N* Resonances from (mostly) low to

 (sometimes) high virtualitiesDavid Richards

Jefferson Laboratory

ECT*, Trento, Oct. 2015

Outline

- Spectroscopy: theory and experiment
- Quantum Chromodynamics on the lattice
- Recent Highlights
- Resonances
- phenomenology
- strong decays
- Form factors and Matrix Elements
- Summary and prospects

Baryon Spectroscopy

- No baryon "exotics", ie quantum numbers not accessible with simple quark model; but may be hybrids!
- Nucleon Spectroscopy: Quark model masses and amplitudes states classified by isospin, parity and spin.

- Missing, because our pictures do not capture correct degrees of freedom?
- Do they just not couple to probes?

Capstick and Roberts, PRD58
(1998) 074011

Lattice QCD - I

- Lattice QCD enables us to undertake ab initio computations of many of the lowenergy properties of QCD
- Continuum Euclidean space time replaced by four-dimensional lattice

$$
\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \prod_{x, \mu} d U_{\mu}(x) \prod_{x} d \psi(x) \prod_{x} d \bar{\psi}(x) \mathcal{O}(U, \psi, \bar{\psi}) e^{-S(U, \psi, \bar{\psi})}
$$

where

$$
S(U, \psi, \bar{\psi})=-\frac{6}{g^{2}} \sum_{x} \operatorname{Tr} U_{P l}+\sum_{x} \bar{\psi} M(U) \psi
$$

$$
\psi, \psi \text { are Grassmann Variables }
$$

Importance
$\langle\mathcal{O}\rangle=\frac{1}{\mathcal{Z}} \prod_{x, \mu} d U_{\mu}(x) \mathcal{O}\left(U<\operatorname{det} M(U) e^{-S_{g}(U)}\right.$ Sampling

Hierarchy of Computations

Highly regular problem, with simple boundary conditions - very efficient use of massively parallel computers using data-parallel programming.

Low-lying Hadron Spectrum

Benchmark of LQCD

$$
\begin{aligned}
C(t)=\sum_{\vec{x}}\langle 0| N(\vec{x}, t) \bar{N}(0)|0\rangle & =\sum_{n, \vec{x}}\langle 0| e^{i p \cdot x} N(0) e^{-i p \cdot x}|n\rangle\langle n| \bar{N}(0)|0\rangle \\
& =|\langle n| N(0)| 0\rangle\left.\right|^{2} e^{-E_{n} t}=\sum_{n} A_{n} e^{-E_{n} t}
\end{aligned}
$$

Durr et al., BMW Collaboration

Science 2008
Control over:

- Quark-mass dependence
- Continuum extrapolation
- finite-volume effects (pions, resonances)

Nucleon EM Form Factors

Two form factors

$$
\left\langle p_{f}\right| V_{\mu}\left|p_{i}\right\rangle=\bar{u}\left(p_{f}\right)\left[\begin{array}{cc}
\text { Dirac } & \text { Pauli } \\
\gamma_{\mu} F_{1}\left(q^{2}\right)+i q_{\nu} \frac{\sigma_{\mu \nu}}{2 m_{N}} F_{2}\left(q^{2}\right)
\end{array}\right] u\left(p_{i}\right)
$$

Related to familiar Sach's electromagnetic form factors through

$$
\begin{aligned}
G_{E}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)-\frac{Q^{2}}{\left(2 m_{N}\right)^{2}} F_{2}\left(Q^{2}\right) \\
G_{M}\left(Q^{2}\right) & =F_{1}\left(Q^{2}\right)+F_{2}\left(Q^{2}\right)
\end{aligned}
$$

Electromagnetic Form Factors

Wilson-clover lattices from BMW

Hadron structure at nearly-physical quark masses
Green et al (LHPC), Phys. Rev. D 90, 074507 (2014)

Isovector Charge Radius

Precision Calculations of the Fundamental Quantities in Nuclear Physics - at physical quark masses

