Homework Set 4 Instructor: Ralf W. Gothe 2/12/24

4.1) Cross Section

The reaction ${}^{3}H(d,n){}^{4}He$ is investigated with deuterons of an energy $E_{\rm kin} = 5 \, MeV$ that are perpendicularly incident upon a tritium target with a mass occupation density $\mu_t = 0.2 \, \frac{mg}{cm^2}$.

- 4.1.1) [5] How many neutrons per second pass through a detector with a receptive area of $A = 20 \, cm^2$ that is placed at a distance $R = 3 \, m$ from the target and under an angle $\vartheta = 30^{\circ}$ with respect to the deuteron beam direction, if the differential cross section $\frac{d\sigma}{d\Omega}$ at this angle is $13 \, \frac{mb}{sr}$ and the deuteron current is $I_d = 2 \, \mu A$?
- 4.1.2) [2] How many neutrons per second reach the detector, if the target is tilted by 10° ?

4.2) Absorption Length

A beam of particles n_a is incident upon a thick layer of an absorbing material with n_b absorbing particles per unit volume. How large is the absorption length $\lambda = \frac{1}{\sigma n_b}$, that means the distance in which the intensity of the beam is reduced by a factor of $\frac{1}{e}$, in the following cases?

- 4.2.1) [2] Thermal neutrons in cadmium with $\rho = 8.6 \, g/cm^3$ and $\sigma = 24506 \, barn$.
- 4.2.2) [2] 2 MeV-photons in lead with $\rho = 11.3 \, g/cm^3$ and $\sigma = 15.7 \, barn$.
- 4.2.3) [3] Antineutrinos from a nuclear power plant in the earth with $\rho = 5 g/cm^3$ and $\sigma = 10^{-19} barn$ for the neutrino electron interaction by neglecting the neutrino nuclei interaction and an estimated $\frac{Z}{A} = 0.5$.

4.3) Lorentz Scalars

4.3.1) [6] Calculate the photon threshold energy for coherent η -photoproduction in ¹²C. Use $m_{\eta} = 547.45 \frac{MeV}{c^2}$, $m_{1^2C} = 11178.02 \frac{MeV}{c^2}$ and that ¹²C in the reaction ¹²C(γ, η)¹²C remains in the groundstate.

4.4) Radon Activity

- 4.4.1) **[GS]** [5] Calculate the activity A of ^{222}Rn created in the decay chain of ^{238}U as a function of the decay constants λ of the feeding parent ^{226}Ra and the draining daughter ^{222}Rn .
- 4.4.2) **[GS]** [2] After a lecture theater, whose walls, floor, and ceiling are made of concrete $(10 \cdot 10 \cdot 4 m^3)$ has not been aired for several weeks, a specific activity $A = 100 Bq/m^3$ of ^{222}Rn is measured. How high is the concentration of ^{238}U in the concrete, if the effective thickness, from which the ^{222}Rn can diffuse, is 1.5 cm?