Midterm Exam
Instructor: Ralf W. Gothe

Name:
Signature:

1) Decay Rates
1.1) (3) The carbon isotope ${ }_{6}^{14} C$ is produced in nuclear reactions of cosmic rays in the atmosphere. It is β-unstable.

$$
{ }_{6}^{14} C \rightarrow{ }_{7}^{14} N+e^{-}+\bar{\nu}_{e}+0.156 \mathrm{MeV},
$$

with a lifetime of 8270 years. It is found that $1 g$ of carbon, newly extracted from the atmosphere, has on average 15.3 such radioactive decays per minute. What is the proportion of the ${ }_{6}^{14} \mathrm{C}$ isotope in carbon?

1.2) (2) You have extracted $1 g$ of carbon from recently excavated human bones and measured 3.83 decays per minute. How old are the bones?
2) The Davis Experiment and the Solar Neutrino Problem
2.1) [$\mathbf{7} \mathbf{P}$] Calculate the threshold energy for electron-neutrino ν_{e} absorption by ${ }_{17}^{37} \mathrm{Cl}$. Start by formulating the reaction. Fill in for the question marks and interpret your result! Assume the neutrino is massless as well as $m_{n} c^{2}=939.566 \mathrm{MeV}, m_{H} c^{2}=938.783 \mathrm{MeV} a_{V}=15.67 \mathrm{MeV}$, $a_{S}=17.23 \mathrm{MeV}, a_{C}=0.714 \mathrm{MeV}, a_{A}=93.15 \mathrm{MeV}$, and
$\delta=\left\{\begin{array}{rr}-11.2 \mathrm{MeV} & \text { for ?-? nuclei } \\ 0 \mathrm{MeV} & \text { for ?-? nuclei } \\ +11.2 \mathrm{MeV} & \text { for ?-? nuclei }\end{array}\right.$

2.2) [$\mathbf{3} \mathbf{P}$] Do recoil corrections influence the significance of your results? Show why or why not!

3) Cross Section

3.1) [$\mathbf{3} \mathbf{P}$] Calculate the number of target nuclei per cm^{2} for a $0.25 \mu \mathrm{~m}$ thin gold $\left({ }^{197} A u\right)$ target! The density of gold is $\rho_{A u}=19.3 \frac{\mathrm{~g}}{\mathrm{~cm}^{3}}$.
3.2) [$\mathbf{2} \mathbf{P}]$ Calculate the number of beam particles per s for an $\alpha\left({ }^{4} H e^{++}\right)$beam of $1 n A$!
3.3) [2 P] Calculate from the luminosity and a given event rate $\dot{N}=471963 \mathrm{~Hz}$ the total cross section in barn for $\alpha\left({ }^{197} \mathrm{Au},{ }^{197} \mathrm{Au}\right) \alpha$!

4) General Relativistic Kinematics

4.1) [2 P] Derive the fully relativistic function $E\left(p, m_{0}\right)$ from $\gamma=\left(1-\beta^{2}\right)^{-\frac{1}{2}}, m=\gamma m_{0}$, and $E=m c^{2}$. Distinguish clearly between rest mass m_{0} and total mass m.
4.2) [2 P] How are $\beta=\frac{v}{c}$ and $\gamma=\left(1-\beta^{2}\right)^{-\frac{1}{2}}$ defined by the rest mass m_{0}, the momentum p and the total energy E for a given particle?
4.3) [$\mathbf{3} \mathbf{P}$] How is the invariant mass of a two body system defined? How is it related to m_{Σ}^{*}, the total relativistic mass in the CMS? When is the invariant mass the sum of the two rest masses?
4.4) $[+2 \mathrm{P}]$ What happens if a particle with no rest mass moves through a central gravitational field? Explain why!

5) Electron Scattering Kinematics

5.1) [1 P] Sketch the t channel Feynman diagram of elastic electron scattering off a nucleus and name your variables.
5.2) [6 P] Use the corresponding Mandelstam variable t to derive the dependence of the scattered electron energy k_{20} on the electron scattering angle ϑ_{12}, the beam energy k_{10}, and the mass of the nucleus M.
5.3) [$\mathbf{3} \mathbf{P}$] Calculate the recoil energy and the mass square of the virtual photon t at maximum energy transfer for $k_{10}=5.28 \mathrm{GeV}$ and two different target nuclei, ${ }_{44}^{100} \mathrm{Ru}$ and ${ }_{1}^{1} \mathrm{H}$, respectively! Assume $m_{u} c^{2}=931.5 \mathrm{MeV}$.
6) Probabilities
6.1) [$2 \mathbf{P}$] The probability of measuring no electron from a ${ }^{90} \mathrm{Sr}$ source is $P_{0}=0.05$. Calculate the mean value and the probability of measuring five electrons?
6.2) [2 P] Calculate the mean value of measured electrons when P_{0} is equal to P_{6}.