Green et al, arXiv:1404.40

Variational Method

Subleading terms \rightarrow Excited states

Construct matrix of correlators with judicious choice of operators

$$
\begin{aligned}
C_{\alpha \beta}\left(t, t_{0}\right) & =\langle 0| \mathcal{O}_{\alpha}(t) \mathcal{O}_{\beta}^{\dagger}\left(t_{0}\right)|0\rangle \\
& \longrightarrow \sum_{n} Z_{\alpha}^{n} Z_{\beta}^{n \dagger} e^{-M_{n}\left(t-t_{0}\right)}
\end{aligned}
$$

Delineate contributions using variational method: solve

$$
\begin{aligned}
& C(t) u\left(t, t_{0}\right)=\lambda\left(t, t_{0}\right) C\left(t_{0}\right) u\left(t, t_{0}\right) \\
& \lambda_{i}\left(t, t_{0}\right) \rightarrow e^{-E_{i}\left(t-t_{0}\right)}\left(1+O\left(e^{-\Delta E\left(t-t_{0}\right)}\right)\right)
\end{aligned}
$$

Eigenvectors, with metric $\mathrm{C}\left(\mathrm{t}_{0}\right)$, are orthonormal and project onto the respective states
\Rightarrow Resolve energy dependence - anisotropic lattice
\Rightarrow Judicious construction of interpolating operators - cubic symmetry

Baryon Operators

Aim: interpolating operators of definite (continuum) JM: $\mathrm{O}^{J M}$

- Lattice does not respect symmetries of continuum: cubic symmetry for states at rest $\quad\langle 0| O^{J M}\left|J^{\prime}, M^{\prime}\right\rangle=Z^{J} \delta_{J, J^{\prime}} \delta_{M, M^{\prime}}$
Starting point

$$
B=\left(\mathcal{F}_{\Sigma_{\mathrm{F}}} \otimes \mathcal{S}_{\Sigma_{\mathrm{S}}} \otimes \mathcal{D}_{\Sigma_{\mathrm{D}}}\right)\left\{\psi_{1} \psi_{2} \psi_{3}\right\}
$$

Introduce circular basis: $\quad \overleftrightarrow{D}_{m=-1}=\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}-i \overleftrightarrow{D}_{y}\right)$

$$
\begin{aligned}
\overleftrightarrow{D}_{m=0} & =i \overleftrightarrow{D}_{z} \\
\overleftrightarrow{D}_{m=+1} & =-\frac{i}{\sqrt{2}}\left(\overleftrightarrow{D}_{x}+i \overleftrightarrow{D}_{y}\right)
\end{aligned}
$$

Straighforward to project to definite spin: $J=1 / 2,3 / 2,5 / 2$

$$
|[J, M]\rangle=\sum_{m_{1}, m_{2}}\left|\left[J_{1}, m_{1}\right]\right\rangle \otimes\left|\left[J_{2}, m_{2}\right]\right\rangle\left\langle J_{1} m_{1} ; J_{2} m_{2} \mid J M\right\rangle
$$

Use projection formula to find subduction under irrep. of cubic group operators are closed under rotation!

Efficient Correlation fns:

- Use the new "distillation" method.

Eigenvectors of
\downarrow Laplacian

- Observe

$$
L^{(J)} \equiv\left(1-\frac{\kappa}{n} \Delta\right)^{n}=\sum_{i=1} f\left(\lambda_{i}\right) v^{(i)} \otimes v^{*(i)}
$$

- Truncate sum at sufficient i to capture relevant physics modes - we use 64: set "weights" f to be unity
- Baryon correlation function
M. Peardon et al., PRD80,0

$$
C_{i j}(t)=\Phi_{\alpha \beta \gamma}^{i,(p, q, r)}(t) \Phi_{\bar{\alpha} \bar{\beta} \bar{\gamma}}^{j,(\bar{q}, \bar{r}) \dagger}(0)
$$

$$
\times\left[\tau_{\alpha \bar{\alpha}}^{p \bar{p}}(t, 0) \tau_{\beta \bar{\beta}}^{q \bar{q}}(t, 0) \tau_{\gamma \bar{\gamma}}^{r \bar{r}}(t, 0)\right.
$$

