Homework Set 8

University of South Carolina

Instructor: Ralf W. Gothe

8.1) Callan-Gross Relation

8.1.1) [4] Derive the Callan-Gross relation that connects the structure functions F_{1} and F_{2} !

8.2) Deep Inelastic Scattering

Deep inelastic electron-proton scattering is studied at the HERA collider. Electrons with 30 GeV are collided head on with 820 GeV protons.
8.2.1) [3] Calculate the center of mass energy of this reaction. What energy does an electron beam, that hits a stationary proton target, have to have to reproduce this center of mass energy?
8.2.2) [4] The relevant kinematic quantities in deep inelastic scattering are the square of the four momentum transfer Q^{2} and the Bjorken scaling variable x. You already have derived Q^{2} in dependence of the electron's kinematic variables E_{e}, the beam energy, E_{e}^{\prime}, the energy of the scattered electron and ϑ_{e}, the electron scattering angle. In certain kinematic regions it is better to extract Q^{2} from other variables since their experimental values give Q^{2} with smaller errors. Find a formula for Q^{2} that depends only on the scattering angles of the electron ϑ_{e} and of the scattered quark γ_{q} as well as E_{e}. How may γ_{q} be determined experimentally from the measured hadron energies and momenta of the final state?
8.2.3) [2] Show that the four momentum transfer Q^{2} at HERA equals in good approximation s, if you consider an electron scattering angle ϑ_{e} of 180° ! Use s^{2} and Q^{4}.
8.2.4) [2] What is the largest possible four momentum transfer Q^{2} at HERA? What Q^{2} values are attainable in experiments with stationary targets and 30 GeV electron beam energies? Estimate and compare the spatial resolutions within the proton in both cases!
8.2.5) [GS] [2] Find the kinematic region in Q^{2} and x that can be reached with the ZEUS calorimeter, which covers the angular region 7° to 178°. The scattered electron needs to have at least 5 GeV to be resolved.

