
CHAPTER 26

Statistical Fluctuations in Nuclear Processes

It is well recognized that we can never measure any physical magni-
tude exactly, i.e., with no error. Progressively more elaborate experi-

mental or theoretical efforts result only in reducing the possible error of

the determination. In reporting the result of any measurements it is

therefore obligatory to specify also the probability that the result is in

error by some specified amount, since a gamble on relative correctness is

always involved in all physical determinations. The theory of statistics

and fluctuations, summarized here, describes the mathematical procedure
involved in the reduction of data, particularly data of the type encount-

ered in nearly every measurement in nuclear physics.
Nuclear processes, in common with all microscopic processes, are

random in ultimate character. Because of the relatively large energies
released in nuclear processes, it is possible to study single random events.

The application of statistical theory to such measurements is therefore

doubly important because it contributes to our understanding of nuclear

processes and it gives insight into the statistical distributions which
describe other random processes whose individual events are not observ-

able. The exponential decay distribution is an example of a result

derivable solely from probability considerations (Chap. 15), without
detailed knowledge of the mechanism involved.

In any series of measurements, the frequency of occurrence of par-
ticular values is expected to follow some "probability distribution law,"
or "frequency distribution." There are about a half dozen distributions

which are used most often in the statistical appraisal and interpretation
of nuclear data. We begin by discussing the four most fundamental of

these frequency distributions. Later the very useful generalized Poisson

distribution (Sec. 3) and the generalized interval distribution (Chap. 28,

Sec. 2) will be considered.

The theory presented here is called efficient statistics for it extracts

the maximum amount of statistical information from the data. A recent

development termed inefficient statistics can extract a major portion, but
not all, of the information by very much simpler calculations. It does

this by making reasonable approximations in the efficient theory. It is

thus necessary to understand the efficient theory presented here and
in Chaps. 27 and 28 in order to be able to use the inefficient theory

wisely. For this reason, only the efficient theory is treated here; how-

ever, the reader will find some useful inefficient statistics in Appendix G.
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1. Frequency Distributions

a. The Binomial Distribution. The binomial distribution is the fun-

damental frequency distribution governing random events. The other

frequency distributions can be derived from it.f Historically, it was the

first probability distribution to be enunciated theoretically. Bernoulli,

early in the eighteenth century, showed that if p is the probability that

an event will occur, and q = 1 p is the probability that it will not

occur, then in a random group of z independent trials the probability
Px that the event will occur x times is represented by that term in the

binomial expansion of (p + q)
f in which p is raised to the x power.

Thus the expansion of (p + q)
g
,
which is always equal to unity, repre-

sents the sum of the individual probabilities of observing x = z events,
x =

(z 1) events, . . .
,
x = events, as follows:

(P + ?)'
= P' + zp^q

p-

= P. + P,_i + P,_2 + + Po = 1

Any individual term in this binomial expansion can be written as

which is the general form of the binomial distribution. The binomial

distribution, Eq. (1.1), contains the two independent parameters p and z

and rigorously applies to those phenomena in which the total number of

trials z and the number of successes x are both integers.

It therefore describes the fluctuations in counting a rays from radio-

active bodies, provided that p, which is equivalent to the probability
X A2 that a particular atom will decay during an observation of short

duration A, is constant. Like the normal and Poisson distributions,

to be considered next, it represents the true probability when the

total amount of radioactive material is essentially unaltered during the

t Representative treatises containing detailed proofs of many of the statements in

this chapter include:

T. C. Fry, "Probability and Its Engineering Uses," D. Van Nostrand Company,
Inc., New York, 1928.

R. A. Fisher, "Statistical Methods for Research Workers," Oliver & Boyd, Ltd.,

Edinburgh and London, 1930.

S. 8. Wilks, "Mathematical Statistics,
11 Princeton University Press, Princeton, N.J.,

1943.

P. G. Hoel, "Introduction to Mathematical Statistics," 2d ed., John Wiley & Sons,

Inc., New York, 1954.

N. Arley and K. R. Bueh, "Introduction to the Theory of Probability and Statistics,"

John Wiley Sons, Inc., New York, 1950.
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period of the observations. The tests must, therefore, be made in a time

interval At which is very short compared with the half-period of the

radioactive substance. But under this restriction of small p, Poisson's

distribution is a satisfactory approximation to the binomial distribution.

Applications of the binomial distribution to the tossing of coins and
the throwing of dice are doubtless familiar to the reader. Here, it

applies rigorously because p is constant. Thus the chance of throwing

three, two, one, or zero aces in three throws of a single die (or in one

throw of three dice) is

1 I 15 i 7 5 |
1 2 B= TT1T + TUT T TUT T TTTT

= Pa + P, + Pi + Po = 1

Note that the chance of getting no ace in three throws is *T = 58 per

cent, although the average number of aces is pz = 0.50.

The binomial distribution is a special case of the multinomial distri-

bution describing processes in which several results having fixed prob-
abilities pi, p2, - . -

, p. are possible. The separate probabilities are

then given by terms of the expansion (pi + p2 + + p.)', where

Pi + P2 + ' + p.
= 1-

b. The Normal Distribution. The normal distribution f is an ana-

lytical approximation to the binomial distribution when zjs very large.

It is applicable to distributions in which the observed variable is not

confined to integer values but can take on any value from to + .

The normal distribution thus generally applies to a continuously variable

observed magnitude, such as the distance separating two spectral lines,

while the binomial and Poisson distributions are applied to discontinuous

variables, such as particle counting rates, which take on successive whole-

number integral values. The statistical theory of errors (D19) is ordi-

narily based on the normal distribution.

Near the center of the distribution curve the binomial distribution, for

large z and constant average value m =
pz, approaches identity with the

normal distribution, which states that the probability dPx that x will lie

between x and x + dx is

dPx -- = *-(-oviH dx
tr V 2ir

where e = 2.7183 is the base of the natural system of logarithms, m is

the true value of the quantity whose measured values are x, and a- is the

standard deviation, a parameter which describes the breadth of the distri-

bution of deviations (x m) from the mean. The standard deviation is

discussed in detail in Sec. 2, but for the present it may be regarded simply
as one of the two parameters, m and <r, of the normal distribution.

Figure 1.1 illustrates the general form of the normal distribution,

drawn for a mean value of m = 100 and a standard deviation of a = 10.

t The normal-distribution curve is sometimes erroneously referred to as the

Gaussian error curve, but its derivation by Gauss (1800) was antedated by those ol

Laplace (1774) and DeMoivre (1735).
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The ordinates are normalized so that the total area under the curve is

unity. Thus the area included between any two abscissas xl and x2 is

the probability that a single measurement of x will lie between Xi and z2 ,

while a very large number of measurements of x would have a mean value

of m. The correspondence between Fig. 1.1 and Eq. (1.2) lies in the

relationships

dPf = dA = ydx /_",
dPx - A - 1 (1.3)

in which y is the ordinate of Fig. 1.1 and dA is an element of area. The

coefficient I/a V^TT in Eq. (1.2) normalizes the area to unity, as given by
Eq. (1.3).

Differentiation of Eq. (1.2) shows that the points of maximum slope,

at which d2
y/dx* =

0, fall at the points (x m) =
<r,

where the slope

0.040 -

0.030

0.020 -

0.010 -

100 110
m m+cr

Fig. 1.1 Normal distribution for the special case of a mean value m 100 and a

standard deviation o- 10.

oV2ln2=1.177cr

oV2=1.414cr

has the value l/<r
2 VZire. Tangents to the distribution curve at these

inflection points intersect the x axis at (x m) = 2o-. The ratio of the

ordinate yff at these symmetrical points of maximum slope to the maxi-

mum ordinate ym =
1/cr V2ir at x = m is y ff/ym = *""* = 0.6065. The

half width is c V21n2 = 1.177<r at y = ym/2 (half maximum) and is

a \/2 = 1.414<r at y = y^/e (l/e of maximum). These geometrical

relationships offer a convenient method of determining v graphically from

an experimentally determined distribution curve.

Figure 1.2 gives the results of integration of the normal distribution

between various limits; from it can be read the chance that a single

observation of x will differ from the mean value m by more than any

arbitrary assigned amount. Figure 1.2 has many other uses which will

be referred to later.
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c. The Poisson Distribution. Poisson's distribution describes all ran-

dom processes whose probability of occurrence is small and constant. It

therefore has wide and diverse applicability and describes the statistical

fluctuations in such random processes as the number of soldiers kicked

and killed yearly by cavalry horses, the disintegration of atomic nuclei,

the emission of light quanta by excited atoms, and the appearance of

2.5

Fig. 1.2 The ordinate Pu is the fraction of the total area of a symmetric normal

distribution which falls farther from the mean value than a distance u, measured in

units of the standard deviation, tr. The area Pu is shown shaded in the inset and

corresponds analytically to P *=
1

m+t*
dPf . Thus for u/<r

=
1, 0.317, and

31.7 per cent of the individual values of x may be expected to fall farther than one

standard deviation from the mean value. The value of u for which Pv =0.50 is

called the probable error (see Sec. 2e). It will be seen that Pu = 0.50 for u = r -
0.6745*. Particular numerical values which find frequent use are

cosmic-ray bursts. The Poisson distribution applies to substantially all

observations made in experimental nuclear physics.
The Poisson distribution can be deduced as a limiting case of the

binomial distribution, for those random processes in which the proba-

bility of occurrence is very small, p <K 1, while the number of trials z

becomes very large and the mean value m = pz remains fixed. Then in

Eq. (1.1) m z and x z, and so we can write, approximately,

zl

(z-x)\
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and in the limiting case of small probability p, Eq. (1.1) approaches

T . z
xvx mx

Px
= -f -"* = c~m

x\ x\

which is the Poisson distribution.

A much clearer feeling for the statistical principles underlying the

Poisson distribution is obtained by deriving this frequency distribution

from first principles. Specializing the general conditions under which
the Poisson distribution holds to the" readily visualized case of a radio-

active disintegration, we would write the following necessary and suf-

ficient conditions:

1 . The chance for an atom to disintegrate in any particular time inter-

val is the same for all atoms in the group (all atoms identical).

2. The fact that an atom has disintegrated in a given time interval

does not affect the chance that other atoms may disintegrate in the same
time interval (all atoms independent).

3. The chance for an atom to disintegrate during a given time inter-

val is the same for all time intervals of equal size (mean life long com-

pared with the total period of observation).
4. The total mimber of atoms and the total number of equal time

intervals are large (hence statistical averages significant).

Let a be the average rate of appearance of particles from such a ran-

dom process; then the average number of events in a time interval /. is at.

Then in a short time interval, dt, such that a dt 1, the quantity a dt is

simply the probability PI (dt) of observing one particle in the time dt.

As dt decreases without limit, the probability of observing two or more

particles in the time dt becomes vanishingly small in comparison with the

probability of observing one particle, that is, PI (dt) P 2 (dt) P 3 (dt)

.... The probability of observing no particle in dt is

Po (dt)
= 1 - Pi (dt)

= 1 - a dt

We may now write the probability of observing x particles in the time

(t + dt) as the combined probabilities of (x 1 ) particles in t and one in

dt, or of x particles in I and none in dt] thus

Px (t + dt)
= P, (dt) Pr. ,(*) + Po (dt) Px (t)

= a dt Pr^(t) + (1
- a dt) Px (t) (1.4)

Rewriting Eq. (1.4) in differential form, we have

dP,(t) = Px (t + dt)
- Px (t)

dt dt

= a\Px.i(t)
- Px (t)} (1.5)

The solution (B19) of Eq. (1.5) is

P,(t) = (

^e-< (1.8)

as can be verified by differentiation. Now if the equal intervals of time
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are chosen of length t, then the average number of particles per interval

is at = m m

j substituting this in Eq. (1.6), we have the usual form of the

Poisson distribution

P. = -. e- (1.7)
x!

in which Px is the probability of observing x events when the average
for a large number of tries is m events. Although ra may have any
positive value, x is restricted to integer values only. It is easy to show
that Eq. (1.7) correctly leads to

I"-
It must be noted that, in contrast with the two previous frequency

distributions, the Poisson distribution has but one parameter m. The
binomial distribution with parameters p and z becomes identical with

the Poisson distribution when p > in such a way that zp = m. The
normal distribution, near the center of the distribution, approaches

equality with Poisson's distribution when m is large, so that the histo-

gram of Poisson's discontinuous distribution approaches the continuous

normal distribution (compare Figs. 1.1 and 1.3).

Following the numerical evaluation! of a particular value of Px ,
other

neighboring values may be computed quickly by using the following exact

relationships, which can be derived easily from Eq. (1.7)

P*-i=-7^ (1.8)m

I\ = e~m (1. 10]

The Poisson distribution is slightly asymmetric, favoring low values of x.

Thus substitution of x = m in Eq. (1.8) shows that if the mean value is

an integer the probability of observing one less than the mean value is the

same as the probability for the mean value.

In computations with Eq. (1.7) it is often convenient to use Stirling's

approximation to the factorial

x\= V2r*J* -! + -;-+ (!)

in which neglect of the final parentheses involves a negative error of only

t Kxtrrmely useful tables of the individual terms Pf and especially of the cumu-
BO

latod terms ) Px for Poisson distributions with m 0.001 to 100 have been published

by E. C. Molina (M49).
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0.8 per cent for x =
10, and 0.08 per cent when x = 100.

becomes, to a good approximation, for x > 10

1

Vlirx

753

Then Eq. (1.7)

(1-12)

The probability of actually observing the mean value m in a scries of

observations on a random process of constant average value is surpris-

ingly small. This is seen by substitution of x = m in Eq. (1.12) which

gives the following values

m =
Pm =

10

0.127

100

0.040
1,000

0.013

The Poisson distribution must always be represented by a histogram,
since x must assume whole-number values only. Figure 1.3 illustrates

the Poisson distribution for m = 100; the slight asymmetries should be

noted, as well as the .similarity with the symmetric normal distribution

0.040

0.030

0.020

0.010

\
70 80 90 110 120 130100

x

Fig. 1.3 Poisson distribution for m = 100. Note that PB o > Pno, whereas PTO <
Pi 30; also thai P9 = Pi on, illustrating the asymmetries of the Pnisson distribution.

The envelope of this histogram is very similar to the normal distribution shown in

Fig. 1.1 only because of our arbitrary choice of a = y/m. in Fig. l.J. The standard

deviation, a- for the Poisson distribution, Eq. (2.7), is always \/~ni, but a is an inde-

pendent parameter in the normal distribution.

of Fig. 1.1. For small values of m, say, between m = 1 and m 10,

the Poisson distribution is very asymmetric and i,s not well approximated
by the normal distribution.

The Poisson frequency distribution treats all the intervals as independ-
ent; this restriction in application is removed by the interval distribution.

d. The Interval Distribution. The interval distribution is derived

from Poisson's distribution and describes the distribution in size of the

time intervals between successive events in any random process in which
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the mean rate has the constant value of a events per unit time (M12,

R20). From Eq. (1.7) or (1.10) the probability that there will be no

events in a lime interval t, during which time there should be at events

on the average, isf

Po =
^- c-< = e-" (1.13)

The probability that there will be an event in the time interval dt is

simply a dt. The combined probability that there will be no events dur-

ing the time interval t, but one event between time t and t + dt, is ar ~'*'
dt.

Hence, in a random distribution which follows the Poisson distribution

and has a constant average interval of I/a, the probability dPt that the

duration of a particular interval will be between t and t + dt is

dP t
= ae~^ dt (1.14)

We LSOC at tincc that stmill time intervals have a higher probability than

large time intervals between the randomly distributed events.

If the data concern ti large number N of intervals, then 1he number
of intervals greater than /i but- less than tz is

n = N ac-at di

- <r-'
4

") (l.lfi)

where a is Ihe average number of events per unit lime. Equations (1.14)

and (1.15) are the general differential and integral forms of the interval

distribution for randomly spaced events.

Two limiting cases are ol special interest. Letting tz >
*>, we find

that the number of intervals greater than any duration t is Ne~"lt

,
in which

at is simply the average number of events in the interval /-. Because the

average interval is t = I/a, WP note that the fraction of the intervals

vhich are longer than the average is n/N = e~ l = 0.37.

