20 20 -20 $O^2 (GeV^2)$ Q²(GeV²) Q²(GeV²

Data from CLAS, preliminary CLAS (CLAS-2), MAID, PDG and NSTAR (proceedings and conferences)

- $\Delta(1700)$: both models with similar results $Q^2\gtrsim 1~{\rm GeV^2}$
- $\Delta(1620)$: Model 2 –good for $Q^2>2~{\rm GeV}^2$

Simple parametrization for large Q^2

Facilitate comparison with future data - powers from pQCD

$$A_{1/2}(Q^2) = D\left(\frac{\Lambda^2}{\Lambda^2 + Q^2}\right)^{3/2}, \quad A_{3/2}(Q^2) = D\left(\frac{\Lambda^2}{\Lambda^2 + Q^2}\right)^{5/2}$$

State	Amplitude	$D(10^{-3}{\rm GeV}^{-1/2})$	$\Lambda^2({\sf GeV}^2)$
$S_{11}(1650)$	$A_{1/2}$	68.90	3.35
$S_{31}(1620)$	$A_{1/2}$		
$D_{13}(1700)$	$A_{1/2}$	-8.51	2.82
	$A_{3/2}$	4.36	3.61
$D_{33}(1700)$	$A_{1/2}$	39.22	2.69
	$A_{3/2}$	42.15	8.42

October 15, 2015 36 / 41

$\gamma^* N \to \Delta(1620)$

$$A_{1/2}^{S31} \propto \left(2 \frac{A_{1/2}^{S11}}{\cos \theta_S} + 4\sqrt{2}A_{1/2}^{D13} + 4\sqrt{6}A_{3/2}^{D13} \right)$$

- - - only valence quark contributions

—— include meson cloud
$$(A_{3/2}^{D13})$$

October 15, 2015 37 / 41

 $\gamma^* N \to \Delta(1620)$

$$A_{1/2}^{S31} \propto \left(2 \frac{A_{1/2}^{S11}}{\cos \theta_S} + 4\sqrt{2} A_{1/2}^{D13} + 4\sqrt{6} A_{3/2}^{D13} \right) \not \propto \left(\frac{\Lambda^2}{\Lambda^2 + Q^2} \right)^{3/2}$$

- - - only valence quark contributions

—— include meson cloud
$$\left(A_{3/2}^{D13}\right)$$

October 15, 2015 37 / 41

 $\gamma^* N \to \Delta(1620)$

$$A_{1/2}^{S31} \propto \left(2 \frac{A_{1/2}^{S11}}{\cos \theta_S} + 4\sqrt{2} A_{1/2}^{D13} + 4\sqrt{6} A_{3/2}^{D13} \right) \not \propto \left(\frac{\Lambda^2}{\Lambda^2 + Q^2} \right)^{3/2}$$

Gilberto Ramalho (IIP/UFRN, Natal, Brazil) E.M. Structure of Baryons – 3rd Resonance

October 15, 2015 37 / 41

$\gamma^*N \rightarrow N(1535)$: Meson cloud

GR, D Jido and K Tsushima, PRD 85, 093014 (2012)

- --- D Jido, M Doring and E Oset, PRC 77, 065207 (2008) χ Unitary Model Resonance dynamically generated → Meson cloud

Gilberto Ramalho (IIP/UFRN, Natal, Brazil) E.M. Structure of Baryons – 3rd Resonance

October 15, 2015

38 / 41

$\gamma^*N \rightarrow N(1535)$: Meson cloud

GR, D Jido and K Tsushima, PRD 85, 093014 (2012) $(F_2^*)^{mc} \approx -(F_2^*)^B$

---- Spectator quark model ----- Valence

--- D Jido, M Doring and E Oset, PRC 77, 065207 (2008) - χ Unitary Model Resonance dynamically generated → Meson cloud

Gilberto Ramalho (IIP/UFRN, Natal, Brazil) E.M. Structure of Baryons – 3rd Resonance

October 15, 2015

38 / 41

 $\gamma^*N \rightarrow N(1535)$: Relation between $A_{1/2}$ and $S_{1/2}$

Implications of
$$F_2^* = 0$$
 ?

valence and meson cloud

Gilberto Ramalho (IIP/UFRN, Natal, Brazil) E.M. Structure of Baryons – 3rd Resonance

$\gamma^*N \rightarrow N(1520)$ form factors – large Q^2

October 15, 2015

40 / 41

 Results for N(1710) under discussion 2nd radial excitation of N; baryon-meson resonance; mixture of states, ...

- Results for N(1710) under discussion 2nd radial excitation of N; baryon-meson resonance; mixture of states, ...
- Combine the features of the Covariant Spectator Quark Model and Single Quark Transition Model based in valence quark d.o.f.

- Results for N(1710) under discussion 2nd radial excitation of N; baryon-meson resonance; mixture of states, ...
- Combine the features of the Covariant Spectator Quark Model and Single Quark Transition Model based in valence quark d.o.f.
- Use results from CSQM to estimate the SQTM coefficients A, B, C

- Results for N(1710) under discussion 2nd radial excitation of N; baryon-meson resonance; mixture of states, ...
- Combine the features of the Covariant Spectator Quark Model and Single Quark Transition Model based in valence quark d.o.f.
- Use results from CSQM to estimate the SQTM coefficients A, B, C
- Results are improved if we include a parametrization of the amplitude $A_{3/2}^{D13}$ that is dominated by meson cloud effects (according with CSQM)