$$
\left.-\tau_{\alpha \bar{\alpha}}^{p \bar{p}}(t, 0) \tau_{\beta \bar{\gamma}}^{q \bar{r}}(t, 0) \tau_{\gamma \bar{\beta}}^{r \bar{q}}(t, 0)\right]
$$

where

Perambulators

$$
\begin{gathered}
\Phi_{\alpha \beta \gamma}^{i,(p, q, r)}=\epsilon^{a b c} S_{\alpha \beta \gamma}^{i}\left(\boldsymbol{\Gamma}_{1} \xi^{(p)}\right)^{a}\left(\boldsymbol{\Gamma}_{2} \xi^{(q)}\right)^{b}\left(\boldsymbol{\Gamma}_{3} \xi^{(r)}\right)^{c} \\
\tau_{\alpha \bar{\alpha}}^{p \bar{p}}(t, 0)=\xi^{\dagger(p)}(t) M_{\alpha \bar{\alpha}}^{-1}(t, 0) \xi^{(\bar{p})}(0)
\end{gathered}
$$

Excited Baryon Spectrum - I

Construct basis of 3-quark interpolatipg operators in the continuum:

$$
\left(N_{\mathrm{M}} \otimes\left(\frac{3}{2}^{-}\right)_{\mathrm{M}}^{1} \otimes D_{L=2, \mathrm{~S}}^{[2]}\right)^{J=\frac{1}{2}} \quad \text { "Flavor" } \mathbf{x} \text { Spin } \mathbf{x} \text { Orbital }
$$

Subduce to lattice irreps:

Excited Baryon Spectrum - II

Hybrid Baryon Spectrum

Original analysis ignore hybrid operators of form $D_{l=1, M}^{[2]}$

Interpolating Operators

Examine overlaps onto different NR operators, i.e. containing upper components of spinors: ground state has substantial hybrid component

Putting it Together

Subtract ρ
Subtract N
Common mechanism in meson and baryon hybrids: chromomagnetic field with E_{g} ~ 1.2-1.3 GeV

Flavor Structure

$S U(3)_{F}$	S	L	J^{P}		
$\mathbf{8}_{\mathbf{F}}$	$\frac{1}{2}$	1	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	
	$\frac{3}{2}$	1	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	
$\frac{5}{2}^{-}$					
$N_{8}(J)$			$\mathbf{2}$	$\mathbf{2}$	
$1 \mathbf{0}_{\mathbf{F}}$	$\frac{1}{2}$	1	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	
$N_{10}(J)$			1	1	
$\mathbf{1}_{\mathbf{F}}$	$\frac{1}{2}$	1	$\frac{1}{2}^{-}$	$\frac{3}{2}^{-}$	
$N_{1}(J)$			$\mathbf{1}$	$\mathbf{1}$	

One derivative

$S U(3)_{F}$	S	L	J^{P}			
8 F	$\begin{aligned} & \frac{1}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 2 \\ & 2 \\ & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & \frac{1}{2}^{+} \\ & \frac{1}{2}^{+} \\ & \frac{1}{2}^{+} \\ & \\ & \frac{1}{2}^{+} \end{aligned}$	$\begin{aligned} & \frac{3}{2}^{+} \\ & \frac{3}{2}^{+} \\ & \frac{3}{2}^{+} \\ & \frac{3}{2}^{+} \\ & \frac{3}{2}^{+} \end{aligned}$	$\begin{aligned} & \frac{5}{2}^{+} \\ & \frac{5}{2}^{+} \\ & \frac{5}{2}^{+} \end{aligned}$	
$N_{8}(J)$			4	5	3	1
$\mathbf{1 0 F}_{\text {F }}$	$\begin{aligned} & \frac{1}{2} \\ & \frac{1}{2} \\ & \frac{3}{2} \\ & \frac{3}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 2 \end{aligned}$	$\begin{gathered} \frac{1}{2}^{+} \\ \frac{1}{2}^{+} \end{gathered}$	$\begin{aligned} & \frac{3}{2}^{+} \\ & \frac{3}{2}^{+} \\ & \frac{3}{2}^{+} \end{aligned}$	$\frac{5}{2}^{+}$ $\frac{5}{2}^{+}$	$\frac{7}{2}{ }^{+}$
$N_{10}(J)$			2	3	2	1
$\mathbf{1 F}_{\text {F }}$	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{3}{2}$	0 2 1	$\begin{aligned} & \frac{1}{2}^{+} \\ & \frac{1}{2}^{+} \end{aligned}$	$\begin{aligned} & \frac{3}{2}^{+} \\ & \frac{3}{2}^{+} \end{aligned}$	$\begin{aligned} & \frac{5}{2}^{+} \\ & \frac{5}{2}^{+} \end{aligned}$	
$N_{1}(J)$			2	2	2	0