Letting t\ 0, Eq. (1.15) shows that the number of intervals shorter

than any duration t is N(\ e~ai
). Examples of the usefulness of the

interval distribution in a-ray counting experiments and in cosmio-ray-
burst observations will be given in Chap. 27, Sec. 4. A generalization o

j

/

the interval distribution, giving the frequency distribution of intervals

which contain any predetermined number of random events, is derived in

Chap. 28, See. 2.

Problems

"Tho reader is, however, advised that the detailed working of nmncrira]

examples is essential to a thorough grasp, not only of the technique, but of tht-

principles by which an experimental procedure may be judged to be satisfactory

t That factorial zero equals unity follows from the gamma functions:

n\ = F(n + 1) T(l) =1 F(0 + 1) = 1
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and effective." (R. A. Fisher, in the preface to the first edition of his "The
Design of Experiments," Oliver & Boyd, Ltd., Edinburgh and London, 1935.)

1. From elementary probability arguments and consideration of the number
of combinations and permutations of z things taken x at a time, "derive" the

binomial distribution.

2. In 1693 (hence pro-Bernoulli and pre-binomial distribution), Samuel

Pepys propounded the following question to his friend Isaac Newton, who pre-

pared a lengthy response and engaged the tax accountant George Toilet in a

protracted controversy over the answer:

"A has 6 dice in a box, with which he is to fling a six, B has in another box
12 dice, with which he is to fling 2 sixes, C has in another box 18 dice, with which

he is to fling 3 sixes. Question whether B and C have not as easy a task as A
at even luck."

(a) Assuming Pepys meant exactly one, two, and three sixes for the three

contestants, what are their chances of succeeding on a single throw?

(b) Assuming he meant at least one, two, and three sixes, in what direction

will this modify their chtinces of success?

3. With a simultaneous throw of six dice, calculate the probabilities of obtain-

ing just zero, one, two, three, four, five, and six sixes. Show that the sum oi

these probabilities is unity when the solutions are obtained using the binomial

distribution. Compare with these the probabilities for the same events as given

by the Poisson distribution. Point out the reasons for these differences.

4. On June 5, 1951, Horn DiMaggio had a, batting average of 0.359, had been

at bat 189 times in 44 games, and had hit safely at least once in each of his lust

25 consecutive games.

(a) What is the probability that he will hit safely ^f he is at bat four times ih

the baseball game on June (i, 1951?

(b) What is the probability of his hitting safely in 2o' consecutive games, if

he is at bat four times in each game?
(c) Explain concisely why the odds in (a) and (b) are so different.

B. Consider the chances of a bomber pilot surviving a series of statistically

identical raids, in which the chance of being shot down is always 5 per cent.

(a) From an original group of 1 ,000 such pilots, how many should survive 1,

5, 10, 15, 20, 40, SO, and 100 raids? Plot the survival curve, with the number of

flights as abscissa.

(6) Estimate the mean life of a pilot in number of raids.

(r) In a single raid of 100 planes, what are the chances that zero, one, five,

or ten planes will be lost?

6. Calculate and plot a normal distribution having a mean value of 10 and a

standard deviation of 3.

7. Show that the sum of the probabilities Px = c
mmT

/x\ of all possible

positive values x =
0, 1, 2, . . .is unity for the Poisson distribution.

8. In any Poisson distribution, show analytically that the probability of

observing one less than the mean value is the same as the probability for the mean
value.

9. In any Poisson distribution,

(a) Show that the ratio of the probability Pzm of observing twice the mean
value to the probability Pm of observing the mean value is

or when ro 1, PZm/Pm - 0.707 ( 0.824)
2

(M Compare P ?wl /Pm for m =
2, 10, 100.
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10. Calculate and plot a Poisson distribution with a mean value of 10 and
values of x from to 20. Compare with the normal distribution for m =

10,

cr = 3.

11. The average background of a certain a-ray counter is 20 a rays per hour.

In how many hours out of 200 would you expert to observe only 10 a rays?
12. In an a-ray counting experiment, on a source of constant average inten-

sity, a total of 19,278 a rays are counted in 51 hr of continuous observations.

The time of arrival of each a. ray is recorded on a tape, so that the number of a

rays recorded in each successive 1-min interval can be determined.

(a) What is the average number of a rays per 1-min interval?

(b) In how many of the total number of 1-min intervals would you expect to

observe no a rays?

(c) In how many 1-min intervals should one observe one a ray?

(d) In how many 1-min intervals should one observe six a rays?
13. A Gciger-Miiller counter having a resolving time of 300 jisec is placed in a

plane parallel beam of 5-Mev photons from a pulsed generator. The counter

has a cylindrical cathode 2 cm in diameter and 10 cm long, is placed with its axis

perpendicular to the beam, and has an absolute efficiency of 2 per cent for 5-Mcv

photons. Each pulse of photons from the generator is 50 /isec in duration, and

the repetition rate is 1 20 pulses per second. Under these conditions of operation,
the counter displays an average counting rate of 3,600 counts per minute. During
each pulse, what is the flux in photons per second per square centimeter at the

counter position?

14. In a random distribution having an average interval I, show by applica-

tion of the interval distribution that the average value of the absolute deviations

from the mean interval I is

\t
- IL = -t = 0.7358J

1 '

e

15. The average background of a certain a-ray counter is 30 a rays per hour,

(a) What fraction of the intervals between successive counts will be longer
than 5 min?

(6) What fraction of the intervals will be longer than 10 min?

(c) What fraction of the intervals will be shorter than 30 sec?

16. A certain radioactive sample contains a mixture of an ot-ray emitter and a

j3-ray emitter. The two substances are assumed to be independent. Using a

particular pair of counters, the observed activities are A a counts per minute
and B ]9 counts per minute.

(a) What is the combined probability that a particular interval between
two successive a rays will have a duration between t and t + dt and will also

contain exactly x ft rays?

(b) Show that the probability 3/(j) of observing just x(x =
0, 1, 2, . . .) ft

rays in the time interval betxxeen any two successive a-ray counts is

where R = B/A.
(c) What is the probability of observing just one a ray in the time interval

between successive ff rays if A = 100 and if B = 500 counts per minute?

17. Derive an interval distribution governing the output of a scale-of-2 cir-

cuit if the input receives randomly distributed pulses at an average rate of a

pulses per minute. Specifically,
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(a) Show that the number n of observed intervals of length between t\ and

2 min, when N is the total number of scale-of-2 intervals studied, is

=
(a*! + l)e-'i

-
(atz + l)e--<"

(6) Derive an expression for the fraction n/N of the intervals which will be

longer than t.

(c) Derive an expression for the fraction of tne intervals which will be shorter

than t.

18. A scale-of-2 counter gave 292 pulses in 11 hr.

(a) What are the duration of the average interval and the average rate of the

statistical process (scale of 1)?

(6) Compute the number of scale-of-2 intervals expected to be longer than

7.5 min. (Four were observed.)

(c) Compute the number of scale-of-2 intervals expected to be shorter than

5 sec. (One was observed.)
19. An interval distribution is to be derived, which will describe the distribu-

tion of time intervals between the arrival of v+ mesons in a counter and the decay
of the daughter /*+ meson. The events to be considered are:

If Xi and X 2 are the decay constants of the TT+ and /i+ meson,

(a) What is the probability that the TT
+ meson will decay in the time interval

between tf and tf + d&7

(6) What is the probability that a M
+ meson will decay in the time interval

between t and t + dt after the arrival of its parent TT+ meson?

(c) What is the most probable time interval to between arrival of ir
+ and

decay of M"
1"? Use a mean life of 0.02 /isec for ir+, and of 2.0 /xsec for p+ .

2. Statistical Characterization of Data

a. Mean Value. In any finite series of measurements we can never

find the exact value of the true mean value m, which corresponds to the

infinite population of (i.e., an infinite amount of) data. Although the

mean value f is constant, our individual measurements should be dis-

tributed about this mean value in a manner given by the particular fre-

quency distribution which describes the process being studied. For the

t The mean value (i.e., the average value) is to be distinguished from the modal

value (i.e., the most probable value) and from the median value (i.e., the value which

is as frequently exceeded as not). Only for a symmetric distribution are the mean,

mode, and median coincident. For an asymmetric distribution of numbers such as:

2, 3, 5, 6, 7, 8, 8, 9, 9, 9, 11, 11, 12, the mean value is 7.69, the mode is 9, and the

median is 8.
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four frequency distributions discussed in the previous section, it can be

shown that our best approximation to in is simply the arithmetic average
of the n separate measurements, x\ }

x z ,
z 3 ,

. . .
,
xn ] that is,

(2.1)

The "expectation value" of any statistical variable? is synonymous
with the mean value obtained for this variable in a large number of trials.

Thus the expectation value of JT is m.

b. Standard Deviation and Variance. The breadth of the statistical

fluctuations of our individual readings about the true mean value is

expressed quantitatively by the fundamentally important parameter, the

standard deviation a. For a particular mean value m, a small a gives a

sharply peaked distribution, whereas a large a gives a broad, flattened

distribution. In any case, the significance of the standard deviation as

descriptive of the spread of the data is best seen in the normal distribu-

tion. Figure 1.2 shows that, in the normal distribution, about 32 per

cent of a large series of individual observations must deviate from the

mean value by more than v and consequently that G8 per cent of the

individual observations should lie within the band (x a).

For any frequency distribution, the standard deviation (often abbrevi-

ated S.D.) is defined as the square root of the average value of the square

of the individual deviations (x ra), for a large number of observations.

Thus
JT *

= V Or
- w)*Pr (2.2)

or, in terms of a large scries of n measurements of r,

i-=n

r> =
J

. V
(Xi

- m) 2
(2.3)

n Lj
1 = 1

The square of the S.D. is thus seen to be simply the second moment of the

frequency distribution taken about the mean. The quantity <r- is

usually called the variance. As is suggested by the form of Eq. (2.3),

occasionally is called the root-mean-squarc error.

We can now use Eq. (2.2) for the derivation of analytical expressions

for the S.D. of the various distributions.

For the binomial distribution, with mean value m =
zp, the square

of the standard deviation is

x\(z -x)!
r-Q *-'0
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Upon expansion and summation, this expression reduces to simply

er
2 = zp(l

-
p) (2.4)

or, because the mean value of x is m =
zp, we have also

r
2 = m(l -

p) (2.5)

Note especially that, for the binomial distribution, the variance <r
2

is

always less than the mean value m (~ f).

For the normal distribution, the evaluation of Eq. (2.2) by integration

gives, of course,

/+-
i /+-

<r
2 =

/ (x
- m)*dPx = ;= / (x

-
7- - <r V2ir 7-

(2.6)

because the S.D. is simply one of the two independent parameters of the

normal distribution and therefore may have any value.

For the Poisson distribution, however, the S.D. has a definite value

in terms of the mean value, which is the only parameter of the Poisson

distribution. From Eq. (2.2), we find on expansion that

(2.7)

Hence for the Poisson distribution, the S.D. of the distribution of indi-

vidual observations is simply Vm. This result is, of course, in agree-
ment with the S.D. of the binomial distribution, Eq. (2.5), in the limiting
case for p 1.

For the interval distribution governing randomly distributed events

occurring at an average rate a, hence with average interval I = I/a,

Eqs. (1.14) and (2.2) lead to

(2.8)

Thus the S.D. is just equal to the average interval I/a.

Table 2.1 now summarizes the properties of the four frequency dis-

tributions which apply to random processes having a constant average
value.

c. Estimate of Standard Deviation from a Finite Series of Observa-
tions. In a finite series of n observations, we can never know m exactly.

Hence we can never determine a exactly, as implied in Eq. (2.2) which

applies to the infinite population of data. Our best approximation to

the S.D. of the distribution, in terms of our finite number n of observa-

tions, can be shown to be

r\ 1 i \-^

K - )
2

(2.9)
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This practical expression for the (S.D.)
2 differs from Eq. (2.3) only

in its denominator (n 1) and in the use of x in place of m. The term

(n 1) is to be correlated with the view that the dispersion among the
data is associated with the number of "degrees of freedom." From n

independent observations of x we are provided originally with n independ-
ent equations. We reduce this number by one when we compute x and
hence have only (n 1) independent data from which to compute a. It

can be seen readily that, in the special case in which only one observation

is made, x =
x, and a is indeterminate. The latter condition is correctly

given by Eq. (2.9) but could not be obtained from Eq. (2.3) directly.
In the theory of mathematical statistics the so-called "sample

s
2
is defined as

-
z)

2
(2.10)

It can be shown quite generally that the expectation valve [s
2
J
for the

sample variance of n observations is

E[si]
= ~

ff
*

(2.11)

This is the formal basis for our Eq. (2.9) which we shall use hereafter

without further explicit reference to the sample variance.

d. Standard Deviation of the Mean Value (Standard Error). If our

n individual measurements of x exhibit, say, an approximately normal
distribution about the mean value z, then Fig. 1.2 shows that some 68

per cent of our individual observations have fallen within the central

band x + <r. This means that one additional single observation, if made,
would have a 68 per cent chance of lying within x a. In recognition
of this probability interpretation, the "standard deviation of the distribu-

tion
11

<r, as determined from Eq. (2.3) or (2.9), can be called more pre-

cisely the "standard deviation of a single observation"

Obviously, if we, or another observer, were to repeat our entire

experiment of n observations, we should expect the new mean value to

have much greater than a 68 per cent chance of falling within x <r.

Therefore, in reporting our mean value x, we wish to assign to it a S.D.

of the mean value v-x such that there is approximately a 68 per cent

chance that some new mean value x z will lie within the band (x + at).

Obviously, ax is smaller than <r.

It is well known in the theory of errors that a series of k mean values,

$i, x z , 3, . . .
,
x

jt,
each based on n observations, will tend to exhibit a

normal distribution about their grand average x . This is true if n is

sufficiently large, even if the parent population x, is not normally dis-

tributed but is, for example, an asymmetric Poisson distribution. In

general, the distribution of mean values tends to be much more nearly normal

than the parent population. This is the justification for a theoretical
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derivation of the relationship between <r and <TX, based on a normal distri-

bution of . Then it can be shown that in a large series of k measure-

ments of the mean value
,
each based on n measurements of z, the grand

average approaches the true mean m and that the S.D. of depends
upon n in the following way

The result of a single series of n measurements of x is then to be

reported as (x cr ) where

-
*)* (2.13)

Then a repetition of the series of n measurements would, in general, give
a different mean value, but the chance that the new mean value would
lie within ( <rx) is 68 per cent. The 8.D. of the mean value trx is often

called the standard error.

The validity of Eq. (2.12) or (2.13) is almost self-evident for the
n

Poisson distribution. Suppose a total of v = Y it random events are

observed. Then by Eq. (2.7) the S.D. in this single observation is

"

/Y xt ,
so that the result would be reported as

v 0- = ^ Xi (2.14)

and the fractional S.D. would be

(2.15)

II-

Suppose now that a zealous assistant was present, while you tallied only
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n

the total number V x, events, and that he broke the data into n con-

tiguous and equal intervals, recording

xi + x 2 + x 3 + + xn =

Then he would obtain

= -' /VVn n \l LJ
*

i

and the result of the measurements would be reported as

(2.16)

which has the same fractional S.D. as Eq. (2.15). In fact, Eq. (2.16)

could have been obtained directly from Eq. (2.14) by simply dividing

by the number of classifications n into which the data were subdivided.
n

In either case, and in general, the observation of a total of } x, randomly

/ n

distributed events has a fractional S.D. of 1 / ,. /} x,. Thus the S.D. in

counting 100 random events is 10 per cent, and one must count 10,000
events to reduce the S.D. to 1 per cent. No mere method of treating the

same total data can ever reduce the magnitude of the fractional uncertainty
due purely to randomicity.

e. Probable Error. A result quoted as x crj implies that the chance

that the average value x differs from the true mean value m by more than

<r* is 0.317, if the error distribution is normal. While the S.D. has a

definite statist ical value and a basic significance in the principal frequency

distributions, there has been an occasional tendency to fail to use it in

reporting physical results. Instead, a quantity derived from the S.D.

and called the probable error is often given. Its wide adoption rests on
its easily visualized interpretation and perhaps also on the fact that, of all

the common types of error specification, the probable error has the least

value and hence makes the data look best.

