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Much Excitement About Nothing?

adapted freely from William Shakespeare

Observation of the hadron mass spectrum as well as of elastic and transition  
form factors can be used to study the long-range behavior of QCD’s interaction. 

Properties of excited hadron states are more sensitive to the long-range behavior  
of the strong interaction than those of ground states.
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Quantum Chromodynamics 

• QCD is the gauge theory that describes strong interactions. 

• Description of interactions between quarks and gluons which 
form hadrons we observe in Nature. 

• The formation of hadronic bound states via constituents is 
an inherently nonperturbative problem.  

• It involves precise knowledge of the infrared (long distance) 
regime of QCD and the dynamical generation of a constituent 
quark mass.  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The Lagrangian of QCD

LQCD =  ̄i(i�
µ@µ �m) i � gGa

µ ̄i�
µT a

ij j �
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The key to complexity in QCD lies the gluon field strength tensor.



This complexity also affects the bare quark-gluon vertex in a nonperturbative manner!
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The key to complexity in QCD lies the gluon field strength tensor.

It generates self-interactions with far-reaching consequences  
for hadron phenomenology.
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Nonperturbative Continuum Tools for QCD

06/29/13

Equation of motion: encoding observables

Classical Mechanics Quantum Field Theory

!4

Principle of Least Action

Equations of Motion (EoM)

Euler-Lagrange Equation Dyson-Schwinger Equations

courtesy of Sishue Qin



The propagator can be obtained from QCD’s gap equation: the  Dyson-Schwinger equation (DSE) 
for the dressed-fermion self-energy, which involves the set of infinitely many coupled equations:

S�1(p)|p2=�2 = i� · p + m(⇥)
where ⇥ is the renormalization point.

QCD’s Dyson-Schwinger Equations

S�1(p) = Z2(i� · p + mbm) + ⇥(p) := i� · p A(p2) + B(p2)

⇥(p) = Z1

� � d4q

(2⇤)4
g2Dµ⇥(p� q)

⇥a

2
�µS(q)�a

⇥(q, p)

with the running mass function M(p2) = B(p2)/A(p2).

Dµ⇥ : dressed-gluon propagator
�a

⇥(q, p) : dressed quark-gluon vertex
Z2 : quark wave function renormalization constant
Z1 : quark-gluon vertex renormalization constant

each satisfies  
it’s own DSE

[
p

]−1 =
p

[ ]−1 +
p

q = p− k

k
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S(p) =
Z(p2)

i� · p +M(p2)
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➪ For light quarks the Higgs mechanism is almost irrelevant!

S(p) =
Z(p2)

i� · p +M(p2)
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Motivation: Connection with Real World
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How does one incorporate the dressed-quark mass function M(p2)  
in study of mesons and baryons? Behavior of M(p2) is essentially  
a quantum field theoretical effect. 

In quantum field theory a meson(nucleon) appears as a pole in  

the four(six)-point quark Green functions amplitude. 

Residue is proportional to meson’s Bethe-Salpeter or nucleon’s 

Faddeev amplitude. 

Poincaré covariant Bethe-Salpeter/Faddeev equation sum all 

possible exchanges and interactions that can take place between 

dressed-quarks (Q2 ≫ M2).

Motivation: Connection with Real World



Meson and Baryon Structure and Confinement Properties



Mesons
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Bethe-Salpeter Equations for QCD Bound States 

�(P, p) =

Z
d4k

(2⇡)4
K(P, p, k)S(k � P

2 )�(P, k)S(k + P
2 )

K(P, p, k) = �Z2
2 G(q2)
q2

✓
�a

2
�µ

◆
Tµ⌫(q)

✓
�a

2
�⌫

◆
Rainbow-Ladder truncation:
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Bethe-Salpeter Equations for QCD Bound States 

Tough part: how to model nonpertubative QCD  
interaction beyond rainbow-ladder truncation?

