Homework Set 5

University of South Carolina

Instructor: Ralf W. Gothe

5.1) Electron, Compton, and Proton Scattering

Consider the two cases where an electron beam with $K_{10}=3.0 \mathrm{GeV}$ is elastically scattered off either a proton $m_{p}=938 \mathrm{MeV}$ or a lead nucleus $m_{P b}=192799 \mathrm{MeV}$. Both nuclei are initially at rest.
5.1.1) [5] Calculate the maximum four momentum transfer Q^{2} or $-K_{\mu}^{2}$ to the nuclei with $K_{\mu}^{2}=\left(K_{1 \mu}-K_{2 \mu}\right)^{2}$!
5.1.2) [3] Calculate the corresponding kinetic energy, energy, and momentum of the scattered nuclei!
5.1.3) [2] Calculate the same quantities for elastic Compton scattering off both nuclei! Use for the initial photon energy $K_{10}=3.0 \mathrm{GeV}$.
5.1.4) [GS] [2+4] Calculate the same quantities for elastic proton scattering off both nuclei! Use the same initial energy $K_{10}=3.0 \mathrm{GeV}$ for the proton.
5.2) Rutherford Scattering
5.2.1) [5] α particles with $E_{k i n}=6 \mathrm{MeV}$ from a radioactive source are scattered off ${ }_{79}^{197} \mathrm{Au}$ nuclei. At which scattering angle is the distance of the α particle to the ${ }_{79}^{197} A u$ nucleus smallest? Calculate this distance! Why do you expect no deviations from the classical Rutherford cross section?
5.2.2) [4] Which kinetic energy is needed so that the α particle, based on the classical radii of both particles, just reaches the ${ }_{79}^{197} \mathrm{Au}$ nucleus? Why do you expect now deviations from the classical Rutherford cross section?
5.2.3) [GS] [5] Calculate the smallest distance of the α particle to the ${ }_{79}^{197} \mathrm{Au}$ nucleus in dependence of the scattering angle ϑ !