Two derivative

Examine Flavor structure of baryons constructed from u, d s quarks.

- Can identify predominant flavor for each state: Yellow (10F), Blue (8F), Beige (1F).
- $\mathrm{SU}(6) \times \mathrm{O}(3)$ Counting
- Presence of "hybrids" characteristic across all +ve parity channels: BOLD Outline
R. Edwards et al., Phys. Rev. D87 (2013) 054506

Some of our states are missing...

Partial decay widths

Momenta are quantised \rightarrow discrete spectrum of
energies. Even above threshold at our quark masses we should see (close-to?) these energies in spectrum

Isovector meson spectrum

States unstable under strong interactions

Meson spectrum on two volumes: dashed lines denote expected (noninteracting) multi-particle energies.

Allowed two-particle contributions - momenta

- governed by cubic symmetry of volume

Calculation is incomplete.

Momentum-dependent I = $2 \pi \pi$ Phase Shift

Dudek et al., Phys Rev D83, 071504 (2011)

Include two-body operators

Operator basis $\quad \mathcal{O}_{\pi \pi}^{\Gamma, \gamma}(|\vec{p}|)=\sum_{m} \mathcal{S}_{\Gamma, \gamma}^{\ell, m} \sum_{\hat{p}} Y_{\ell}^{m}(\hat{p}) \mathcal{O}_{\pi}(\vec{p}) \mathcal{O}_{\pi}(-\vec{p})$
Total momentum zero - pion momentum $\pm p$

Luescher: energy levels at finite volume \leftrightarrow phase shift at corresponding k

Reinventing the quantum-mechanical wheel

Thanks to Raul Briceno

(in $1+1$ dimensions)

Periodicity:

$$
L p_{n}=2 \pi n
$$

Reinventing the quantum-mechanical wheel

Two particles:

Reinventing the quantum-mechanical wheel

Two particles:

Reinventing the quantum-mechanical wheel

Reinventing the quantum-mechanical wheel

Periodicity:

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

Reinventing the quantum-mechanical wheel

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

Reinventing the quantum-mechanical wheel

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

Reinventing the quantum-mechanical wheel

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

Reinventing the quantum-mechanical wheel

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

Reinventing the quantum-mechanical wheel

$$
L p_{n}^{*}+2 \delta\left(p_{n}^{*}\right)=2 \pi n
$$

I=2 and Resonant I = $1 \pi \pi$ Phase Shift

$\operatorname{det}\left[e^{2 i \boldsymbol{\delta}(k)}-\mathbf{U}_{\Gamma}\left(k \frac{L}{2 \pi}\right)\right]=0$
Matrix in $l \quad$ lattice irrep
Dudek et al., Phys Rev D83, 071504 (2011); arXiv:1203.6041

Dudek, Edwards, Thomas, Phys. Rev. D 87, 034505 (2013)

Inelastic in $\pi \pi$ KK channel

Wilson, Briceno, Dudek, Edwards, Thomas, arXiv:1507.02599

First - and Successful - inelastic

$\operatorname{det}\left[\delta_{i j} \delta_{J J^{\prime}}+i \rho_{i} t_{i j}^{(J)}\left(E_{\mathrm{cm}}\right)\left(\delta_{J J^{\prime}}+i \mathcal{M}_{J J^{\prime}}^{\vec{P} \Lambda}\left(p_{i} L\right)\right)\right]=0$