�(P, p) =

Z
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�Pn(p, P ) = �5
⇥
i IDEPn(p, P ) + � · P FPn(p, P )

+ � · p (p · P )GPn(p, P ) + �µ⌫pµP⌫ HPn(p, P )
⇤

General solution for Poincaré 
 invariant ground- and  

excited-state amplitudes
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Bogolubsky et al. (2009) 

Use effective interaction which reproduces Lattice QCD and DSE results for gluon-
dressing function: infrared massive fixed point; ultraviolet massless propagator.
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Bogolubsky et al. (2009) 

Use effective interaction which reproduces Lattice QCD and DSE results for gluon-
dressing function: infrared massive fixed point; ultraviolet massless propagator.
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�(P 2)�Pn(P, p) =

Z
d4k

(2⇡)4
K(P, p, k)�Pn(k, P )

The Bethe-Salpeter equation is an eigenvalue problem:

�Pn(k, P ) = S(k � P
2 )�(P, k)S(k +

P
2 ) : Bethe-Salpeter wave function
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P
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The kernel K(P 2
) has a complete set of real eigenvectors �i with eigenvalues

�i(P 2
) which are ordered as �0(P 2

) > �1(P 2
) > �2(P 2

) > .... > �i(P 2
).
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Eigenvalue spectrum is not limited to the ground state.  

Excited states with smaller eigenvalues can be determined  
with the same iterative methods.  

Usage of Gram-Schmidt orthogonalization process:  
 

Modern and more efficient approach is the implicitly restarted  
Arnoldi method (IRAM).  

Based on the stabilized Gram-Schmidt orthogonalization in the  
Krylov subspace obtained by iteration:  
 

The Arnoldi method generalizes the Gram-Schmidt process by 

computing the eigenvalues of the orthogonal projection of K  

onto the Krylov subspace  ⇒ yields smaller eigenvalues.

|�̃i = |�i � h�0 |�i
h�0 |�0i

|�0i

Sr :=
�
�,K�,K2�,K3�, ....,Kr�1�
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Examples of eigenvalue spectrum  —  Pion
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Examples of eigenvalue spectrum  —  Nucleon
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EP1(p, P ) =

1X

m=0

Em
P1
(p, P )Um(cos ✓)Chebyshev expansion of 1st excited state:
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The two models correspond to different parametrizations of the gluon-dressing 
function neither model reproduces equally well ground and excited states. 

➪   Must go beyond rainbow-ladder truncation in DSE and BSE !

E.	  Rojas,	  B.	  El-‐Bennich	  &	  J.P.B.C.	  de	  Melo	  (2014)
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So far, we have first results for the heavy-light systems: D mesons 
 
 
 
 
 
 
 
 
 
 
However, masses too large and mass difference too small.  

This was expected, strong mass asymmetry doesn’t allow for simple 
quark-gluon vertex and rainbow-ladder truncation. 

E.	  Rojas,	  B.	  El-‐Bennich	  &	  J.P.B.C.	  de	  Melo	  (2014)

Open-Charm Mesons



Nucleons



23

Covariant Fadeev Equation

R.T. Cahill, C.D. Roberts, J. Praschifka (1989) 

M. Oettel, L. von Smekal, R. Alkofer (2001) 

G. Eichmann, R. Alkofer, A. Krassnigg, D. Nicmorus (2010) 

Courtesy of G. Eichmann
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Covariant Fadeev Equation

R.T. Cahill, C.D. Roberts, J. Praschifka (1989) 

M. Oettel, L. von Smekal, R. Alkofer (2001) 

G. Eichmann, R. Alkofer, A. Krassnigg, D. Nicmorus (2010) 

P
pd

pq

Ψa =
P

pq

pd

Ψb
Γ
a

Γb

Quark exchange  
ensures Pauli statistics Quark

Diquark (non point-like)

Linear homogeneous matrix equation yields Poincaré covariant Faddeev amplitude  
(wave function) that describes relative motion of quark-diquark within nucleon.
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Tractable Faddeev equation is based on the observation that an interaction 
which describes color-singlet mesons also generates  
non point-like quark-quark (diquark) correlations in the  
color anti-triplet channel.

Diquark correlations are a dynamical consequence of strong-coupling in 
QCD: scalar & axial-vector diquarks.

The same mechanism that produces an almost massless pion from two 
dynamically-massive quarks (DCSB) forces a strong correlation between  
two quarks in color anti-triplet channels within a baryon.