The probable error is, by definition, exactly as likely to be exceeded as

not. The probable error is ordinarily derived from the S.D. From

Fig. 1 .2 it can be seen that the particular error r which has exactly a 0.50
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chance of being exceeded in a normal distribution is

r = 0.6745(r and r = 0.6745^

[CH. 26

(2.17)

Similarly, for a normal distribution, the chance that the actual error

(ra z) exceeds rfj 2r^ 3rz ,
etc. (without regard to sign) is given in the

following table:

Intermediate values may be read from Fig. 1.2. It is customary there-

fore to regard 3r^ (or 2<rx) as equivalent to the limit of error, though this is

clearly arbitrary and unreal rigorously. Moreover, the specification of a

physical result as x + r* is exact only for a symmetric normal distribution.

Any asymmetry in the actual distribution will result in the probable

positive error differing from the probable negative error for single obser-

vations; that is, ordiiiates of the distribution curve at x =
0, (m r),

m, (m + r),
>

7
no longer divide the errors (area) into four equal parts

(quartiles). Of course, an analogous objection can often be made to the

lack of significance of the plus and minus sign if used with the S.D. of an

asymmetric distribution. The only rigorous interpretation of S.D. of an

asymmetric distribution is as root-mean-square error, Eqs. (2.9) and

(2.13), and not as a plus or minus value having symmetric probabilities

of being exceeded. It is only because the asymmetry of the Poisson dis-

tribution becomes small, and because this distribution approaches the

normal distribution in the vicinity of the mean value when m ^> 1
,
that

probable error can have any exact significance.

Graphical integration of Poisson distributions shows that the asym-
metry is of the order of 10 to -1 per cent for m = 10 to 100 and vanishes

as ra > oo. The asymmetry for m > 10 does not invalidate Eq. (2.17),

but for m < 10 much more significance attaches to the S.D. than to the

probable error. The general dependence of r on a = vx for the Poisson

distribution is given in the following table (R25) :

It will be noted that use of the conventional expression r = 0.6745a even
for the Poisson distribution results in a conservative estimate of the prob-
able error and is a safe procedure to follow.

If the mean value of an asymmetric distribution is estimated from a

very large number n of observations, then the probable error of the mean
value can have a true "plus-or-minus" significance, because the distribu-

tion of mean values is always more nearly normal than the parent
population.

f. Dimensions of Statistical Parameters. From consideration of Eq.

(2.7) or (1.7), it is evident that both x and <r must be dimensionless quan-
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tities, since <r has the same dimensions as x and V'x. It is generally true

that all such quantities in the distribution functions and in other statis-

tical expressions are without dimensions. For example, x may be phys-

ically the average number of counts per minute, but statistically the time

unit chosen is only an arbitrary interval or classification by which the

data have been taken. It is to be regarded statistically as dimensionless.

This can be visualized by considering time intervals measured off on a

chronograph tape, in which case the particular interval used for classifica-

tion might equally well be one second, or an equivalent length of tape, or

even an equivalent mass of tape. The interval itself does not have the

dimensions of time, length, or mass but is always statistically dimension-

less, as are all the other basic statistical quantities.
While the interval distribution Eq. (1.14) contains the rate a in

events per unit time, it always occurs in the product at or a dt, which is

again dimensionless.

Problems

1. Prove analytically that the standard deviation is *\/m for any Poisson

distribution.

2. In the interval distribution for single randomly distributed events, show
that the standard deviation is just equal to the average interval, that is, <r = I/a.

3. In computing the standard deviation a- of a series of observations xi? the

arithmetic often can be greatly simplified by referring the individual readings to

some arbitrary value x (usually chosen as a round number near x). Then if,

as usual,

and ff^
1

show that

(a) x =

n

^ 1 5)
fc-

4. In successive 30-min intervals, the number of a rays observed on a certain

counter are 13, 9, 16, 9, 14, 11, 17, 12, 7, 12, 15.

(a) Compute the average rate in a rays per hour.

(6) If a single additional 30-min observation is made, what are its probable

value, standard deviation, and probable error?

(c) What is the probable error of the mean value determined in (a) ?

(d) Compare (c) with the value expected if the data follow the Poisson

distribution.

5. Calculate and plot a Poisson distribution having a mean value of 1.2 for

values of x from to 6. What is the standard deviation? What can be said

concerning probable error in such an asymmetric distribution?
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6. Consider an asymmetric normal distribution having a modal (most proba-

ble) value of x =
g, a standard deviation <TL for x < g, and of o"a for x > </.

The
median value a; = r divides the distribution into two equal areas. The mean

value E = s is the average value of x. If the separation (r q) between the

mode and median is small compared with cr?, show that

(median-mode) = r q *l- (<r z cri)
= 0.0.627(<r2 <TI)

(mean-mode) = s g =
^/- (cr 2 ai) = 0.798(<r2 0"i)

HINT: Does the assumption q = result in any loss of generality?
7. Show that

This form is useful when z< contains one or at most two digits.

3. Composite Distributions

Most measurements or calculations in physics involve more than one
source of error or of statistical fluctuations. The joint effect of simul-

taneous but independent sources of statistical fluctuations is now to be
considered.

a. Generalized Poisson Distribution. Superposition of Several

Independent Random Processes. The complete generalization of the

Poisson distribution is usually required in nuclear problems, because
several types of radiation will actuate most detection instruments simul-

taneously. Thus, in ionization-chamber measurements of a rays, there

will be present a background composed of a and ft rays from radioactive

contamination of the walls of the instrument, of cosmic rays, and of y
rays from tho earth and the surrounding building materials. If each of

several such processes is itself random, the resulting over-all fluctuations

may be derived (E24).
Let .r, y, z, . . . be the average number of particles from the several

independent random processes, in the time interval chosen. Let them
respectively produce specific effects (such as ion pairs) of a, 6, c, . . . per
particle. Then the average effect on the instrument is

u ax + by + cz + (3.1)

(generalization of Kq. (2.7) shows (E24) that the square of the S.D. of a

single observation of u is given by

z
y + c zz + - - -

(3.2)
= a zx
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Equations (3.1) and (3.2) are applied to differential measurements by
noting that instrumentally subtracted effects correspond simply to nega-
tive values of the appropriate coefficient a, 6, c, ... in Eq. (3.2) and
leave the fluctuations unchanged.

In Eqs. (3.1) and (3.2), dimensions may be associated with a, 6, c, ...
and u, but not with z, y, z, . . . . In this case, both the mean value u
and the S.D. a have the dimensions of a, b, c, ....

Suppose that a certain ionization chamber receives in unit time an

average of x = 100 a rays, each producing a = 10 B ion pairs, and also

y = 104
ft rays, each producing b = 10 B ion pairs. Then the total average

ionization produced is

u = IO 6 X 100 + 10s X IO 4 = 2 X 107 ion pairs

However, the standard deviation in u is

ff = V(io6
)
2 x 100 + (io

a
)
2 x io4 = Vio12 + io10

= Vl.Ol X IO12 = 1.005 X IO6 ion pairs

or 5 per cent of u. Thus the a rays produce only half the total ionization

but, because of their small number and their large ionization per particle,

they account for 99.5 per cent of the statistical fluctuations in the com-
bined ionization effects.

Let this chamber and a second identical ionization chamber be con-
nected in a differential circuit such that an electrometer reads the differ-

ence of the ionization in the two chambers. If the second chamber also

receives in unit time an average of z = 100 a rays, each producing 10s

ion pairs, then c = IO5 ion pairs because the instrument subtracts cz

from ax + by. Then the net average differential ionization will be

u = IO6 X 100 + 10" X IO 4 - 10B X 100 = IO7 ion pairs

However, the S.D. in this differential reading is increased to

ff = V(10 5
)
2 X 100 + (IO

8
)
2 X IO4 + (-10 5

)
2 X 100

- V2.01 X IO 1

"

2 = 1.41 X IO 6 ion pairs

or 14 per cent of the net u. Note that the differential circuit does not
decrease the fluctuations in the total ionization. In fact, a has the same
value whether the two ionization chambers are connected to oppose each other

or to supplement each other.

In single-particle counting apparatus, such as a Geiger-M tiller counter,
a = b =

1, because the counter discharges once whether the initiating

ray is an a ray or a ft ray. Thus the x = 100 a rays and y = IO4
ft rays,

if acting in a Geiger-Mtiller counter, would produce a total of

u = 1 X IO2 + 1 X IO4 = 1.01 X IO4

counts with a S.D. of

cr = vTx IO2 + 1 X~lb4 = 1.005 X IO 2 counts

or only 1 per cent of u.
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We shall return later to Eq. (3,2) for the discussion of the statistics of

scaling circuits (Chap. 28).

b. Propagation of Errors. The laws for the propagation of errors

are rigorous for the S.D. and can, in fact, be inferred from Eqs. (3.1) and

(3.2). In the present section we use probable error merely as a symbol
for 0.6745cr, or for 0.6745^, as required by the context.

Where a physical magnitude is to be obtained from the summation or

the differences of independent observations on two or more physical

quantities, the final probable error R of the derived magnitude is obtained

from
W = r] + r\ + -

(3.3)

where r it r2 ,
. . . are the absolute values of the probable errors in the

mean values of the several quantities, expressed, of course, in the same
units. Thus,

(100 3) + (6 4) = (106 5)

while (100 3)
-

(105 4)
= -(5 5)

The arithmetic of subtraction may be further illustrated by the

problem of measuring a counting rate due to some radiation source. A
separate measurement must always be made of the natural-background

counting rate of the instrument when the source is absent. Suppose that

in a time tb a total of bfa background counts is recorded. Then the

average background rate B and its probable error would be

B = (Mb 0.67 Vbtb)
-

= b 0.67 (3.4)
\ tb

We note at once that the statistical uncertainty in our evaluation of the

background rate depends inversely on the square root of the duration of

our observation. Suppose that we now bring a radioactive source near

the counter, increasing the true average counting rate to (S + B), where
8 is due to the source and B to the background. Let (s + b) be the

observed counting rate over a period fc, during which a total of (s + b)t,

counts is recorded. Then our best estimate of (S + B) and its prob-
able error is

S + B =
[(s + &). 0.67

= s + b 0.67 J- +
j-

(3.5)
** &

Subtracting Eq. (3.4) from Eq. (3.5) in order to obtain the average

counting rate due to the source, we obtain, by Eq. (3.3),

S s 0.67 JS- + \ +
b-

(3.6)
* t, t, tb

It will be rioted that the background uncertainty enters twice, once for
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its fluctuation during the measurement of (s + b) and once for its fluctu-

ation during the measurement of b alone. In the design of counting

experiments, it is clear from Eq. (3.6) that the uncertainty in fl meas-

ured for a fixed time t9t can always be reduced by prolonging the inde-

pendent background measurements k.

On the other hand, if a physical magnitude Y is to be obtained by

multiplication or division of results of several independent observations

on two or more physical magnitudes 3/1, 1/2, -
,
the fractional prob-

able error R/Y in the resulting value of Y depends upon the fractional

probable errors r i/2/i, r2/2/2, . . . in the measurement of yi, y z ,
. . . and

is given by

(3.7,

or its equivalent __ _
RsaY /7EY +7rA%~^;(r.Y (3 .8)

* \W V/2/ V/n/

Thus we have, for example,

(100 0.3) (6 0.4) = GOO 600 VvfV)' = 600 40

(100 3)(100 4) = 10 4 10 4 v/(rTTTr)
2~+ (Tw)

2 = 10,000 + 500

= 10 10 \(^) 2 + (A)
2 = 10 5

100 40

10 + 3

Equation (3.7) is a good approximation if the fractional errors are

small, that is, if fifa/y^
2

1
,
as often happens.

c. Significance of the Difference of Two Means. Especially in

nuclear physics, many experiments have to be statistically designed as

optimum compromises between maximum resolution and maximum inten-

sity. It often happens that the statistical fluctuations in the natural

background of a detecting instrument may be comparable with the aver-

age value of some feeble radiation effect which is to be measured. In
such cases, special care must be taken in interpreting the results of the

measurements, and standard tests of the "significance of the difference

of means" may need to be applied to the data.

Let mu and mv be the true mean values of two independent popu-
lations of normally distributed data, while (u + 0-5) and (v 0*) are

measured values of samples from the two populations, each measure-
ment being based on a sufficient number of observations so that the

uncertainty in a* and in 0-5 is small. Then our best estimate of the

difference, (mu rav), of the two means is

= (u
-

v) V*l + a* (3.9)

It can be shown f that (u v) is normally distributed about the true

f See P. G. Hoel, "Introduction to Mathematical Statistics/' p. 109, John Wiley &

Sons, Inc., New York, 1954, or S. S. Wilks, "Mathematical Statistics," p. 98, Prince-

ton University Press, Princeton, N. J., 1943, on the problems of significance.
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mean value (mu r.iv) with a standard deviation of

*(B-i)
= v^T+^f (3.10)

If, for example, the true mean value is (mu m*) =
0, then from

Fig. 1.2 there is about a 32 per cent chance that the absolute value of

(u v) will be numerically greater than the standard deviation of its

own measurement, 0^-5). Similarly, because Fig. 1.2 shows F u = 0.045

for u =
2(r, there is only about a 5 per cent chance that the observed

absolute value of (u v) would exceed 2a
(z-;) if (mu mv )

= 0.

It is customary but arbitrary in the theory of errors to reject any
hypothesis which falls below a "significance level" of 5 per cent. Thus,
the hypothesis being tested is usually rejected if it predicts that the obser-

vation made was so unusual that it should occur less than 5 per cent of

the time. Accordingly, an observation of a difference of at least twice

the S.D. (or three times the probable error) between two mean values

would be said to be "significant" and would lead to rejection of any
tentative hypothesis that the two true mean values were identical.

For example, suppose that a radiation-safety monitor is searching for

0-ray contamination, using an ionization chamber whose natural back-

ground has an average value of 10 a rays (10
6 ion pairs per a ray) plus

100 ft rays (10
3 ion pairs per ft ray) per minute. What is the minimum

number of additional ft rays per minute which can just be detected in a

30-sec inspection, using the conventional significance level of 5 per cent?

From Eq. (3.1), the average background ionization per 30-sec interval is

u = ax + by = 106 X 5 + 10 8 X 50 = 5.5 X 10 B ion pairs

while the S.D. of u is, by Eq. (3.2),

a = Va zx + b*y = V(10 5
)
2 X 5 + (10

3
)
2 X 50 = 2.24 X 10 B ion pairs

Making the valid and simplifying assumption that the additional /9-ray

activity cz which is just detectable will not alter a appreciably, we require
cz = 2<r for the 5 per cent significance level. Taking c = 6 = 10 8 ion

pairs per ft ray, we find that z = 2<r/c = 2 X 2.24 X 10 B
/10

a = 450/3 rays
in 30 sec, or 900 ft rays/min, as the least amount of 0-ray activity which
can be "detected" in 30 sec with this instrument.

Evidently, instruments designed for the detection of small activities

should have small fluctuations in the background. In the example cited,

the major portion of the statistical fluctuations is due to the a rays.
Another ionization chamber, having no appreciable a-ray background
but the same total average background due entirely to 1,100 ft rays/mm,
would have a = V(To3

)
2 X 550 = 2.34 X 104 ion pairs for 30-sec read-

ings. Such a chamber could therefore detect an addition of 2a ion pairs,

or 47 ft rays in 30 sec, or an average activity of about 100/9 rays/ min
in a 30-sec observation. Although both ionization chambers considered

here have the same average background, their "useful sensitivities'
1

to

small sources differ by a factor of 9 (!) because of the important effects

of fluctuations in the background.
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This numerical example illustrates a broad general principle which is

too often overlooked in discussions of the relative sensitivity of various

types of detecting equipment. A measure of goodness, or of effective

relative sensitivity, is the instrument's response to some small standard

source, divided not by the average background but by the magnitude of

the fluctuations of the background in unit time. The mere ratio ot

response divided by average background is meaningless.
In principle, a huge background would be perfectly acceptable if it

could be absolutely steady in value.
*

It is the inevitable increase in the

absolute value of the statistical fluctuations with increasing background
which directs instrument designers to seek low backgrounds.

Problems

1. Two measured quantities and their standard errors are a = 50 4 and

6 30 3. Find the values, with standard error, of the quantities ab, a/6,

(a
-

6), (a + 6).

2. A counter has a background of 90 counts per minute as determined from
a 1-hr observation. A small sample, tentatively thought to be nonradioactive,

is placed near the counter for 5 min. During this time 475 counts are recorded.

