University of South Carolina

Spring 24

Midterm ExamInstructor: Ralf W. Gothe2/29/24

- 1) Decay Rates
- 1.1) (3) The carbon isotope ${}^{14}_{6}C$ is produced in nuclear reactions of cosmic rays in the atmosphere. It is β -unstable.

$${}^{14}_{6}C \rightarrow {}^{14}_{7}N + e^- + \bar{\nu}_e + 0.156 \, MeV,$$

with a lifetime of 8270 years. It is found that $1\,g$ of carbon, newly extracted from the atmosphere, has on average 15.3 such radioactive decays per minute. What is the proportion of the ${}^{14}_{\ 6}C$ isotope in carbon?

1.2) (2) You have extracted 1 g of carbon from recently excavated human bones and measured 3.83 decays per minute. How old are the bones?

2) The Davis Experiment and the Solar Neutrino Problem

2.1) [7 P] Calculate the threshold energy for electron-neutrino ν_e absorption by ${}^{37}_{17}Cl$. Start by formulating the reaction. Fill in for the question marks and interpret your result! Assume the neutrino is massless as well as $m_nc^2 = 939.566 MeV$, $m_Hc^2 = 938.783 MeV a_V = 15.67 MeV$, $a_S = 17.23 MeV$, $a_C = 0.714 MeV$, $a_A = 93.15 MeV$, and

 $\delta = \begin{cases} -11.2 \, MeV & \text{for ?-? nuclei} \\ 0 \, MeV & \text{for ?-? nuclei} \\ +11.2 \, MeV & \text{for ?-? nuclei} \end{cases}$

2.2) [3 P] Do recoil corrections influence the significance of your results? Show why or why not!

3) Cross Section

- 3.1) **[3 P]** Calculate the number of target nuclei per cm^2 for a $0.25 \,\mu m$ thin gold (¹⁹⁷Au) target! The density of gold is $\rho_{Au} = 19.3 \, \frac{g}{cm^3}$.
- 3.2) [2 P] Calculate the number of beam particles per s for an α (⁴He⁺⁺) beam of 1 nA!
- 3.3) [2 P] Calculate from the luminosity and a given event rate $\dot{N} = 471963 Hz$ the total cross section in *barn* for $\alpha(^{197}Au,^{197}Au)\alpha!$

Signature:

4) General Relativistic Kinematics

- 4.1) [2 P] Derive the fully relativistic function $E(p, m_0)$ from $\gamma = (1 \beta^2)^{-\frac{1}{2}}$, $m = \gamma m_0$, and $E = mc^2$. Distinguish clearly between rest mass m_0 and total mass m.
- 4.2) [2 P] How are $\beta = \frac{v}{c}$ and $\gamma = (1 \beta^2)^{-\frac{1}{2}}$ defined by the rest mass m_0 , the momentum p and the total energy E for a given particle?
- 4.3) [3 P] How is the invariant mass of a two body system defined? How is it related to m_{Σ}^* , the total relativistic mass in the CMS? When is the invariant mass the sum of the two rest masses?
- 4.4) [+2 P] What happens if a particle with no rest mass moves through a central gravitational field? Explain why!

5) Electron Scattering Kinematics

- 5.1) [1 P] Sketch the t channel Feynman diagram of elastic electron scattering off a nucleus and name your variables.
- 5.2) [6 P] Use the corresponding Mandelstam variable t to derive the dependence of the scattered electron energy k_{20} on the electron scattering angle ϑ_{12} , the beam energy k_{10} , and the mass of the nucleus M.
- 5.3) [3 P] Calculate the recoil energy and the mass square of the virtual photon t at maximum energy transfer for $k_{10} = 5.28 \, GeV$ and two different target nuclei, ${}^{100}_{44}Ru$ and ${}^{1}_{1}H$, respectively! Assume $m_u c^2 = 931.5 \, MeV$.

6) **Probabilities**

- 6.1) [2 P] The probability of measuring no electron from a ${}^{90}Sr$ source is $P_0 = 0.05$. Calculate the mean value and the probability of measuring five electrons?
- 6.2) [2 P] Calculate the mean value of measured electrons when P_0 is equal to P_6 .