- Results for N(1710) under discussion 2nd radial excitation of N; baryon-meson resonance; mixture of states, ...
- Combine the features of the Covariant Spectator Quark Model and Single Quark Transition Model based in valence quark d.o.f.
- Use results from CSQM to estimate the SQTM coefficients A, B, C
- Results are improved if we include a parametrization of the amplitude $A_{3/2}^{D13}$ that is dominated by meson cloud effects (according with CSQM)
- Predictions presented for the **negative parity** resonances $N(1650), N(1700), \Delta(1620), \Delta(1700)$

to be tested by future experiments in the range 2-12 GeV² (JLab-12)

- Results for N(1710) under discussion 2nd radial excitation of N; baryon-meson resonance; mixture of states, ...
- Combine the features of the Covariant Spectator Quark Model and Single Quark Transition Model based in valence quark d.o.f.
- Use results from CSQM to estimate the SQTM coefficients A, B, C
- Results are improved if we include a parametrization of the amplitude $A_{3/2}^{D13}$ that is dominated by meson cloud effects (according with CSQM)
- Predictions presented for the **negative parity** resonances $N(1650), N(1700), \Delta(1620), \Delta(1700)$

to be tested by future experiments in the range 2-12 GeV² (JLab-12)

• To facilitate the comparison with the **future data** we provide simple parametrizations for the amplitudes $(A_{1/2} \propto \frac{1}{Q^3}; A_{3/2} \propto \frac{1}{Q^5})$

- Results for N(1710) under discussion 2nd radial excitation of N; baryon-meson resonance; mixture of states, ...
- Combine the features of the Covariant Spectator Quark Model and Single Quark Transition Model based in valence quark d.o.f.
- Use results from CSQM to estimate the SQTM coefficients A, B, C
- Results are improved if we include a parametrization of the amplitude $A_{3/2}^{D13}$ that is dominated by meson cloud effects (according with CSQM)
- Predictions presented for the **negative parity** resonances $N(1650), N(1700), \Delta(1620), \Delta(1700)$

to be tested by future experiments in the range $2-12 \text{ GeV}^2$ (JLab-12)

- To facilitate the comparison with the **future data** we provide simple parametrizations for the amplitudes $(A_{1/2} \propto \frac{1}{O^3}; A_{3/2} \propto \frac{1}{O^5})$
- Amplitude $A_{1/2}$ for $\Delta(1620)$: very sensitive to balance between valence quarks and meson cloud effects

- Results for N(1710) under discussion 2nd radial excitation of N; baryon-meson resonance; mixture of states, ...
- Combine the features of the Covariant Spectator Quark Model and Single Quark Transition Model based in valence quark d.o.f.
- Use results from CSQM to estimate the SQTM coefficients A, B, C
- Results are improved if we include a parametrization of the amplitude $A_{3/2}^{D13}$ that is dominated by meson cloud effects (according with CSQM)
- Predictions presented for the **negative parity** resonances $N(1650), N(1700), \Delta(1620), \Delta(1700)$

to be tested by future experiments in the range 2-12 GeV² (JLab-12)

- To facilitate the comparison with the **future data** we provide simple parametrizations for the amplitudes $(A_{1/2} \propto \frac{1}{O^3}; A_{3/2} \propto \frac{1}{O^5})$
- Amplitude $A_{1/2}$ for $\Delta(1620)$: very sensitive to balance between valence quarks and meson cloud effects

Selected bibliography (part 1)

- $\gamma^*N \rightarrow N(1710)$ transition at high momentum transfer, G. Ramalho and K. Tsushima, Phys. Rev. D **89**, 073010 (2014) [arXiv:1402.3234 [hep-ph]].
- Using the Single Quark Transition Model to predict nucleon resonance amplitudes
 G. Ramalho, Phys. Rev. D 90, 033010 (2014) [arXiv:1407.0649 [hep-ph]].
- $\gamma^*N \rightarrow N^*(1520)$ form factors in the spacelike region G. Ramalho and M. T. Peña, Phys. Rev. D **89**, 094016 (2014) [arXiv:1309.0730 [hep-ph]].
- A covariant model for the $\gamma N \rightarrow N(1535)$ transition at high momentum transfer,

G. Ramalho and M. T. Peña, Phys. Rev. D **84**, 033007 (2011) [arXiv:1105.2223 [hep-ph]].

• A simple relation between the $\gamma N \rightarrow N(1535)$ helicity amplitudes, G. Ramalho and K. Tsushima, Phys. Rev. D 84, 051301 (2011) [arXiv:1105.2484 [hep-ph]].

Selected bibliography (part 2)

- A covariant formalism for the N* electroproduction at high momentum transfer, Review
 G. Ramalho, F. Gross, M. T. Peña and K. Tsushima,
 Exclusive Reactions and High Momentum Transfer IV, 287 (2011) [arXiv:1008.0371 [hep-ph]].
- Studies of Nucleon Resonance Structure in Exclusive Meson Electroproduction, Review (pages 87-92)
 I. G. Aznauryan et al, Int. J. Mod. Phys. E 22, 1330015 (2013) [arXiv:1212.4891 [nucl-th]].
- A pure S-wave covariant model for the nucleon,
 F. Gross, G. Ramalho and M. T. Peña, Phys. Rev. C 77, 015202 (2008) [arXiv:nucl-th/0606029].
- Covariant nucleon wave function with S, D, and P-state components, F. Gross, G. Ramalho and M. T. Peña, Phys. Rev. D 85, 093005 (2012) [arXiv:1201.6336 [hep-ph]].
- Valence quark contributions for the $\gamma^*NP11(1440)$ form factor, G. Ramalho and K. Tsushima, Phys. Rev. D **81**, 074020 (2010)