(a) On a basis of this evidence, is the sample radioactive?

(6) If in a period of 20 min 1,900 counts were recorded with the sample

present, would it be judged as radioactive?

3. Using a counter having a very accurately measured average background
of 120 counts per minute, what must be the duration of an observation of a

radioactive source having a constant average activity of about 240 counts per
minute if the activity of the source is to be measured with a standard error of 2-

per cent?

4. The rate of emission of rays from a single radioactive substance, for

example, P", is being observed by counting the particles emitted during accu-

rately measured time intervals of equal duration t. The background of the counter

is first observed for a time t and is 3,000 counts. Then the source is brought up,

and the counting rate rises to 7,000 counts in a time t.

(a) From these two observations alone, what is the fractional standard error

(in per cent) of the observed counting rate due to the ft rays?

(6) Why must t be much shorter than the half-period of the radioactive sub-

stance for the calculation in (a) to be valid?

6. The radioactivity of a long-lived substance emitting ft rays is to be meas-

ured, using a Geiger-Miiller counter. The background of the counter is such

that a total of 3,200 counts are recorded in a total running time of tb min. With

the source in position, a total of 3,200 counts are recorded in t, min.

(a) Show that the per cent standard error in the measurement of the source

strength, in terms of the observed quantities tb and ., is

(6) What is the per cent standard error if tb/t,
= 2?

(c) What is the per cent standard error if tb/t.
= 10?

6. Two Geiger-Miiller counters are exposed to the same radiation to deter-

mine whether they have the same absolute sensitivity.

(a) In the first trial, counter 1 gives a total of 900 counts in the same time
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counter 2 gives 940 counts. Can this be considered a "statistically significant"
Jifference?

(6) If counter 2 gave 990 counts instead of the 940, would this be a "sta-

tistically significant" difference?

7. In successive 10-min intervals, the background of a counter is 1,020; 970;

990; 1,040; 950; 1,010; and 980. A radioactive source of long half-period is

brought up to the counter, and the increased counting rate, for successive 10-min

intervals, is 3,060; 3,100; 2,980; 3,010; 2,950; 3,030. Calculate the average
values and standard errors for (a) the background, (6) the background and

source, and (c) the source alone.

8. A time T is available in which to measure the counting rate s due to a

radiation source, using an instrument whose background counting rate 6 is not

known accurately ami must be measured during part of T. Show that maximum
accuracy is obtained in the measurement of s by using a time aT for observing
the source, and (1 a)T for observing the background, where

"background time" = 1 a =

Plot a vs. log (6/s) for 0.01 < (6/s) < 10. What is the limiting value of a
for very weak sources? For very strong sources?

9. The background 6 of a counter is to be measured and then the counter is

to be used to measure the activity s of a source, all in a fixed time T. If the

true inoan values are b = 30 counts per minute (cpm) and s = 300 counts per

minute, and if T = 20 min, what is the standard error of s in counts per minute
when T is divided between background and source measurements such that

(a) the same total number of counts are recorded for background as with the

source in position, (b) one-half the time a/ailable is used for background, and

(c) the optimum division of time- is utilized? Ans.: (a) 14 counts per minute;

(6) 6.0 counts per minute; (c) 5.3 counts per minute.

10. Measurements are made with a 7-ray counter on n. source of substantially
constant average activity.

(a) A total count (source plus background) of 8,000 is observed in 10 .min.

Then, with the source removed, 10 min gave a total of 2,000 background counts.

What is the average source strength in counts per minute? What is the standard

deviation in this value?

(b) If the total time to make measurements is fixed, what is the optimum
fraction of time to spend measuring background in part (a) ?

11. A choice is to be made between two somewhat similar a-ray counters.

One is distinguished especially by its low background, the other by its high

efficiency.

(a) If the average background of a counter is B counts per hour, and the

calibration constant or "sensitivity" is S counts per hour per micromicrouurie

of, say, radon, show that the fractional standard deviation in the measurement
of A /i/ic in a time T is

_a_ _ ISA + B
SA

"
\ TSZA*

(fe) What is the fractional standard deviation for very weak sources (A 0) ?

For very strong sources (A > oo
) ?

(c) The two instruments which are available have BI = 10, Si = 100 and
Bz = 150, 2

= 250. For very weak sources, should the instrument with the

low background or the one with the high sensitivity be used? Which instrument
is preferable for strong sources?
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(rf) What is the particular source strength AQ, in micromicrocurieo, for which

these two instruments give the same fractional statistical error of measurement
in any fixed time T1

12. A large group of atoms, whose number is exactly N at t = 0, undergoes
radioactive decay with decay constant X and mean life T = l/\.

(a) State the probability that a given atom has survived at time t.

(6) State the probability that a given atom has decayed between t = and
t = t.

(c) What is the expectation value n of the number of survivors at time t

(i.e., the mean number of survivors for many such groups of N similar atoms)?

(d) If t = T, which of the distribution laws studied describe(s) the fluctuation

of the number of survivors n about ft?

(e) What is the standard deviation of n about n?

(/) What is the probability that a given atom will survive through T and

deca}r between T and T + AJ?

(0) What is the expectation value An of the number of atoms decaying
between T and r + Ail

(h) If At = iV r which of the distribution laws studied describe (s) the

fluctuation about An of the number of atoms, An, decaying between T and r + Ail

(1) What is the standard deviation of An about An?

(f) At t = we have 100 groups of N atoms, each of the above type, which

we shall call A, and 100 groups of N atoms, each of a second type B. Observa-

tions between T and T + At result in the following

If 5 = \AnA An* |,
how large a value may 5 have without seriously upsetting

the hypothesis that types A and B arc actually the same atoms?

13. The radium content of an unknown sample is to be determined on an

absolute bosis by comparison with the 7-ray activity of a radium standard.

If A is the observed activity of the unknown and B is the observed activity of the

radium standard, then the host value of the ratio A/B is the quantity sought
from the measurements. A standardized technique is used, such that each

individual measurement of A or of B has a fractional standard deviation of 0.5

per cent,

(a) If only one measurement of A and one of B are made, what is the frac-

tional standard deviation of A/Bf
(6) If three measurements of A are made, what is the fractional S.D, of the

average activity A of the sample?

(c) If three measurements of A and n measurements of B are made, what is

the fractional S.D. in the average ratio A/B?
(d) It is desired to make enough measurements n on the standard so that no

appreciable statistical error is introduced in the final ratio A/B by uncertainty in

the activity B of the standard. Again, three measurements are made on A.

What is the minimum number n of measurements of B such that the fractional

S.D. in A/B will not exceed 1.2 times the fractional S.D. in A?



CHAPTER Zl

Statistical Tests for Goodness of Fit

Two statistical tests for "goodness of fit" between data and hypothe-
sis will be discussed. 'It has long been clear that all individual nuclear

processes are random in character and hence obey Poisson's distribution

and the interval distribution based on it. Data illustrating this fact will

be given in Sec. 4 as examples of the application of statistical principles.

1. Lexis
9

Divergence Coefficient

In 1877 the German economist Lexis introduced a divergence coeffi-

cient Q 2
,
defined as the ratio of the average of the squares of the devia-

tions to the arithmetical mean or, in the nomenclature of Chap. 26,

Comparison of Eq. (1.1) with Eq. (2.9) of Chap. 26 shows that

C> = n- -
1

I'
(1.2)

n x

which, for the normal distribution, can have any value since a is a, param-
eter of the normal distribution.

For the Poisson distribution, however, Q 2 has a definite value because

a is expressible in terms of the mean value m. Thus, if the data were in

perfect agreement with Poisson's distribution, we should have, by Eq.
(2.7) of Chap. 26,

Q 1 = -* = - = 1 (1.3)nm m

We can then compute Q 2 from our data, using Eq. (1.1), and if the

observed <?
2
is close to unity we may say that the data seem to follow the

Poisson distribution.

774
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While this is very helpful, it is by no means enough, for we need to

know how different from unity Q z may be expected to be before we should

question the randomicity of the process. Such a quantitative test is

offered by Pearson's chi-square test.

2. Pearson s Chi-square Test

Pearson's (P10) chi-square test determines the probability P that a

repetition of the observations would show greater deviations from the

frequency distribution which is assumed to govern the data. While
derived on a basis of the normal distribution, it is successfully used on
Poisson and interval distributions because, as stated earlier, the fre-

quency curve of the means of samples drawn from a nonnormal infinite

parent population of data is usually more nearly normal than the original

population. Moreover, a parent Poisson distribution in which m 1

approaches the normal form, as was seen in Figs. 1.1 and 1.3 of Chap. 26.

Whereas the chi-square test provides one of the most decisive statis-

tical criteria, it is too seldom used by physicists, partly because of its

uufamiliarity and partly because a large amount of data is required for

its most useful applications. Its use should be encouraged.
Pearson's chi-square lest may be most simply stated as follows: We

define the quantity
i

_ V* [(observed value), (expected va!ue) t]

2

x~ /
~

',
~~\

,
T (^.l)

Z_/ (expected value) t

where the summation is over the total number of independent classifica-

tions i in which the data have been grouped. The "
expected values"

are computed from any a priori assumed frequency distribution, e.g.,

normal, Poisson, interval, etc. In general, the data should be subdivided

into at least five classifications, each containing at least five events.

Secondly, we determine the number of degrees of freedom F, which is the

number of independent classifications in which the observed series of

data may differ from the hypothetical. Then enter Fig. 2.1 and from the

values of x
2

aild F determine. P, which is the probability that x
2 should

exceed its observed value. Put differently, 1* is the probability that, on

repeating the series of measurements, larger deviations from the expected
values would be. observed.

In interpreting the value of P so obtained, we may say that, if P
lies between 0.1 and 0.9, the assumed distribution very probably corre-

sponds to the observed one, while if P is less than 0.02 or more than 0.98

the assumed distribution is extremely unlikely and is to be questioned

seriously.

The practical uses of the chi-square test will be illustrated by numer-

ical examples in Sec. 4 below.

For values of F > 29, which are neither shown in Fig. 2.1 nor given

in the usual chi-square-test tables, it is sufficient to assume that V2x 2

has a normal distribution with unit standard deviation about a mean
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value of V2F - 1. Then Fig. 1.2 of Chap. 26 may be used for such

chi-square tests. In actual statistical practice F seldom exceeds 30 and
is usually less than 12.

~*

The chi-square test may be used to determine the validity, of any
proposed distribution law. Whereas statisticians have devised a number
of tests for goodness of fit, physicists should find the chi-square test the

most useful of these.

3. An Extension of the Chi-square Test

As expressed by Eq. (2.1), x 2 measures the square of the observed
deviations from some assumed frequency distribution. If we fail to

specify the distribution assumed but do assume that in a series of n
observations of a process, over equal time intervals, the expected value
in each interval is constant and equal to the mean value x for all the

intervals studied, then we would write

** =
t -H^-

1

= nQ2 (5U)

i

where n values of x are observed and Q 2
is Lexis' divergence coefficient,

Eq. (1.1).

It must be emphasized that in Eq. (3.1) we have not yet assumed
what distribution governs the observed process; in fact, we have assumed
the expected value to be constant. But if the process follows the Poisson

distribution, we have seen in Eq. (1.3) that Q 2 =
1; hence x

z = n. Here
the number of degrees of freedom is F = n 1, because our only restric-

tion on the n independent expected values is that they each be equal
to x. It will be seen from Fig. 2.1 that if n > 5 then P is between 0.3

and 0.4 for Poisson data so treated. This differs from 0.5 only slightly

more than corresponds to the asymmetry of the Poisson distribution

and is one justification for a type of application of the chi-square test

which is often made on small samples. This test tells far more than can

be learned from other readily applied statistical tests.

4. Examples of Random Fluctuations

In this section, numerical examples will be given to serve the double

purpose of elucidating the application of the statistical principles given in

preceding sections and to establish the random character of certain

nuclear processes.
a. The Emission of a Rays by Polonium. All modern theories of

radioactive decay involve the assumption that in an assembly of nuclei

of a given type, e.g., polonium, all the nuclei are identical, independent,
and that they each have a definite and constant probability of decaying
in unit time (Chap. 15). Since these conditions are precisely the same as

the necessary and sufficient conditions for Poisson's distribution, it

becomes of fundamental importance to compare the observed statistical
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fluctuations in the emission of radioactive radiations, from a source of

essentially constant strength, with the predictions of Poiason's distribu-

tion. The agreement which is found is illustrated by the following

example. This is one of the experimental justifications on which many
nuclear considerations rest.

To test adequately the random time of emission of a rays from a radio-

active substance, a solid angle of 4?r should be used so that every emitted

ray can be counted, regardless of its direction of emission. This has

been experimentally inconvenient but has been done in a few unpublished

experiments by Constable and Pollard. Feather (F10) used a 2ir solid

angle and reported the interval distribution valid for his scintillation

study of some 10,000 a rays.

It has been established adequately that at least in noncrystalline
sources a rays are ejected uniformly in all directions. This and experi-
mental convenience are the justification for the use of a small solid

angle, and such experiments have been made by several workers. Of

these, we shall discuss the data of Curtiss (C65), who employed a Geiger

point counter to record the a rays emitted within a small solid angle from
a polonium source. Between 20,000 and 30,000 a rays were counted in

each of eighteen 6- to 7-hr runs extending over an elapsed time of 42

days. Lexis' divergence coefficient was computed for each of the 18 sets

of data and showed a gradual approach to Q 2 = 1.0 as the source aged
and as loose molecular aggregates were detached from the source by the

recoil from the disintegration of one of the atoms in the aggregate. After

all easily detached aggregates had been torn off, the source more exactly

approximated one of constant strength, and the observed emission of a

rays approached randomicity.
The resolving time of the counter was sufficiently small that the very

short intervals could be faithfully observed. Finite resolving time always
tends to lower Q 2 a.nd x

2
by ignoring short intervals, thus artificially

reducing the true dispersion of the counts.

We now consider one of the 18 runs in detail. The number of a rays
observed per time interval is recorded for n = 3,455 equal time intervals.

Table 4.1 shows the number of these intervals lx in which x a rays were

observed. Thus no a rays were observed in eight of the intervals, one

a ray in 59 intervals, etc., and in all, 2xlx = 20,305 a rays were observed.

The average number of a rays per interval is thus

Knowing the total number of intervals and the average number of

rays per interval, we can now assume that the Poisson distribution may
describe the distribution of counts, and compare its predictions with

observations. The number of intervals Lx in which x particles would be

expected is given by the Poisson formula, Eq. (1.7) of Chap. 26,

(4.2)
z!
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Hence, substituting x =
0, we expect L = 3,455e~

6 - 88 = 9.7 intervals

with no a rays. Table 4.1 shows the calculated values for x = to

15 particles per interval. Inspection of the table, or of Fig. 4.1, in which
Lx and lx are plotted against ;r, shows qualitatively that the observations

are in reasonable agreement with Poissoii's distribution governing random

processes.

T \BLE 4.1. CITUTISS'H <x-IlAY DATA

Degrees of freedom = 16-2=14 0.2

10 12 14

Fig. 4.1 Curtiss'a data on the randomicity of emission of a rays from polonium.

Observed values (lx ), and the theoretical Poisaon distribution histogram (Lx in Table

4.1), are shown for the number of intervals containing x counts, about a mean value

of 5.88 counts per interval, and for a total of 3,455 intervals.
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To determine the degree of agreement quantitatively, we apply the

chi-square test to the data. To compute x 2 we employ Eq. (2.1), which
now takes the form

Table 4.1 summarizes the calculation leading to x
2 = 18.9.

The data have been divided into 16 classifications corresponding to

x = to 15; hence there are originally 16 independent ways in which the

observation may be different (lx Lx) from the calculations. How-
ever, there are not 16 degrees of freedom because two restrictions are

placed on these 16 differences. First,

and secondly,

that is, we have used up two degrees of freedom by specifying (1) the

total number of intervals and (2) the total number of events. The
second restriction is, of course, equivalent to specifying the average num-
ber of rays per interval. There remain, then, F = 16 2 = 14 degrees
of freedom. Entering Fig. 2.1 with these values of x

2 and F, we find

P =
0.2, i.e., in 2 cases out of 10 the deviations from Poisson's distribu-

tion would be expected to be greater than those here observed. The
chi-square test thus gives us quantitative confidence in the randomicity
of the process studied.

