Homework Set 6

University of South Carolina

Instructor: Ralf W. Gothe

6.1) Diffractive Scattering

Fraunhofer diffraction by a circular disk of a diameter D produces pattern of concentric diffraction rings. The first minimum appears at $\vartheta=1.22 \frac{\lambda}{D}$.
6.1.1) [5] Determine the angular separation of the diffraction minima in α scattering off a ${ }^{56} \mathrm{Fe}$ nucleus for a given kinetic energy of the α particles in the lab frame $E_{\alpha}=100 \mathrm{MeV}$. Both nuclei should be considered as impenetrable disks. Calculate first the CMS momentum p_{α}^{*} of the α particle, then the corresponding de-Broglie wave length $\lambda^{*}=\frac{h}{p_{\alpha}^{*}}$ and then the scattering angle ϑ^{*}.
6.1.2) [5] Determine the scattering angle ϑ in the lab frame. Calculate first the CMS momentum $p_{\alpha}^{\prime *}$, then the velocity of the CMS with respect to the lab frame $\beta=\frac{p_{\Sigma}}{E_{\Sigma}}$, then the momentum p_{α}^{\prime} in the lab frame and finally the scattering angle ϑ in the lab frame!

6.2) Electron Radius

6.2.1) [5] Suppose one wants to obtain an upper bound for the electron radius by looking for a deviation from the Mott cross section in electron electron scattering and that this cross section can be measured with an uncertainty of 1%. What center of mass energy is necessary to set the upper limit for the electron radius to $10^{-18} \mathrm{~m}$?
6.2.2) [3] Calculate the needed primary electron energy (ies) for a fixed target (collider) experiment!
6.2.3) [2] What would be the necessary center of mass energy, if the cross section is measured to a precision of 0.01% ?