Parametrized as phase shift + inelasticity

$$
t_{i i}=\frac{\left(\eta e^{2 i \delta_{i}}-1\right)}{2 i \rho_{i}}, t_{i j}=\frac{\sqrt{1-\eta^{2}} e^{i\left(\delta_{i}+\delta_{j}\right)}}{2 \sqrt{\rho_{i} \rho_{j}}}
$$

Dudek, Edwards, Thomas, Wilson, PRL, PRD

Roper Resonance

Electromagnetic (Weak) Properties

$$
\begin{aligned}
& \text { e.g. } \\
& " 2 "\rangle \\
& N *\rangle
\end{aligned}
$$

$$
\begin{array}{lll}
& \langle 0| J_{\mu}|" 2 "\rangle & \langle " 2 "| J_{\mu}|" 2 "\rangle \\
\text { e.g. } & \langle 0| A_{\mu}\left|\pi^{\prime}\right\rangle \text { e.g. } & \langle N *| V_{\mu}|N *\rangle \\
& \langle 0| u u d|N *\rangle &
\end{array}
$$

$$
\begin{aligned}
& \langle " 1 "| J_{\mu}|" 2 "\rangle \\
& \langle\pi| V_{\mu}|\pi \pi\rangle \\
& \langle N| V_{\mu}|N *\rangle
\end{aligned}
$$

\qquad

Pseudoscalar Decay Constants

e.g. Chang, Roberts, Tandy, arXiv:1107.4003

- Expectation from WT identity $f_{\pi_{N}} \stackrel{\text { e.g }}{\equiv} 0, N \geq 0$
- Compute in LQCD
$C_{A_{4}, N}(t)=\frac{1}{V_{3}} \sum_{\vec{x}, \vec{y}}\langle 0| A_{4}(\vec{x}, t) \Omega_{N}^{\dagger}(\vec{y}, 0)|0\rangle \longrightarrow e^{-m_{N} t} m_{N} \tilde{f}_{\pi_{N}}$
where $\Omega_{N}=\sqrt{2 m_{N}} e^{-m_{N} t_{0} / 2} v_{i}^{(N)} \mathcal{O}_{i}$
E. Mastropas, DGR, arXiv:1403.5575

Infinite-volume matrix elements: need vacuum to two-body matrix elements and energy-dependent amplitudes

Lambda (1405)

Lattices for Hadron Physics

- Calculations at physical light-quark masses: direct comparison with experiment
- Several fine lattice spacings: controlled extrapolation to continuum, and to reach high Q2
- Hypercube symmetry: simplified operator mixing
- Variational method, to control and extract excited states

$$
\text { Cost }_{\text {traj }}=C \xi^{1.25}\left(\frac{\mathrm{fm}}{a_{s}}\right)^{6} \cdot\left[\left(\frac{L_{s}}{\mathrm{fm}}\right)^{3}\left(\frac{L_{t}}{\mathrm{fm}}\right)\right]^{5 / 4}
$$

Major Effort by USQCD

Summary

- Determining the quantum numbers and the study of the "single-hadron" states a solved problem
- Lattice calculations used to construct new "phenomenology" of QCD
- Quark-model like spectrum, common mechanism for gluonic excitations in mesons and baryons. LOW ENERGY GLUONIC DOF
- Prediction - Additional states in baryon spectrum associated with hybrid dof.
- Formalism for extracting scattering amplitudes, including inelastic channels, developed - applied for first time to meson sector
- COUPLED-CHANNEL METHODS ARE KEY
- Formalism for extracting infinite-volume matrix elements from calculations at finite volume developed - Next Talk
- Next step for lattice QCD:
- Baryons more challenging.... ...New improved methods in progress...
- Calculations at closer-to-physical pion masses - isotropic lattices

The elephant in the room...

Calculation is incomplete.

States unstable under strong interactions

Meson spectrum on two volumes: dashed lines denote expected (noninteracting) multi-particle energies.
Allowed two-particle contributions governed by cubic symmetry of volume