Studies of statistical theory and applications to cases of radioactive

decay have been made by many workers, all tending to substantiate the

view that the law of radioactive decay is a statistical law (K3 1 ) . Kovarik

(K43) showed that the rays from a radium D + E + F mixture follow

the Poisson distribution. In fact, all independent nuclear processes seem
to follow the Poisson and the interval frequency distributions. This does

not include some cases of series disintegration, as will be discussed in

Chap. 28.

b. Distribution in Time of Cosmic-ray Bursts. As an example of

the application of the chi-square test to the interval distribution, we con-

sider the distribution of the time intervals between successive cosmic-ray

bursts, as observed by the Montgomerys (M53).
The time of occurrence of 213 bursts in a total of 30.8 hr was observed.

Equation (1.15) of Chap. 26 for the distribution of time intervals between

randomly spaced events is assumed as a working hypothesis. The chi-

square test is then applied to see how closely the observed time intervals

between bursts agree with the assumption of random distribution in time.

The results are summarized in Table 4.2. In analyzing the data, arbi-

trary choice is made of the range of time intervals. These are shown iu

the second and third columns. Thus if two bursts were separated by a

time interval of 30 sec, this event would be one of 22 observed entries in

the first row. The nomenclature used is analogous to that employed in

Table 4.1. Thus lr denotes the observed values and Lz the values calcu-

lated from Eq. (1.15) of Chap. 26, making use of the arbitrarily chosen
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time intervals, t\ to tz , and, from the data (1) the average rate of appear-
ance of bursts (= 1 /average interval between bursts) and (2) the total

number of observed bursts. Thus the number of degrees of freedom is

two less than the number of patterns, or "classifications," studied.

The distribution curve of x
2
(Fig- 2.1) is to be regarded as only an

approximation to the true distribution if the number of independent
classifications of data and the minimum number of events per classifica-

tion are small. Experience and theoretical studies show that the approx-
imation is usually satisfactory if there arc at least five classifications, each

containing at least five events. If there are less than five classifications,
each should contain appreciably more than five events. It is best to

combine classifications containing less than five events with an adjacent

classification. Hence in Table 4.2 the intervals between 2,000 sec and

TABLE 4.2. DISTRIBUTION OF COSMIC-BAY BURSTS IN TIME (M53)

Average interval between bursts

Degrees of freedom = 6 2 = 4

P =0.8

521.6 sec

infinity arc to be combined with those between 1,000 and 2,000 sec.

There are therefore six classifications, or patterns, studied and 6 2 = 4

degrees of freedom.

Entering Fig. 2.1 for Pearson's chi-square test, we find P =
0.8, i.e.,

in 8 out of 10 similar experiments, the deviations from the interval dis-

tribution (which rests on the Poisson distribution) would be greater than
here observed. There is therefore strong support for the conclusion that

the observed phenomena obey the interval distribution as proposed by
Eq. (1.15) of Chap. 26, which describes a random process.

c. Randomicity of Geiger-Miiller Counter Data. Tables 4.3 and 4.4

snow data taken on two Geiger-Miiller counters used in radioactivity
measurements. The values of x are the number of impulses per 5-min
interval and are due principally to local 7 rays and cosmic rays actuating
the instrument. We wish to determine, from the spread of these data,
whether or not the counter is operating satisfactorily. Abundant evi-

dence exists to show that these counts should be randomly distributed

in time. If they are not randomly distributed but tend to show perio-

dicities, then we should suspect the counter in question of some anoma-
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lous behavior, such as a spurious periodic discharge superimposed on the

true random effect of the incident radiation. The same arguments obvi-

ously apply to linear amplifiers, proportional counters, scintillation

counters, and all similar detection instruments.

The routine statistical appraisal of these data is shown in the lower

half of each table. In Table 4.3 it will be noted that the actual S.D. is

slightly less than VS, suggesting that the dispersion among the data is

slightly subnormal. Two of the seven measurements fall outside (5 <r) t

which is about the correct proportion. The result of the experiment and

TABLE 4.3. ANALYSIS OF GEIGEH-MULLKR COUNTER DATA

Mq. (2.1), Chap. 26: x = ^-^ =

Eq. (2.9), Chap. 26: * = V^T2 - 12-8 (from residuals)

Eq. (2.7), Chap. 26: <r = \/227 = 15.1 (expected)
12 8

Eq. (2.13), Chap. 26: <rg = 7'=
= 4.9 (from residuals)

V7
Eq. (2.17), Chap. 26: n - 0.6745 X 4.9 = 3.3 (from residuals)

Eq. (2.17), Chap. 26: rs = 0.6745 X~ = 3.8 (expocled)
N/7

qqn
Eq. (1.1), Chap. 27: <?

=
7 ^ 227

= 0.623

Eq. (3.1), Chap. 27: x z = Hr = ^-37

F = 7 - 1 =6
:.P - 0.6

its probable error of measurement would be recorded as 227 4 counts

per 5-min interval, or 45.4 0.7 counts per minute. It is noted that

Q 2
is not close to the expected value of unity for a Poisson distribution.

Because Q 2 < 1, it is again evident that the dispersion of the data is sub-

normal, i.e., that even greater fluctuations should have been expected
from a random distribution. But only the x

2 test gives us definite infor-

mation on just how well the data fit a random distribution. The only

potential degree of /reedom used up in the calculation of the expected
vahies is the average rate 5 = 227. With x 2 = 4.37 and F =

6, Fig. 2.1

gives P = 0.6. Therefore in 6 out of 10 similar tests we could expect
fluctuations greater than those here observed. This is a satisfying result

and suggests that this counter is behaving properly.
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We now consider the data of Table 4.4, which led to the discovery
of a faulty instrument. The very low value of the standard deviation

computed from the residuals and the low value of Q 2 at once warn that

the dispersion of the data is quite subnormal. However, the chi-square
test provides us with a definite numerical gage of the improbability of

our result. In 99 cases out of 100, we should expect a greater dispersion
of data. We conclude that either (1) a very unusual observation has

been made or (2) the instrument is faulty and devoted to spurious peri-

odic discharges. The cautious experimenter will surely choose the latter

TABLE 4.4. ANALYSIS OF GEiGER-MttLLER COUNTER DATA

244Eq. (2.1), Chap. 26: x = -
\j

Eq. (2.9), Chap. 26: a- - V^T^ 5-3 (from residuals)

Eq. (2.7), Chap. 26: a = V244 - 15.6 (expected)

Eq. (1.1), Chap. 27: Q* =
ft '^ - 0.097

Eq. (3.1), Chap. 27: x 2

F
.'.P

0-58

6 - 1 - 5

0.99

explanation tentatively and will proceed with further examination of the

instrument.

It is instructive to reread and contemplate on the observed values x

in Tables 4.3 and 4.4. The naive observer would usually choose the

instrument of Table 4.4, because of the self-consistency and reproduci-

bility of its readings. These are false clues. Variability comparable
with or even greater than that exhibited in Table 4.3 must be exhibited

by a reliable instrument operating on a random process.

Problems

1. Among 927 cosmic-ray bursts observed in 1,344 hr the interval between

bursts was less than 30 sec in four instances, between 30 and 60 sec in 10 instances,

and greater than 60 sec in the remaining 913 instances. [Cairns, Phys. Rev., 47:

194L, 631L (1935).] Compute the number of expected intervals of these dura-

tions if the bursts are randomly distributed in time. Apply Pearson's chi-square

test and estimate the probability that greater deviations from randomicity would

be observed in a repetition of the experiment.
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2. The results of certain Army records, extending over a period of years,

give among- other things the number of soldiers killed by the kick of horses.

Number of deaths/time interval Frequency observed

109

1 65

2 22

3 3

4 1

5

6

(a) What is the mean value of the number of deaths per time interval?

(6) What frequencies would you expect for 0, 1, 2, 3, 4, 5, 6 deaths per time

interval?

(c) What is the probability that, on repeating this
"
series of measurements/

1

larger deviations from the expected values would be observed?

3. Consider the spatial distribution of "flying-bomb" hits in a region south

of London during World War II. For purposes of analysis, the entire region
was divided into 576 squares of equal area (-? km2

each). In the total region
there were 537 hits altogether. The number of squares, lxt receiving x =

0, 1,

2, ... hits was as given in the table [from R. D. Clarke, /. Inst. Actuaries, 72 :

481 (1946)]. Many people believed that the points of impact tended to cluster.

No. hits in one square, x No. squares receiving x hits, lx

229

1 211

2 93

3 35

4 7

5

6

7 1

>8

(a) Analyze the data given, and determine the probability that a purely
random distribution of hits would show better agreement with the Poisson

distribution.

(&) In what mathematical ways, if any, does this problem differ from an

analysis of the number lf of 1-min intervals, out of a total of 576 min, which con-

tain x = 0, 1, 2, . . . nuclear disintegrations when the average rate is

* - Ifi = 0-932

disintegrations per minute?
4. A counter detects the radiation from a small solid angle of a source. A

statistical analysis shows these data to obey an interval distribution. Why does

this not definitely indicate that the disintegrations within the source are randomly
distributed in time?

5. In successive 15-min intervals the background of a certain counter is 310,

290, 280, 315, 315, 275, 315. A radioactive source, whose half-period is 14 days,
is brought up to the counter, and the increased counting rate, for successive

15-min intervals, is 720, 760, 770, 740, 780, 710, 780, 740. Calculate in counts

per minute the average value and standard errors for the (a) background, (6)

background plus source, and (c) source alone. Show quantitatively whether or

not the data on source plus background can safely be considered to be random!/
distributed.



CHAPTER 28

Applications of Poisson Statistics to Some

Instruments Used in Nuclear Physics

There are many situations in experimental nuclear physics in which
the effect of the detection apparatus is to alter or conceal the randomicity
which is actually present in the nuclear process being observed. In some
cases this alteration of the statistics of the process can be calculated from
the laws which describe purely random distributions. We consider now
some of the common practical cases.

1. Effects of the Finite Resolving Time

of Counting Instruments

Every detection instrument used for counting single rays or particles

exhibits a characteristic time constant having the nature of a recovery
time. After recording one pulse, the counter is unresponsive to successive

pulses until a time interval equal to or greater than its resolving time p

has elapsed.
The interval distribution [Chap. 26, Eq. (1.14)] shows that short

intervals are more likely to occur than are long intervals between suc-

cessive events in a random distribution. If the interval between two
true events is shorter than the resolving time p, then only the first event

will be recorded. Thus there are both a loss of counts and a distortion

of the distribution. Very short intervals are missing in the output. The
observed distribution will have an average value and a standard devi-

ation which differ from the true values for the primary random process.

a. Counting Losses Due to Finite Resolving Time. Counter systems

really do not count the nuclear events, such as ft rays, but rather the

intervals between such events. Thus all counting systems are really inter-

val counters. The conditions under which ionizing events fail to be
recorded depend strongly on the characteristics of the detector and of

the amplifier and recording system. Two limiting cases, or types, may
be identified easily.

Type I ("Paralyzable"). This type is unable to provide a second

output pulse unless there is a time interval of at least p between two
successive true events. During the response time p to an initial event,

the recovery of the apparatus is further extended for an additional time p

785
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by any additional true events which occur before full recovery has taken

place. Thus if five true events are spaced at successive intervals of 2p,

0.5p, 0.8p, 3p, only the first, second, and fifth event (corresponding to

the first and last intervals) can be recorded. Figure 1.1 illustrates the

continued paralysis of the detector until a free interval of at least p shall

permit relaxation of the apparatus.

Systems of Type I (paralyzable) count only those intervals which are

longer than p. The interval distribution [Chap. 26, Eq. (1.15)] gives at

once the fraction of the intervals which are longer than p as e~"p
,
where

Observed counts

type I apparatus

(paralyzable)

True counts -

2^2

Observed counts

type II apparatus
(nonparalyzable)

^^
^T" Y///A

Fig. 1.1 Schematic illustration of the behavior of counting systems having a resolv-

ing time p. The time axis is from left to right. True counts occur at the times

shown by vertical lines along the center section. Apparatus of Type I responds only

to intervals longer than p. The number of observed counts and the time during which

the Type I apparatus is insensitive are shown by shaded blocks. Apparatus of Type
II is insensitive for a time p after one pulse but then can respond again even if the

interval between successive true counts is less than p, as illustrated by the triplet.

In the hypothetical example shown, there are eight true counts, of which six are

recorded by a Type II apparatus and only five are recorded by a Type I apparatus.

N is the average number of true events per unit time. Then if the total

number of intervals counted is large compared with unity, the observed

counting rate n is simply
(1-1)

If the true counting rate N is small enough, only a few intervals (or

counts) are missed. Then the observed counting rate is given by the

useful approximations
n~N(l - Np) (1.2)

or N~n(l+np) (1.3)

when Np 1.

As the true counting rate is increased, differentiation of Eq. (1.1)

with respect to N shows that, when Np =
1, the observed counting rate

n passes through a maximum given by

n - - - - (14)"
e ep

It is to be noted that the maximum of the observed counting rate

occurs when the average number of true pulses expected per resolving
time is unity, that is, Np = 1. Then l/e = 0.368 of the true events is

registered. Also the maximum rate of response to uniformly spaced
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pulses (as from an oscillator) would be simply 1/p, which is just e times

the maximum observable rate of response of the same apparatus to ran-

domly spaced input pulses.
If the true rate N is increased through values greater than 1/p, then

the observed rate n actually decreases, as paralysis of the apparatus
becomes increasingly worse because of the scarcity of intervals longer
than the resolving time p. The behavior is shown in Fig. 1.2.

As the true counting rate approaches infinity, the observed rate will

approach zero, i.e., a condition of complete paralysis. Examples of para-

lyzable apparatus include most forms of electromechanical registers and
certain (non-self-quenching) Geiger-Mtiller counters connected to a con-

ventional high-resistance preamplifier.

1.0

np

0.5

0.5 1.0 1.5 2.0

Fig. 1.2 Because of the finite resolving time p of the apparatus, the observed counting
rate n is always less than the true counting rate AT. Here np is plotted against Np for

two limiting cases. Type I (paralyzable) apparatus counts all intervals which are

longer than p; note that the maximum observed counting rate corresponds to np

l/e and occurs when Np 1. Type II (nonparalyzable) apparatus is completely
insensitive for a time p after each observed count, then regains full sensitivity. An

apparatus with zero resolving time would follow the straight line marked "linear

response.'
1

An excellent generalized statistical treatment of resolving time losses

in Type I apparatus for single-channel and coincidence counters, on con-

stant and on decaying sources, has been developed by Schiff (88).

Type II ("Nonparalyzable"). The opposite statistical extreme is

found in apparatus which is not affected in any way by events which
occur during its recovery time p.

Under these circumstances, the apparatus is dead for a time p after

each recorded event. If the observed counting rate is n, then the frac-

tion of the unit running time during which the apparatus is dead is np.

The fraction of the time during which the apparatus is sensitive is 1 np.

This is therefore the fraction of the true number of events which can be

recorded, so that

5 = 1 - np (1.5)

or N (1.6)
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At relatively low counting rates, when Np <SC 1, we can write Eq. (1.5),

to a good approximation, as

N ~ n(\ + up) (1.7)

which is the same.as for Type I apparatus, Eq. (1.3), provided that Np,
and consequently np, is small compared with unity.

Type II apparatus never exhibits complete paralysis. As N is

increased, the observed counting rate n rises uniformly, approaching

asymptotically the value

nm = - for N = oo (1.8)
P

The general nature of the response curve is shown in Fig. 1.2. To an

infinitely strong source of radiation, the apparatus responds periodically,
with a frequency of 1/p, all traces of statistical randomicity having been

erased.

Equipment of Type II is illustrated by a fixed-gas counter (non-self-

quenching) connected to a quenching preamplifier designed to maintain

the applied voltage below the counting threshold for a time p, during
which both the counter and the recording circuit are able to effect com-

plete recovery. The same characteristics would be exhibited by a self-

quenching counter connected to a very sensitive preamplifier capable of

responding to all pulses received after the dead time of the counter.

Most proportional counters and scintillation counters also follow the

behavior of Type II.

b. Measurement of Resolving Time in Single-channel Counters.