Diquark correlations employed in Faddeev equation are not point-like.

Typically, r0+ ~ rπ  &  r1+ ~ rρ  (actually 10% larger).

They have soft form factors.

6333 ⊕=⊗SU(3):

Diquark-Quark Descr iption
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Nucleon Electromagnetic Form Factors

Composite	  nucleon	  must	  interact	  with	  	  
photon	  via	  nontrivial	  current	  constrained	  
by	  Ward-‐Takahashi	  idenJJes!
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Nucleon Electromagnetic Form Factors

  Dressed quark propagator solutions    
  of QCD’s Dyson-Schwinger equations.  

                ⇒  momentum dependence !

Composite	  nucleon	  must	  interact	  with	  	  
photon	  via	  nontrivial	  current	  constrained	  
by	  Ward-‐Takahashi	  idenJJes!
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Proton’s Sachs Electric and Magnetic Form Factors   

I.C. Cloët, G. Eichmann, B. El-Bennich, T. Klähn and C.D. Roberts, Few Body Syst. 46 (2009)
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Exposing the dressed mass function
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Ground and Radially Excited States of the Nucleon
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Roper Quark-Core Mass

RDSE

core

RContact

core

RDCCM

bare

Mass 1.73 1.72 1.76

DSE : Faddeev amplitude of 1st excited state with dressed quark propagators  
          J. Segovia, B. El-Bennich, E. Rojas, I.C. Cloët, C.D. Roberts, S.-S. Xu, H.-S. Zhong, Phys. Rev. Lett. (2015)

Contact : Faddeev amplitude of 1st excited state with contact interaction gap equation  
         D.J. Wilson, I. C. Cloët, L. Chang, C.D. Roberts, Phys. Rev. C (2012)

DCCM : Dynamical Coupled Channel Model  
         N. Suzuki, B. Julio-Díaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, Phys. Rev. Lett. (2010)
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EBAC  

& the Roper resonance 

!  EBAC%examined%the%dynamical%
origins%of%the%two%poles%
associated%with%the%Roper%
resonance%are%examined.%%

!  Both%of%them,%together%with%
the%next%higher%resonance%in%
the%P11%par=al%wave%were%
found%to%have%the%same%
origina=ng%bare%state%

!  Coupling%to%the%mesonA
baryon%con=nuum%induces%
mul=ple%observed%resonances%
from%the%same%bare%state.%%

!  All%PDG%iden=fied%resonances%
consist%of%a%core%state%and%
mesonAbaryon%components.%

Craig%Roberts:%Observing%Dynamical%Chiral%Symmetry%Breaking.%%JLab%16%May%2011%A%Nucleon%Resonance%Structure%with%the%CLAS12%Detector%A%41pgs%

38%

N.$Suzuki$et%al.,$Phys.Rev.Le2.$104$(2010)$042302%%

Roper Quark-Core Mass
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Chebyshev Moments
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Chebyshev Moments

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

i S
1(
p2
)/

0 S
1(
0)

|p| [GeV]

0th Chebyshev
1st Chebyshev
2nd Chebyshev

First three Chebyshev moments of leading S1  
component of 1st excited state’s Faddeev amplitude 

Zeroth Chebyshev moments of all S-wave components in the Faddeev wave function.  
S1 is associated with the baryon’s scalar diquark;  A2 , A3 ,  A5 associated with axialvector correlation.

Nucleon

1st excited state
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Dirac and Pauli Transition Form Factors

DSE-‐Faddeev	  solu/on	  

Contact	  interac/on	  

Meson	  Cloud	  Correc/on



Computed spectrum of 1st radial excitations for  
pseudoscalar (un)flavored mesons based on a  
rainbow-ladder kernel. 

The meson spectrum obtained clearly indicates  
that the ladder approximation is neither appropriate  
for radial excitations of l ight mesons nor for  
heavy-light (charmed) mesons.  

Along similar l ines we show that the first radial  
excitation of the 3-quark nucleon core using a  
quark-diquark Faddeev kernel.  

The mass found for this excited nucleon agrees very  
well with that of the bare unclothed quark core.

Conclusive Remarks


