THE DARK SIDE OF THE COSMOLOGICAL CONSTANT

CAMILO POSADA AGUIRRE

University of South Carolina Department of Physics and Astronomy

10/04/11

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

General Relativity in a Nutshell

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- 2 Einstein's Greatest Blunder
- 3 The FLRW Universe
- A Dynamical Universe
- 6 Resurrection of Λ
- 6 Conclusions
- 7 References

General Relativity in a Nutshell

- 2 Einstein's Greatest Blunder
- 3 The FLRW Universe
- 4 A Dynamical Universe
- 5 Resurrection of Λ
- 6 Conclusions
- References

Newton's apple

• Newtonian gravity \Rightarrow field equation for the gravitational potential:

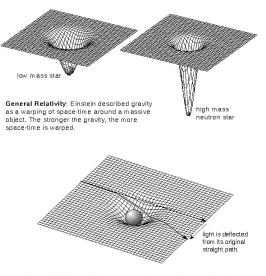
$$abla^2 \Phi = 4\pi G
ho$$

• The gravitational force between two masses, is given by:

$$ec{F}=-Grac{mM}{r^2}\hat{e_r}$$

- This model (although useful), shows many problems:
 - Instantaneous action at distance → Newton: "Hypotheses non fingo" (I feign no hypotheses)
 - Fail to explain the perihelion precession of Mercury's orbit

Gravity is Geometry

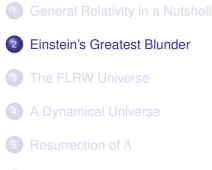

- (1916) Einstein published the General Relativity led by the following arguments:
 - Generalize Newtonian Gravity
 - No preferred coordinate system
 - Local conservation of energy-momentum for any space-time

$$R_{\mu\nu}-\frac{1}{2}Rg_{\mu\nu}=8\pi T_{\mu\nu}$$

- Geometrized units: c = G = 1.
- $1 = \frac{G}{c^2} = 7.425 \times 10^{-28} mkg^{-1}$. Mass measured in meters!.
- $T_{\mu\nu} =:$ energy momentum tensor
- *R*_{µν}: Ricci tensor
- *g*_{µν}: metric tensor
- Wheeler: "Space acts on matter telling it how to move. In turn, matter reacts back on space, telling it how to curve"

THE DARK SIDE OF THE COSMOLOGICAL CONSTANT

General Relativity in a Nutshell


General Relativity: Light travels along the curved space taking the shortest path between two points. Therefore, light is deflected toward a massive object! The stronger the local gravity is, the greater the light path is bent.

ヘロア 人間 アメヨアメヨア

ъ

Einstein's Greatest Blunder

Outline

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

- 6 Conclusions
- 7 References

Einstein's Greatest Blunder

Einstein's Greatest Blunder

- Einstein equations predicts a dynamical universe
- The cosmological observations around (1917), showed a very low relative velocity of the stars
- A man with no faith. Einstein introduces Λ:

$$R_{\mu
u}-rac{1}{2}Rg_{\mu
u}+\Lambda g_{\mu
u}=8\pi GT_{\mu
u}$$

Far away, Einstein demanded:

$$\Lambda = 8\pi G\rho = a^{-2}$$

• This is absurdly ad-hoc and Bad Physics too because: $\rho \sim a^{-3}!!$

• (1917) W. de Sitter finds a solution to the Einstein equations with $\Lambda \neq 0$ and $T_{\mu\nu} = 0$

$$egin{aligned} R_{\mu
u} &-rac{1}{2}Rg_{\mu
u}+\Lambda g_{\mu
u}=0 \ ds^2&=-\left(1-rac{\Lambda r^2}{3}
ight)dt^2+rac{dr^2}{\left(1-rac{\Lambda r^2}{3}
ight)}+r^2d\Omega^2 \end{aligned}$$

- Dynamics of the Universe dominated by Λ
- (1924) Friedmann finds the evolutive homogeneous solution (Death of Λ?)
- (1927) Lemaitre finds a solution which describes an expanding universe ⇒ Big Bang!

- (1929) Hubble observations \Rightarrow Expanding Universe!
- Einstein: "If there is no quasi-static world, then away with the cosmological constant"
- After open, Pandora's box is not easily closed again. A is a legitimate additon to the Field Equations
- Eddington keeps Λ. May solve the problem of the age of the Universe:

 $t_{uni} \sim 10^{12} s$ Age of the Earth

- The Hubble parameter is checked: age problem solved $\Rightarrow \Lambda$ is unnecessary
- (1967) Λ reborns. It may explain the strong redshift of some quasars ($z \approx 2$)

The FLRW Universe

- General Relativity in a Nutshell
- 2 Einstein's Greatest Blunder
- 3 The FLRW Universe
- 4 Dynamical Universe
- 5 Resurrection of Λ
- 6 Conclusions
- References