All that has been said above assumes that the resolving time is inde-

pendent of the counting rate. There is some evidence (M74) that the

dead time p in self-quenching counters may decrease when the counting
rate is elevated to very high values. But at the lower counting rates

met in most measurements, the assumption of constant resolving time

agrees well with the observations. Many apparatus, however, do not

conform perfectly to either of the limiting cases treated above but show
resolution characteristics intermediate between Types I and II. Hap-
pily, the expressions for both limiting types converge at low counting
rates. If Np < 0.05, the exact expressions for n/N differ from each other

by less than 0.1 per cent, and the relation

N ~ n(l + np) (1.9)

may be used for any single-channel counting apparatus.
The resolving time of a reasonably well-designed Geiger-Miiller

counter and amplifier will usually be found to be between 3 and 6 X
10~4

sec, which is equivalent to between 5 and 10 X 10~8 min. Then
at an observed counting rate of 1,000 counts per minute, the fraction of

the counts which are lost is np = 5 to 10 X 10~ 8
,
or 0,5 to 1 per cent.

At 2,000 counts per minute, the same apparatus loses 1 to 2 per cent of

the counts. Based on Eq. (1.9), counting losses are often cited simply as

"per cent loss per thousand counts per minute." Observed counting rates
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can be corrected easily and accurately for counting losses if Np < 0.05,

i.e., up to observed rates of 5,000 to 10,000 counts per minute for most

Geiger-Muller counters.

Scintillation counters, employing anthracene or similar phosphors,
can have pulse widths of less than 10~7 sec. With suitably fast ampli-

fiers, resolving times of 10~ B sec have been realized. Hence counting

experiments with such equipment can be carried out accurately at count-

ing rates of the order of 500,000 per minute. Certain proportional
counters and linear pulse amplifiers can also have resolving times of the

order of a microsecond or less.

One of the simplest satisfactory methods (B26, R12) for measuring
the resolving time of single-channel counting apparatus is to compare
the response of the apparatus to the radiation from two approximately
equal sources, taken separately and then taken simultaneously. Let B
be the true average background counting rate when neither source is

present, and let NA and NB be the true elevation of the counting rate

for each of the two sources. Then the observed counting rates for each

of the two sources, including background, are nA and nB ,
where

NA + B = nA (l + nAp) (1.10)

NB + B = nB (l + nap) (1.11)

Then when both sources are measured simultaneously, the sum of their

radiation will elevate the true rate to N s + B = NA + NB + B, but the

observed rate will be only nSj where

n*p) (1.12)

provided that all counting rates are small enough that nsp <5C 1. Sub-

tracting Eq. (1.12) from the sum of Eqs. (1.10) and (1.11), and solving

for p, we have
nA + nB - ns B n ^p = ------

11. lo;
nl - nj,

- n\

A useful transformation of Eq. (1.13) is obtained by setting

6 = n A + UB - ns - B (1.14)

where, physically, 5 is the difference between the counting losses in the

observation on both sources taken simultaneously and the sum of the

counting losses in the two observations on the two sources taken singly.

Then Eq. (1.13) becomes

P = -
2(8 + B)n, -

(6 +B) 2

or, to an approximation which is usually satisfactory,

'-si; (L16)

In carrying out an estimation of the resolving time p by this "two-

source method," the observations should be taken in the order nAl n*,
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nB ,
that is, on A, A + B, and finally B alone. In this way, the single

and the combined readings on each source are obtainable without mov-

ing the source between successive readings. This procedure avoids errors

due to failure to reproduce the source positions accurately, as can occur

when the order nA ,
nBj ns is used. It is also important that, when the

combined radiation of both sources is measured, the two sources should

be sufficiently separated from each other so that neither source can scatter

any of the radiation from the other source into the counter.

The National Bureau of Standards distributes standard y-ray sources

of certified radium or Co80
content, which are convenient for calibrating

counting apparatus. One series includes 5 ml of dilute HC1 in flame-

sealed glass ampoules containing Ra in the accurately graduated amounts

0.1, 0.2, 0.5, 1, 2, 5, 10, etc., /ig- Pairs of these ampoules may be used

in the two-source method of Eq. (1.13).

Alternatively, a series of such standard sources may be used to obtain

a direct plot of observed counting rate n against source strength S. By
fitting the best straight line (linear response, as in Fig. 1 .2) to the lower

end of such a curve, the nonlinearity of response of the counting appa-
ratus can be evaluated empirically without making any assumptions
regarding the detailed mechanism by which it loses counts. The slope
of the straight line representing linear response N can be adjusted most

accurately by noting that the counting loss (N n) and especially the

counting loss per unit source strength, that is, (N n)/S, must both

extrapolate to zero at zero net counting rate. Thus the slope of the line

of linear response N can be accurately adjusted, by successive approxi-
mations (K3G), from auxiliary plots of (N n)/S against source strength
S.

In the mathematical treatment, we have assumed thus far that the

apparatus has only one controlling time constant, which is independent
of counting rate. Certain scaling circuits, connected to slowly operating
mechanical registers or recorders, may exhibit two important time con-

stants. At low counting rates, the losses may be determined only by the

resolving time of the counter and the first stage of the amplifier, as

described in the preceding paragraphs. As the counting rates are ele-

vated, a situation will occur in which, for example, a scale of 4 will

occasionally receive five or more pulses in less than the time interval

required for action of the mechanical register which it should be driving
each time four counts are received. Then the resolving time of the

mechanical register also becomes important. Consequently, the mathe-
matical analysis of the scaling losses in such cases is more complicated
(L30, L23) and will not be discussed here because usually it can be
avoided by proper design of apparatus, e.g., by increasing the scaling
factor.

c. Effect of Loss of Short Intervals on the Standard Deviation of the

Output of Single-channel Counters. When N is the true average rate

of a random process which is observed for a total time T, the "expecta-

tion," or average, number of true events is NT. In the preceding sec-

tions we have seen that the average, or expected, number of observed
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events nT is smaller than NT by an amount which depends on the resolv-

ing time p, the average rate N, and the type of apparatus. All the

expressions developed there concern the usual nuclear laboratory case

in which a large number of events are observed, that is, NT 1. A
much more complicated analysis must be performed to determine nT
when only a few events are observed.

The variance (square of the standard deviation) of the expected true

number of events is also NT, by Eq. (2.7) of Chap. 26. However, the

variance of the observed number of events is not given simply by nT,
even when nT >> 1, because the number of short intervals which are

lost depends both on the type of apparatus and on np or Np. Because
the more abundant short intervals are removed, the variance of the

observed distribution may be markedly smaller than of the parent
distribution.

Various approximate or asymptotic solutions for the average num-
ber of registrations nT and for the variance a 2 of the number of registra-
tions have been developed by several workers.

For Type I (paralyzable) apparatus, the expected average number of

registrations nT is (F29)

nT = (NT - Np- !)<?-*' + 1 (1.17)

which reduces to Eq. (1.1) for the usual experimental case in which
T p. The variance is approximately (K42)

.' = NT
(l

- 2NP +^ (1.18)

which for inferior apparatus arrangements can be (L19) even as small

as NT/2. Feller (F29) has developed a much more complicated and

presumably more exact expression for the variance of paralyzable

apparatus.
For Type II (noiiparalyzable) apparatus, the asymptotic expansion

of the general solutions obtained -with the use of operational calculus

leads to an approximate expression for the average expected value

of (F29)
*'

(1.19)*
l + Np 2(1 + ATP)

2

which reduces to Eq. (1.6) when Np 1. The variance of the number
of registrations is approximately (F29)

(1.20)

which is some 20 per cent smaller than the simple Poisson value nT when

Np = 0.1.

d. Random Coincidences in Coincidence and Anticoincidence Cir-

cuits. Many types of measurement are made using two (or more)

counters exposed to the same source of nuclear radiation. The outputs
from the two counters may then be fed through a coincidence circuit.



792 The Atomic Nucleus [CH. 28

from which an output pulse is delivered only if pulses were received

''simultaneously" from the two counters.

For example, a source of Al 28
,
whose decay scheme is shown in Fig.

4.2 of Chap. 3, might be placed between a /3-ray counter and a y-ray
counter. Then a true coincidence would be registered when the two coun-

ters were triggered by the ray and the prompt y ray emitted by the

same atom. In addition to such true coincidences, there will be false or

random coincidences which are produced when a ft ray and an unrelated

7 ray actuate the counters within the resolving time of the apparatus.

Figure 1.3 is an illustrative experimental situation. Channel 1

receives random pulses (e.g., from ft rays) at an average true rate JVi and

has a resolving time pi. Channel 2 also receives randomly distributed

pulses (for example, 7 rays from the same source) at an average true rate

Nz and has a resolving time pi. Let ATi, 2 represent the tnie coincidence

rate, which is generally much smaller than the singles rates JVi and AT2 .

Time *

Channel (1) & \rn \m \r* fcm

Channel (2)

4̂
2

4 f t * t

True Single Random Random True Single

coincidence pulse in coincidence: coincidence-- coincidence pulse in

channel channel ( 1 ) channel ( 2 ) channel

(1) followed by followed by (2)

(2) (1)

Eq.(I.2l) Cq.(1.22)

Fig. 1.8 Schematic illustration of true and random coincidences in a two-channel

coincidence-counting circuit. For anticoincidence circuits, read "anticoincidence"

for "coincidence" everywhere.

Then, in channel 1, the rate for those single pulses which are not asso-

ciated with a true coincidence is (Ni JVi.j)- Therefore, in the coinci-

dence circuit, channel 1 is "set up/' or "alive," for the fraction (Ni
Ni, 2)pi of the running time, in addition to the time which it spends

responding to true coincidences. In channel 2, single pulses which are

not associated with true coincidences are arriving at an average rate

(N2 #1,2). The random-coincidence rate due to single pulses in chan-

nel 1 being followed, within its resolving time pi, by single pulses in

channel 2 is therefore

(#1
-

tfi,i)pi(tfi
-

#1.1) (1.21)

To these we must add additional random coincidences due to single pulses
in channel 2 which are followed within its resolving time p 2 by random

single pulses in channel 1. Because channel 2 is alive for the fraction

(N z JVi,i)p2 of the running time, aside from its response to true coin-

cidences, this additional random-coincidence rate is

(N2
- NiMNi -

tfi,,) (1.22)

Both these two types of random coincidence are illustrated in Fig. 1.3.

"Double random coincidences/
7 such as would be caused by two pulses
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in channel 1 within the resolving time of channel 2, can be made negli-

gible by keeping Nipi 1 and N 2pz 1. Then the total random-coin-

cidence rate is

#_ = (N,
-

tfi,,)pi(tfi
-

tfi,,) + (N2
- Ni.MNi -

tfi..)

= (N,
- N ll2)(N z

- N llZ)(pl + P2) (1.23)

In practice, the singles rates N\ and N2 are usually large compared with

the true coincidence rate JVi. a . Then Eq. (1.23) becomes approximately

Nt^m ^N lN2 (Pl + Pz) (1.24)

If NI and 7V2 are each proportional to source strength, we note from Eq.

(1 .24) that the random coincidences increase with the square of the source

strength. This condition imposes an upper limit on the useful source

strength in any coincidence experiment, because at least half the total

observed coincidences should be true coincidences.

In anticoincidence circuits, pulses are recorded from channel 1 pro-

vided that there is no coincident pulse in channel 2. It can be seen that

the number of random anticoincidences is also given by Eq. (1.23).

Problems

1. The decay N = Noe~*' of a radioactive substance is being observed with a

paralyzable counter whose resolving time is p. Write an expression for the

observed counting rate n as a function of time. Assume that N p ~ 0.1 and

no resolving-time corrections are made. Under what conditions will the appar-

ent half-period of radioactive decay be of the order of 10 per cent greater than

the true half-period 0.693/X?
2. The resolving time of a 7-ray counter and amplifier is to be determined.

Two radioactive sources A and B are first measured separately and then together.

The observed counting rates are nA for source A, n a for source B, and us for

(A + B), each including the small background rate B.

(a) Derive an expression for the resolving time p of the apparatus, in terms

of these three observed counting rates. Assume that ns is small compared with

the reciprocal of the resolving time.

(6) Calculate the resolving time of an apparatus if B = 100 counts per min-

ute, nA = nB = 4,800 counts per minute, and ns = 9,120 counts per minute.

(c) What would be the true counting rate for the source A ?

Ans.: (a) See Eq. (1.15); (b) 10.3 fimm-, (c) 5,050 counts per minute.

3. The resolving time of a y-ray counter and amplifier is to be determined.

Two radioactive sources C and D are available, and D is known to be exactly

R times as strong as C. The observed counting rates are nc counts per minute

for source C and nD for source D, including a background counting rate of B.

Assume that nD is small compared with the reciprocal of the resolving time.

(a) Show that the resolving time p of the apparatus is given by

_
- nD - (R -

P ~
nl- nlR

(6) Calculate the resolving time of an apparatus if nc = 3,050 counts per

minute, n/, = 8,690 counts per minute, B = 100 counts per minute, and R =* 3.00.

(c) What would be the true counting rate for the source C?

Ana.; (b) 5.5 umin; (c) 3.001 counts per minute,
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4. In the two-source method for determining the resolving time p, show that

a close approximation for the standard error o-(p) in the determination of p,

in an experiment of total duration 3T, is

if nA KB and a total time of 3T7

is approximately equally divided between

measurement of n<, n, and us, the background B being known in advance with

negligible error.

5. A certain electromechanical register is found to follow just 120 periodic

pulses per second without jamming.
(a) What is its maximum counting rate of randomly distributed pulses, as

the average rate of random pulses is increased without limit?

(6) At the maximum observed rate of counting, what is the true average rate?

6. A Western Electric telephone register is found to have a maximum count-

ing rate of 240 per minute for random pulses. Compute the true counting rate

when this register shows 10, 30, 60, 90, 120, 180, 240 counts per minute from a

random process. Plot these observed counting rates as abscissas against true

rates as ordinates.

7. In the fall of 1947 an amateur long-range weather forecaster set out to

predict the times of the snowstorms in Boston for the coming winter. Assuming
that winter lasts from December 17 to March 15, a total of 90 days, and that the

average number of snowstorms per winter for the last 20 years is 15, he predicted
a total of 15 snowstorms and assigned a date to each one at random. Thus he

divided the winter into 24-hr intervals and for 15 of these intervals, chosen at

random, he predicted snow. It turned out, however, that there were actually
27 snowstorms that winter. Assume that each of these lasted exactly 6 hr and
that they were randomly distributed throughout the winter. If we agree to

call a prediction successful when some snow (not necessarily the whole amount

coming down in a snowstorm) fell during an interval for which snow was predicted,
then what is the probable number of successful predictions? Ans.: About six.

2. Scaling Circuits

In a typical scaling circuit, one output, pulse is produced for every
s input events. If the events at the input are randomly distributed in

time and have an average rate a, the scaling circuit conceals the short

intervals, tends to average out the variations of interval length, and pro-
duces an approximately periodic output (H67) whose mean frequency is

a/s. Those counting losses which are due to the resolving time of elec-

tromechanical registers can be made negligibly small by the use of scaling
circuits having a sufficiently large scaling factor s. Electronically, two

types of sealer are now in common use. The two types are the scale of 2,

which is cascaded to give instruments having s = 2n =
2, 4, 8, 16, 32,

64, . . .
, 4,096, . . .

