USC Department of Physics Graduate Seminar

GRAPHENE NANORIBBONS

Nahid Shayesteh,

Carbon based material

- Discovery and innovation of graphen
- Graphene nanoribbons structure and...

FUNCTIONS...

Carbon-based nanoelectronics....

- **1**. Replace silicon-based micro electronics
- 2. Exhibit superior physical properties in many aspects.
- **3.** Industrial applications

History...

□ The term *graphene*

✓ <u>1962—Hanns-Peter Boehm</u> coined graphene as a combination of <u>graphite</u> and the suffix <u>—ene</u> to describe single-layer carbon foils.

Hanns-Peter Boehm: Born January 9, 1928 in Paris

German Chemist

Professor Emeritus in Ludwig-Maximillians University in Munich,Germany

Pioneer of graphene research

Innovation...

□Mitsutaka Fujita (藤田 光孝 Fujita Mitsutaka)

 Introduced graphene nanoribbons as a theory model to examine the edge and nanoscale size effect in graphene.

✓ Japanese Physicist

✓ Born: August 16, 1959

Died: March 18, 1998

Terminology...

Definition: thin strips of graphene

- Graphene nanoribbons
- ✓ GNR's
- Nano-graphene ribbons

SOUTH CAROLINA. Lattice Structure ...

□ The structure of Graphene consists of...

- Honeycomb Lattice
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
- 2 Dimension thin layer of
 - Carbon atoms

Basic structure of carbon hexagon of graphene

Chemical Structures...

The carbon-carbon bond length in graphene is about 0.142 nanometers.

Graphene sheets stack to form graphite.

□ One stack of 3 million sheets = 1 millimeter thick.

Graphene is the basic structural element of some carbon allotropes including...

- ✓ Graphite
- Charcoal
- Carbon Nanotubes
- ✓ Fullerence

Nahid Shayesteh, PhD Candidate, M.S.C., B.S.

□The *Energy* gap of the 1 dimensional graphene nanoribbons (GNRs), can be...

- Produced lithographically by patterning 2 dimensional graphene through a chemical route
- Different crystallographic orientations
- Tuned with varying widths

Nahid Shayesteh, PhD Candidate, M.S.C., B.S.

In Theory...

Graphene projections...

- Display hopeful electronic properties.
- Possess very high electron or hole mobility (comparable to the properties observed in CNTs)

Graphene is considered a semimetal, because...

- There is no present band gap (band gap is zero),
- There is a narrow channel width (transverse direction) & a band gap can be provided.

Graphenenanoribons (GNRs) can be obtained by unzipping the single wall carbon nanotubes.

Nahid Shayesteh, PhD Candidate, M.S.C., B.S.

Electronic Properties...

□ The ribbon form of graphene (GNR)

- Inherited almost all of the attractive properties of the carbon nanotube and graphene.
- Additional benefit of a tunable band gap.
- Tunable semiconducting behaviors vis a vis changing ribbon width.

□ The first bandgap measurements are made by...

- Phaedon Avouris.
- Philip Kim

Opening of energy gaps...

• Reported: 0.5 eV in a 2.5 nm wide armchair ribbon

Electronic Properties...

Zigzag & Armchair GNRs are metallic or semiconducting electronic properties that depends on the width of the nanoribbon.

Electronic properties depend on...

- the edge shape
 - 1. armchair
 - 2. zigzag

Armchair GNR's...

- Liang work shows certain armchair GNRs can display semiconducting behavior.
- Armchair ribbon is semiconducting when
 - ✓ N=3p or
 - ✓ N=3p+1
 - #of dimer lines N=3p+2 is semimetal behavior (p is integer).

Zigzag GNR's...

- **Zigzag GNRs are either...**
- Semiconducting
 Metallic
 And
 Expected to be more
 - conductive

Nahid Shayesteh, Department of Physics

15

New types of the graphene base material can be achieved.

Carbon based material have different application depend on their structure

References...

1.Bu, H., et al., Atomistic simulations of mechanical properties of graphene nanoribbons. Physics Letters A, 2009. **373**(37): p. 3359-3362.
2.Eduardo V Castro1, N.M.R.P., J M B Lopes dos Santos1, and F.G.a.A.H.C. Neto4, *Bilayer graphene: gap tunability and edge properties.* Journal of Physics, 2010. **129**(1): p. 012002(8).
3.connor, O., Liu,, *CNTFET Modeling and Recongurable Logic-Circuit Design.* leee Transactions on Circuits and Systems, 2007. **54(11)**: p. 2365-2379.
4.Group, C.M., *Moore' s Law: More or Less.* www. cmg.org/measureits/issues/mit41/m_41 2.html, 2010.
5.Novoselov, K.S., *Electronic properties of graphene.* phys. stat. sol. ,

2007. 244(11 / DOI 10.1002/pssb.200776208): p. 4106-4111.

Thank you for your time and consideration. I will be more than happy to answer any questions or concerns that you may have at this time.