The Friedmann-Lemaitre-Robertson-Walker metric

 In a good approximation, the universe at the large-scale (10¹³ Mpc), can be described by the Robertson-Walker metric:

$$ds^2 = -dt^2 + R(t)^2 \left[\frac{dr^2}{1-kr^2} + r^2 d\Omega^2\right]$$

- k: parameter which defines the space-time curvature
- *R*(*t*): scale factor which equals 1 at *t*₀
- $r^2 d\Omega^2 = d\theta^2 + sin^2 \theta d\phi^2$ metric on a two-sphere
- Redshift:

$$1+z=\frac{\lambda_o}{\lambda_e}=\frac{R_o}{R(t)}$$

(日) (日) (日) (日) (日) (日) (日)

A Dynamical Universe

- General Relativity in a Nutshell
- 2 Einstein's Greatest Blunder
- 3 The FLRW Universe
- A Dynamical Universe
- 5 Resurrection of Λ
- 6 Conclusions
- References

Dynamics of a FLRW Universe

 Standard cosmology → Universe is modelled as an ideal fluid, determined by an energy density ρ and a pressure p:

$$T_{\mu
u}=egin{pmatrix} -
ho & 0 & 0 & 0 \ 0 &
ho & 0 & 0 \ 0 & 0 &
ho & 0 \ 0 & 0 &
ho & 0 \ 0 & 0 & 0 &
ho \end{pmatrix}$$

• For this energy-momentum tensor, the Einstein equations gives:

$$\left(\frac{\dot{R}}{R}\right)^2 = \frac{8}{3}\pi G\rho - \frac{k}{R^2} = H^2$$

• H is the **Hubble parameter**. This equation describes the dynamics of an expanding Universe

A Dynamical Universe

The second Friedmann equation reads:

$$rac{\ddot{R}}{R}=-rac{4\pi G}{3}(
ho+3P)$$

• Exists a critical value for ρ such that (k = 0):

$$\rho_{crit} = \frac{3H^2}{8\pi G}$$

• $\ddot{R} \neq 0 \rightarrow$ General Relativity predicts an expanding universe!!. Einstein modifies his equations to keep a static universe

$$H^2=rac{8\pi G
ho}{3}-rac{k}{a^2R_0^2}+rac{\Lambda}{3}$$
 $rac{\ddot{R}}{\ddot{R}}=-rac{4\pi G}{3}(
ho+3P)+rac{\Lambda}{3}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A Dynamical Universe

The Einstein's biggest blunder?

- Obervations by Hubble pointed out an expanding universe!
- Einstein attempted to put the genie back in the bottle but he failed.
- Eddington: "Λ is a legitimate addition to the Einstein equations"

$$abla_{\mu
u}(G_{\mu
u}+\Lambda g_{\mu
u})=0$$

- A only can removed if is less than $G_{\mu\nu}$!
- A remains a focal point of cosmology (accelerated cosmological expansion!)
- A in QED is associated to the energy density of the vacuum $\rho_{\Lambda} \neq 0$

Resurrection of A

- General Relativity in a Nutshell
- 2 Einstein's Greatest Blunder
- 3 The FLRW Universe
- A Dynamical Universe
- 6 Resurrection of Λ
- 6 Conclusions
- 7 References

Resurrection of A

Dark Energy

$$rac{8}{3}\pi G
ho + rac{\Lambda}{3} - rac{k}{B^2} = H^2$$

$$\Omega_m + \Omega_\Lambda + \Omega_k = 1$$

- $\Omega_m = \frac{8\pi G\rho}{3H^2}$: matter (baryonic and non-barionic)
- Ω_Λ: Dark energy density
- Ω_k: effect of the space-time curvature
- CMB observations appears to point Ω_k ≈ 0
- According to the $\wedge CDM$ model: $\Omega_m = \Omega_b + \Omega_{darkmatter}$
- Current observations gives:

 $\Omega_b\sim 0.0227\pm 0.0006$

 $\Omega_\Lambda \sim 0.74 \pm 0.03$

The Universe is filled of unknown dark energy!! Λ is here to stay!

Conclusions

Outline

General Relativity in a Nutshell

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

э.

- 2 Einstein's Greatest Blunder
- 3 The FLRW Universe
- A Dynamical Universe
- 5 Resurrection of Λ
- 6 Conclusions
- References

Conclusions

Conclusions

- The cosmological constant is a completely natural term in the Einstein equations
- Current observations suggest that Λ could be very important in the cosmological scenario
- The nature of Λ, and therefore of the 70% of the universe, is still a mystery to be solved

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

References

- General Relativity in a Nutshell
- 2 Einstein's Greatest Blunder
- 3 The FLRW Universe
- A Dynamical Universe
- 5 Resurrection of Λ
- 6 Conclusions

References

References

- E. Bianchi and C. Rovelli, "*Why all these prejudices against a cosmological constant?*", arXiv: astro/ph 1002.3966 (2010)
- S. Carroll, "The cosmological constant", Living Rev. Rel. 4 (2001)
- J. Hartle, *Gravity*, Addison-Wesley (2003)
- L. Krauss, and M. Turner, "*The cosmological constant is back*", arXiv: astro-ph/9504003 (1995)
- S. Weinberg, "*The Cosmological Constant Problem*", Rev. Mod. Phys. 61 (1989)
- http://www.astronomynotes.com/relativity/s3.html