,
and decade sealers having s = 10n = 10, 100,

1,000.

a. Generalized (s-fold) Interval Distribution. We shall assume at

first that the input pulses delivered to the sealer are randomly distributed

in time, at an average rate a, or average interval I/a. The length of an

interval between output, or "s-fold," pulses may be called an "s-fold
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interval." The intervals between successive input pulses contain zero

events; the intervals between successive s-fold pulses contain s 1 events

(such as counts from a Geiger-Miiller counter or from a scintillation

counter).
The Poisson distribution [Chap. 26, Eq. (1.6)] shows that the prob-

ability that an s-fold interval of duration t will contain exactly s 1

events is

The probability of one event occurring in an additional time dt is simply

P l (dt)
= adt (2.2)

The probability of s 1 events in t
}
and the sth event between t and

t + dtj is therefore

dP t
=

/>._!(*) P 1 (dt)

which is the generalized s-fold interval distribution. Equation (1.14) of

Chap. 26 is seen to correspond to the special case in which s = 1. Equa-
tion (2.3) expresses the probability that an s-fold interval will have a

duration between t and t + dt when a is the average rate and a/s is the

average rate of s-fold counting.
We note that Eq. (2.3) is already normalized, and this can be verified

by finding the probability that the s-fold interval will have some dura-

tion between zero and infinity. Thus

-^T, f

'

-
1)! Jo

-
1)! a"

^ = 1 (2.4)

The probability PT that an s-fold interval will be equal to or shorter

than a time T can be obtained by integration of Eq. (2.3). Then

r r a* r

/
dPi = r-%-. /

Jo (s
-

1)! Jo

1

dt (2.5)

This integral can be evaluated by successive integration by parts,

yielding

Each of these terms is simply the Poisson probability of 0, 1, 2, ...
(s 1) events in the time T

t
or

PT = 1 - (Po + ^i + P* + ' ' + P,-i) (2.7)

or, since ) Pt
=

1,

PT = p, + p,+1 + - . - + p^ (2.8)
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This result could have been written directly by noting that the prob-

ability for an s-fold pulse within the time T is simply the Poisson prob-

ability of s, or more, events in the time T.

Fig. 2.1 Generalized s-fold interval dis-

tribution. Abscissas: average number of

randomly distributed events at in time

interval t. Ordinates: probability of

5-fold interval, of duration between at

and a(t + dt). The area under each

curve between time zero and at is the

probability that an s-fold interval will be

shorter than at, Eq. (2.5). Note that

the duration at of the most probable s-fold

interval is s - 1, Eq. (2.10), i.e., the

average time for s 1 random events.

The average interval, however, is at =
s,

Eq. (2.9). Note the great reduction in

the probability of short intervals which is

produced even by these very small scaling

factors. Because of the analytical form

of Eq. (2.3), these curves also represent

the Poisson probability of getting s 1

random events in the time t when the

average expected number is at, Eq. (2.1),

or Eq. (1.6) of Chap. 26.

Of course, the probability that an s-fold interval will be longer than

T is simply 1 PT , Useful numerical tables of PT have been compiled

by Molina (M49).
The distribution of s-fold intervals is shown in Figs. 2.1 and 2.2.

b. Average s-fold Interval. The average s-fold interval has the

duration

Fig. 2.2 Curves similar to Fig. 2.1 but

normalized to a time axis at/s, so that

the average 5-fold interval is at/s = 1.

The most probable s-fold interval is at/s

(s l)/s. The ordinates are adjusted so

that the area under each curve is unity.

Note the strong regularizing action of the

larger scaling factors, e.g., for s =* 16 the

distribution of intervals appears almost

normal. The fractional standard devi-

ation of the distribution of s-fold intervals

decreases as -\/ 1 /s, as given by Eq. (2.15).

Thus the chance that the duration of an

s-fold interval will vary greatly from the

average 5-fold interval decreases markedly
as s increases.
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I.
- [

Jo
I.
- tdPt

o

(-!)! Jo

a' s\

(s
-

1)1 a""

dt

as expected from the fact that the average interval of the parent random
process is I/a.

c. Most Probable 5-fold Interval. The probability that an s-fold

interval lies between t and t + dt is given by Eq. (2.3). Then y = dP t/dt
is the differential probability of an interval of duration t, and dy/dt is

the variation of this probability with the duration t of the s-fold interval.

The most probable duration J occurs when

dy ra'<'- 1e-at1
'

dt dt(s - l

which is when t = (s l)/a, thus

to = ^ ^
(2.10)

a

It will be noted that the most probable interval is slightly shorter than
the average interval

?,
such that

t = ^t (2.11)

For scale of 1 the most probable interval is zero, while when s is very
large the most probable interval approaches the average interval.

d. Standard Deviation of 5-fold Intervals. The deletion of short

intervals and the approximately periodic output of the sealer is some-
times referred to as the regularizing action of a sealer. The variance a 2

of the s-fold intervals is a measure of this "smoothing effect" and is

** = I
"

(t
-

Z)
2 dPt

= ^
[

"

(t
- *-\ t-ie- dt (2.12)

Jo (s
-

1) ! Jo \ a/

which, on expansion and evaluation, leads to

a' = -
2 (2.13)

a*

or, for the standard deviation ?, we have

(2.14)
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Then the fractional standard deviation of 5-fold intervals is

Thus the fractional standard deviation in the time t, required to accumu-
late 5 random events, decreases with the inverse square root of the total

number of counts, for it does not matter what type of apparatus is used

to tally the 5 events.

This important result shows directly what fluctuations are to be

expected in counting observations based on measurements of the time

required to accumulate a predetermined number of counts. Thus the

fractional standard deviation of the time required to accumulate a total

of, for example, 2 12 = 4,096 counts is simply Vl/4,096 = ir = 1.56 per
cent.

It should be especially noted that this is the same as the algebraic
form Eq. (2.15) of Chap. 26 for the fractional fluctuation, or error, which
would be associated with observations of the number of counts accumu-
lated in a predetermined time.

Scaling circuits may also be understood from the viewpoint of the

generalized Poisson distribution of Eqs. (3.1) and (3.2) of Chap. 26. If

x is the expectation number of random events, and if the specific effective-

ness is 1/s per event, then Eq. (3.1) of Chap. 26 shows that the expected
average number of 5-fold pulses is simply

u = - if u is integral or if x >>> s (2.16)
5

while the expected standard deviation <r is given by Eq. (3.2) of

Chap. 26 as

(2.17)

and the fractional standard deviation of the number of 5-fold registra-
tions in a fixed time is

a

u x/s

-
-7= (2.18)
Vsu

which is the same as Eq. (2.15) of Chap. 26 and as Eq. (2.15) above,
because u can have any integral value and is unity for the case considered
in Eq. (2.15) above.

e. Interpolation. Many conventional scaling circuits are provided
with interpolation lights or meters. Then if counting is stopped at a pre-
determined time, the exact number of input counts x is given by

x = su + A (2.19)

where u is the number of 5-fold pulses and A is the number of single inter-
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polation pulses. It is. to be noted that the interpolation pulses A are only

statistically significant if they are comparable with or greater than the

standard deviation of x. We can ignore the interpolation pulses in many
practical cases without introducing a statistically significant error. Sup-
pose that we decide that A is to be ignored whenever its maximum pos-
sible value, Am., = 5 1, cannot exceed some arbitrary fraction ft of the

standard deviation in x. Then we can omit the chore of interpolation
whenever _ _

Am = s - 1 < ft Vsu + A > ft Vsw (2.20)

Squaring, and solving the second inequality for u, we have

or, in the practical case of 5 2>> 1, and ft
~

, interpolation is pointless
whenever

u > 4s (2.22)

f. Chi-square for the Output from a Sealer. The output from a scale

of s may be tested for fidelity and for randomicity of the input process

by computing the standard deviation of the 5-fold output from its resid-

uals, Eq. (2.9) of Chap. 26, and comparing with the theoretically expected
values of Eq. (2.15) or Eq. (2.18).

A more objective appraisal of the data is obtained by applying the

X2 test. This can be done by computing the input events, from the

5-fold output readings, and then applying Eq. (3.1) of Chap. 27 to the

input or scale-of-1 events. More conveniently, one may wish to com-

pute x
2 for the input process directly from the 5-fold output readings.

Then two cases arise, depending on whether the series of output observa-

tions are made over a predetermined and fixed time interval (variable
number of counts) or over a predetermined total number of counts (time

variable).

Case I, Constant Time Interval. In a series of n successive equal time

intervals, let the number of observed 5-fold output pulses be MI, u2 ,
. . .

,

un (u can be nonintegral if interpolation has been resorted to, thus

u = x/s). Then the average s-fold output is

n

i V= - > Ui
n LI

(2.23)

i

and x
1

,
of Eq. (3.1) of Chap. 27 but in terms of the s-fold output counts,

becomes

, = V (*.
-

*)' = V Q. -
st)*

*
Li Z Li su

n

(2-24)
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The expected value of the summation in Eq. (2.24) is n 1 times the

variance a-
2 of u. If the input process is random, then Eq. (3.2) of Chap.

26 gives a 2 = x/s
2 - hence

1

and the expectation value of Eq. (2.24) is

as in Eq. (3.1) of Chap. 27. The number of degrees of freedom would

again be F = n 1, and Fig. 2.1 of Chap. 27 is to be used with x2 from

Eq. (2.24V
Case II, Constant Number of Counts. In a series of n successive

observations, let the total time required to accumulate a predetermined
number of input counts s be h, t 2 ,

. . .
,

tn . Then the average interval

for s input counts is

=
\ X (2 -26)

Because of the general requirement that statistically distributed parame-
ters be dimensionless, we cannot proceed toward x2 by forming

which would have dimensions of time and a numerical value which
would depend on the units of time (seconds, minutes, etc.) used in the
observations.

We may proceed by obtaining from our observations of t a substan-

tially equivalent distribution of the effective number of input counts in

a hypothetical and arbitrary fixed time interval 7
T

,
which can be given

the value t without loss of generality. Then if s input counts require a
time t, the average rate for this interval is s/t and the corresponding
number of input events x, in a fixed time

?, would be expected to be

approximately

x ~ -
t (2.27)

while x = s (2.28)

corresponding dimen

n n

V(Xi -
X)

2 V^ ^Z

Then we can form a corresponding dimension!ess expression for x 2
, by

the substitutions

4
(2.29)
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The expected value of the summation in Eq. (2.29) is

( (2.30)

Inserting dP t from Eq. (2.3) and t = s/a from Eq. (2.9), expanding, and
evaluating the three resulting integrals lead to

(" - "
I.'

-
')'
*-*- " ir-'ro - 2-)

or approximately

^---
(2.32)

s

for large values of 5 (4,090, etc.), such as are customarily used in sealers

operating toward a preset number of counts. Then the expectation value
of Eq. (2.29) is

X
2 = s = n- 1 (2.33)

The number of degrees of freedom is again F = n 1, and Fig. 2.1 of

Chap. 27 is to be used with x
2 from Eq. (2.29).

g. Effects of Resolving Time at Input and Output of Sealer. Count-

ing losses due to the finite reaction time of an electromechanical register

or other output device can be made negligibly small through the use of

an adequately large scaling factor. With a properly designed counting

system, the losses can be restricted mainly to the Geiger-Miiller counter

or scintillation counter preamplifier, which provides the input to the

scaling circuit. Such losses remove the shortest intervals in the dis-

tribution of input pulses to the sealer, as discussed in Sec. 1. An exact

reanalysis of subsequent losses in the various scaling stages would be

both complicated and of little practical value. An upper limit to the

losses in the sealer can be computed readily by assuming that the sealer

input is truly random.
Then the fractional losses of s-fold pulses from the sth stage is given

simply by Eq. (2.8) with T set equal to the resolving time p. of the sth

stage. For apB < 1, PB+i 4C Pa ,
and Eq. (2.8) reduces simply to

(2-34)

This is really an overestimate of the fractional loss in the sth stage
because actually many of these pulses will have been lost in previous

stages. In sealers of the 2n variety, composed of cascaded scales of 2,

only the resolving time of the early stages need be very short (D34).
DeVault has developed a circuit in which p B

= 2p 4
= 8p2

=
40pi, and he
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estimates that, if the first stage misses 1 per cent of the pulses, subse-

quent stages should not lose more than an additional 0.1 per cent.

If the input counting rate is large, and the scaling factor s is too

small, the resolving time of the output register may become the govern-

ing factor in determining counting losses. This situation is more com-

monly encountered" with scintillation counters than with Geiger-Miiller
counters because of the very short resolving time which can be realized

with scintillation counters. If two s-fold output pulses occur within the

resolving time pa of the recorder, then the electronic scaling circuit clears

and begins counting over at 0, 1, 2, ... input pulses, without recording
the second 5-fold pulse. Electromechanical registers generally are a

Type I (paralyzable) apparatus, as described in Sec. 1, and therefore

respond only to intervals which are longer than their resolving time.

The ratio of observed to true counting rate is, by analogy with Eq. (1.1),

the fraction of s-fold intervals which are longer than p, or, from Eq. (2.6),

- Pp
= e~*> + ape-'

Problems

(2.35)

1. A 0-ray counter has both a direct recording output and a scale-of-4 output.
The following readings were made in successive 5-min intervals on the direct

output (scale of 1): 200, 215, 195, 175, 225, 205, 185, 205, 190, 180, 210, 230.

(a) Compute the average value and its probable error as determined by the

residuals. Compare with the probable error expected if the data follow a Poisson

distribution.

(6) What will be the output of the scale of 4 for each of the 5-min intervals

(remember to carry over 0, 1, 2, or 3 counts from each interval to the next

interval)?

(c) Compute the average value of the scale-of-4 counts and its probable error

from the residuals.

(d) Compute the probable error expected if the scale-of-4 data follow a

Poisson distribution.

(c) Calling the solution to (c) y + r, is the correct value for the average
number of ft rays per 5-min interval given by 4y 4r?

(/) Calling the solution to (d) y s, is the correct value for the average

given by 4y 4s? Why? Compare with solution to (a).

2. In 22 successive 30-min intervals a scale-of-2 output gave the following
numbers of pulses: 10, 15, 17, 9, 17, 15, 13, 16, 13, 14, 17, 21, 11, 12, 16, 8, 15, 8,

7, 15, 15, 8.

(a) Compute the average rate of the scale-of-2 process.

(b) Compare the standard error from the residuals with the expected 8.E.

based on the average number of scale-of-2 counts. Does the dispersion of

the data seem excessive?

(c) Compute x
2 and compare with the expected x

2
if the scale-of-1 process is

random.

(d) Estimate the probability that a truly random process would give a larger

dispersion.

3. Verify Eq. (2.6) by integration of Eq. (2.5).
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4. Show that the standard deviation of the duration of 5-fold intervals is

'\/8/a, where a is the average rate of random input events.

6. Show that Eq. (2.29) can be expressed in the more convenient form

if l/ti is nearly unity.
6. A certain scaling circuit has an output which operates a printing timer

after 10 X 4,096 = 40,960 input pulses have been received. With a certain

radioactive source of constant strength, the number of seconds required to

accumulate 40,960 input counts in each of 15 separate runs was: 2,595; 2,616;

2,624; 2,632; 2,648; 2,610; 2,638; 2,597; 2,605; 2,619; 2,622; 2,626; 2,615; 1,618;

2,623. Do these data satisfy the x2 test for randomicity of the primary process?
Ans.: xz = 16.9; F = 14; P ~ 0.2; yes.

7. Random pulses from a scintillation counter are fed into a scale of 8 which

actuates a mechanical register. Two output pulses from the scale of 8 within

a time interval of 5 X 10~ 2 sec will not be resolved by the mechanical register;

only the first pulse will be recorded. If the register is counting at the rate of

600 per minute, what is the true rate at which pulses are arriving at the input of

the scale of 8? Neglect all counting losses besides those in the mechanical

register. Ans.: 5, 160 counts per minute.

3. Counting-rate Meters

In counting-rate meters (often called CRM) each pulse from a counter

is converted electronically into a charge q which is added to the charge Q
on a tank condenser C. A resistance R shunts the tank condenser. The

charge Q on the condenser can be read continuously, either by reading
the potential difference

V =
I (3.1)

across the condenser with a vacuum-tube voltmeter, or by reading the

current

' V Q

through the shunt resistance.

The statistical interpretation of the counting-rate-meter output read-

ings due to randomly distributed input pulses requires a special statistical

theory (SI 2, K19) because the integrating arid averaging circuit RC pro-
duces an exponential interdependence of successive observations on all pre-

ceding observations.

a. Average Rate. Let the charge Q on the tank condenser be zero

at t = 0, when a radiation source begins producing randomly distributed

input pulses at a constant average rate a. The average number of pulses

during the time interval from t to t + dt will be a dt, and the expected
increment of charge on the condenser in this interval is qa dt. If now a

reading of Q is taken at a later time to, this increment of charge will have
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decayed to gae~''~
e)/JM7

dt, because of leakage of charge through the

resistance, with the time constant RC of the tank circuit. Thus the

expectation value Qm for the charge at any time to is

= qaRC(l - e-"' c
) (3.3)

and the expected equilibrium charge, after the counting-rate meter has

been operating for a time to RC, has the value

Qm = qaRC (3.4)

It will be noted that Qm is simply the specific charge q per pulse times

the average number of pulses aRC occurring in one time constant RC
of the tank circuit. Alternatively, each pulse can be considered to have
a mean life RC in the tank circuit. Then, by analogy with radioactive

series decay, the mean number of pulses in the tank at equilibrium is

the pulse rate a times the mean life RC] compare Eq. (3.27).

We note also that the mean potential difference across the tank is

Vm = Q? = qaR (3.5)

which is independent of C. This is equivalent to noting that at equi-
librium Q is constant, and that therefore the average current qa simply

passes through the resistance R, in which it produces a potential differ-

ence qaR, by Ohm's law.

b. Standard Deviation of a Single Reading. Suppose that the

counting-rate meter has been operating for a time U RC, and we make
a single observation of the charge Q on the tank condenser at time Jo.

The mean expected value is Qmj but individual single observations will

be distributed about Qm with some standard deviation a(Q), which we
now must evaluate.

Because a is randomly distributed, the number of events in a small

time interval obeys Poisson's distribution, and the standard deviation of

the number of events a dt between t and t + dt is (a dt)*. Then the

standard deviation of the increment of charge is q(a dt)*. When observed

at a later time, o, this deviation will make a contribution q(a d/)
ie~ (fo- /*c

to the deviation of Q at J . All surh contributions arc statistically inde-

pendent. Therefore, their total effect is to be obtained from the sum
of the squares of the individual deviations, by the usual principles of the

propagation of errors. Hence the total variance 0-
2
(Q), of Q at U, is

JT"
dt

and the variance for single observations of Q when to RC is

v\Q) = VaflC (3-7)

Thus the variance is only one-half as great as would be given by the
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Poisson variance aRC of the pulses received in one time constant RC.
This is because the square-law dependence on individual fluctuations

emphasizes the fluctuations which have occurred only a short time before

the reading is taken at U.

The fractional standard deviation of a single instantaneous reading
of the counting-rate meter is then

1

(3-8)

or the same as would be expected in a direct counting observation ovei

a time 2RC.
c. Standard Deviation of the Average of n Independent Readings.

Suppose that at to RC a single reading of Qi is taken, and that addi-

tional readings are taken at subsequent times #/?(7, 2&RC, . . .
,

(n \)$RC. Then, because the expectation value of Q is the same for

each reading, the best estimate of the true mean value of Q will be given
by the arithmetic average of these n readings

n

m ~ Q = * V
n Lj

Qm ~ Q = Q, (3.9)n Lj
i

The standard error of this average value Q about the true mean value

Qm will be given by the usual principles [Chap. 26, Eq. (2.12)] only if

tf ^> 1. In the more applicable cases of small tf, the successive readings
of Q are not statistically independent of one another, because of the

exponential memory of the tank circuit. We may consider as our set

of truly independent readings those parts of the various readings which
are due to charge accumulated since the preceding reading. Only this

much of any reading is independent of preceding readings. We must
now determine the manner in which the standard error of the mean
value Q depends on both n and tf.

The second reading Q 2 ,
which is taken at a time &RC after Qi, will

have the value

Q 2
= QHT++G! (3.10)

Here Q\er* is the residual charge from the decay of Q Jf and Gi is due to

new charge accumulated between u and 1 Q + &RC. Because all the read-

ings Qi have the same expectation value Qm ,
the expectation value E[Gi]

of (7, can be written from Eq. (3.10) or (3.3) and is

E[Gt ]
=

(1 -e-*)Qm (3.11)

For algebraic convenience we will hereafter use the definition

r=e~* (3.12)

where r denotes the residual fraction of any observation Q* which is

present in the subsequent observation Q,+ l7 by Eq. (3.10).

The series of n consecutive observations Qi, Q 2 ,
- - -

, Qn, equally
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spaced in time, are exponentially linked by the following recurrence

relations

Q t
= rQ! + (?i

Q, = rQ, + <?2 = r'Q, + T<?, + G2

....................
(3-13)

<?.
= r<?,_, + G,-. (1 < i < n)
= f-'Q, + r-Y/, + + r(?,._2 + G,_,

The mean value Q of Eq. (3.9) is obtained by collecting terms in Eq.
(3.13) and has the value

= - [(1+ r + - - + i ')Qi + (1 + r + + r- 2
)Gx +n

+ (1 + r + + r- '-<)ft- + + Gn-i] (3.14)

Summing the indicated geometric series, we obtain the simpler expression

n =
r= r

KI - rw ) (?i + f 1
- r"~~ 1

>Gi +

+ (1
- f-Oft++(!- r)G_,] (3.15)

The quantities Q], Gi, G 2 , ,
Gn-i are all independent. Therefore

the variance in nQ is the sum of the variances of each of the terms in

Eq. (3.15). The expectation value of the variance of any Q, is given by
Eq. (3.7) and is the same for all readings. The expectation value for the

variance <r
2
(G) of any G, can then be obtained with the help of the recur-

rence relations, Eqs. (3.10) and (3.13). From the principles of the prop-
agation of errors, we can write the expectation values for the variances as

a(Q) = cr(rQ) + cr
2
(G) for any i (3.16)

The residue of any <r(Q) at a later time tiRC is nr(Q). Therefore Eq.
(3.16) becomes

**(Q) = [r*(QW + * 2
(G) (3.17)

Therefore the expectation value of the variance <r
2
(G) for any G, is

given by
cr
2
(G) = (1

- rV(Q) =
(1
- r*)q**RC (3.18)

which is confirmed by Eq. (3.6). By applying the principles of the

propagation of errors to Eq. (3.15), and making use of Eq. (3.18), we
can write for the variance of nQ

1 - r*) + + (1
- r)(l -

r*)] (3.19)

When the indicated summations are carried out we obtain

ffl <n =
(TTji

W1 ~ r!>
~

2r(1 ~

Then the standard deviation, or standard error, in Q can be written as
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<rn(Q) and from Eqs. (3.20) and (3.12) has the value

i

<rn(Q) = -<r(nQ)
n

1

Equation (3.21) is the relationship sought for the standard error

in the average value Q of Eq. (3.9). If # 1, so that the n readings are

really statistically independent, then Eq. (3.21) correctly reduces to

for & 1 (3.22)n

Vn
which is in accord with the elementary principles given by Eq. (2.12)
of Chap. 26.

d. Standard Deviation of Continuous Observations. The output of

a counting-rate meter is often a recording voltmeter or galvanometer.
The continuous observation of Q over a finite time T corresponds to an
infinite number of single readings, with an infinitely close spacing, or

n > oo
9
& > 0, but such that

(3-23)

Then the standard error v(T) of the average deflection Q is obtained by
substituting Eq. (3.23) into Eq. (3.21). In the limit of 1, this

leads tof

where <r(Q)
= q(aRC/2)* is the standard deviation of a single instan-

taneous observation as given by Eq. (3.7). Figure 3.1 is a plot of the

dependence of <r(T)/<r(Q) on T/RC as given by Eq. (3.24).

When T >> RC
y
the general expression of Eq. (3.24) reduces to

__
Q
-

Q. VJf
(325)( 25)

which is equivalent to Eq. (2.15) of Chap. 26 because aT is the total

number of pulses observed in the interval T.

In the
practical uses of a continuously recorded output, the mean

deflection Q divides the instantaneous readings into two equal areas, as

illustrated in Fig. 3.2. The fractional standard deviation of a single

t Equations (3.21) and (3.24) are rigorous and were first obtained by R. E.

Burgess, Rev. Sci. Instr., 20: 964L (1949). They replace equations developed in

1936 by Schiff and Evans (312) which are algebraically dissimilar but which give

substantially identical numerical values! as in Fig. 3.1. The derivation of Eq. (3.21)

by means of the recurrence relationships of Eq. (3.13) is due to Professor George P.

Wadsworth and Dr. Joseph G. Bryan.
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T/RC duration of observation

Fig. 3.1 Dependence of the ratio of the standard error <r(T) of Q to the standard

deviation tr(Q) of a single observation, for continuous observations of various duration

T/RC, Eq. (3.24).

observation can also be estimated directly from the recorded output,
because the readings will exceed twice the standard deviation of a single

observation only 4.6 per cent of the time. Thus if we draw dotted lines,

as in Fig. 3.2, which include all but about 2 per cent of the highest obser-

vations and 2 per cent of the lowest observations, we shall have made a

reasonably accurate graphical eval-

uation of the standard deviation

o-(Q) of any single point on the

curve. From this, the standard

error of the mean value can be

obtained from Eq. (3.24), which is

plotted in Fig. 3.1.

e. Equilibrium Time. Equa-
tion (3.3) shows that the approach
to an equilibrium output is a char-

acteristic exponential growth curve,
similar in every respect to the

growth of activity in a radioactive

daughter substance, of mean life

RC
}
from a long-lived parent radio-

active substance of constant activ-

ity. For practical measurements,

Fig. 3.2 Schematic representation of

counting-rate-meter output, displaying

exaggerated statistical fluctuations for

purposes of illustration. The base line

is off the bottom of the page. The heavy
dotted line locates the average value Q,

the equal shaded areas representing the

observations above and below the aver-

age value. The light dotted lines locate

the region Q 2tr(Q), where <r(Q) is the

standard deviation of any single point on

the curve. The standard error of the

average Q is then obtained with <r(Q)

and Fig. 3.1.

we may say that a condition experi-

mentally indistinguishable from equilibrium exists when the charge

Q(U) differs from the average value by less than one probable error

[= 0.6745<r(Q)] occasioned by statistical fluctuations. Then the time t Q

necessary to establish this practical equilibrium is

l/BC

from which

0.6745Q(< )

V2aRC
to
- flC7(0.394 + * In 2aRC) (3.26)
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Figure 3.3 shows this dependence of

common values of RC.
f. Use of Counting-rate Meter

can be shown (812) that the mean
always related to variations in the

input in exactly the same way as

the radioactivity of a daughter
radioactive substance of mean life

RC is related to the activity of its

parent radioactive substance. The
counting rate a is equivalent to the

activity of the hypothetical parent
radioactive substance. The term
aRC is then equivalent to the num-
ber of atoms of daughter substance

present at equilibrium, because it is

of the form (activity X mean life).

The exponential term (1
- erto/KC

)

in Eq. (3.3) is equivalent to the

growth of a daughter substance of

decay constant (1/fiC) from a long-
lived parent of essentially constant

activity. If the radiation source

had been a radioactive substance of

mean life r, the input counting rate

at any time t would have been
ae-t*/r ingtead of the constant value

Then the expectation value

to on the counting rate a for several

on Rapidly Decaying Sources. It

output of a counting-rate meter is

E3

10 20
I

20,000

a.

for the charge Qm (tQ) on the tank
condenser at time U would become

50 100 200 500
|

2000 5000

1000

a = Counts per minute

Fig. 3.3 Time U required for the output
to rise from zero to within one probable
error of the final equilibrium value, for

various counting rates a and time con-

stants RC of the counting-rate meter.

qaRC
1/RC

(1/flO -
(1/r)

(3.27)

which is entirely analogous to the amount of daughter substance present
with a parent substance of decay constant 1/r, as determined in Chap. 15.

Similarly, the mean charge Qm (lo) would pass through a maximum value
at a time given by [In (r/RC)]/[(\/RC) -

(1/r)]. After a time which is

large compared with [(l/RC)
-

(1/r)] the mean charge will be in tran-

sient equilibrium with the exponentially decreasing input counting rate.

Problems

1. Randomly distributed pulses, at an average rate a, are fed through a

scale-of-a sealer and then into a counting-rate meter. Each scale-of-* pulse

puts a charge q into the counting-rate-meter tank circuit whose time constant is

RC.

(a) What is the equilibrium value of the tank-circuit voltage?
(6) Derive an analytical expression for the F.S.D. (fractional standard devia-

tion) of a single observation of the equilibrium tank-circuit voltage.
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(c) How does the expression obtained in (6) compare with the F.S.D if the

sealer is removed from the circuit?

2. A Geiger-Miiller counter is connected to a counting-rate meter having a

tank circuit whose voltage is measured by a vacuum-tube voltmeter. The
tank condenser has a capacitance of 10 pf and the specific charge per pulse is

10~10 coulomb. A long-lived radioactive source produces pulses in the Geiger-

Muller tube at an average rate of 1 ,000 per minute. It is desired to have a 6-mv

input to the voltmeter.

(a) What value should the tank resistor have?

(6) If a single reading of the voltmeter is taken after equilibrium has been

established! what is its fractional standard deviation?

(c) If the output is recorded on a recording milliammeter for a 2-min period,

what is the fractional standard error of the average output?

(d) If it is desired to read the equilibrium voltage as soon after the source is

presented to the counter as possible, how long should one wait?

3. Compare the fractional standard deviation (F.S.D) of observations on a

process whose random counting rate is 3,000 counts per minute, using a scale-of-

100 sealer and alternatively a counting-rate meter whose time constant is RC = 15

sec.

(a) If the background counting rate can be neglected, how many seconds

must one wait for the counting-rate meter to come to equilibrium?

(6) If a single observation is taken after equilibrium is reached, what is its

F.S.D?

(c) If the counting-rate-meter readings for the next 75 sec are averaged,
what is the F.S.D in the average value?

(d) If a single sealer reading is taken over the same 75 sec, what is its F.S.D?

(e) If a single sealer reading is taken over the same total period that the

counting-rate meter is operating (equilibrium time + 75 sec), what is its F.S.D?

(/) Compare the numerical values in (c), (d), and (e) and explain clearly

the statistical origin of the differences, especially why (c) is less than (d).

4. One minute is available for a measurement of the background rate of a

certain discharge counter. A sealer and a counting-rate meter (RC = 15 sec)

are available, and it is known that the background rate of this counter should

be about 100 counts per minute.

(a) What will be the expected value of the F.S.D of the sealer reading?

(6) If the tank condenser is charged up to its equilibrium value in a few
seconds by an adjustment of the calibration switch, what is the F.S.D of the

counting-rate-meter reading?

(c) Explain any difference between the answers to (a) and (6).

(d) If the measurement time is now increased to 5 min, calculate the F.S.D
for the sealer.

(e) What is the F.S.D of the counting-rate-meter reading, assuming that the

calibration switch has been used to charge up the condenser quickly?

(/) What is the F.S.D of the counting-rate-meter reading, assuming that no
"trick" is used to charge the condenser quickly?

(g) Explain any differences among the answers to (d), (e), and (/).

4. lonization Chambers

The major features of the statistical behavior of ionization chambers
can be inferred by comparison with the detailed statistical theory for

counters. When ionization measurements are made by the rate-of-drift
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method, the total deflections are statistically analogous to readings of a
total number of counts observed with a scaling circuit. When ionization

measurements are made by the steady-deflection method, the readings are

analogous to observations of a counting rate using a counting-rate meter.

The controlling time constant RC is usually found in the input capaci-
tance C and shunt resistance R of the ionization chamber and its elec-

trometer circuit. Less frequently, the period of an output galvanometer

may be the controlling time constant.

The theory of counter circuits thus leads toward an understanding of

ionization-chamber circuits. However, one major characteristic of ioni-

zation chambers introduces mathematical complications which prevent
the development of a detailed theory, except for unrealistic or trivial

special cases.

In the statistical theory of counter circuits, each recorded ionizing

particle produces the same effect on the instrument, namely, one count.

However, the number of ion pairs produced in an ionization chamber,

per ionizing particle, not only depends on the type of particle but is sta-

tistically distributed about some mean value, even for identical particles
of identical initial energy. Even an initially homogeneous group of a

particles produces slightly different amounts of ionization, because of

straggling. /3 rays, in addition to individual straggling, have a continu-

ous initial distribution of energies and produce widely varying amounts
of ionization per particle. Similar variations exist for the ionization per

particle produced by the secondary electrons by which 7 rays give rise to

ionization, and by the ionizing recoil particles produced by fast neutrons.

Therefore, the statistical theory of counting-rate meters can be
extended to ionization circuits only after realizing that the effectiveness

q per particle is not constant but is distributed about some mean value.

This distribution in q is generally not a random or Poisson one, nor even
a normal distribution. It may be highly asymmetric, as is a primary
spectrum of 0-ray energies. Even its standard deviation may not be

predictable on purely theoretical grounds. These fluctuations in q, that

is, in the ionization per particle, therefore have the effect of increasing
the observed fluctuations to some value greater than that predicted by
the counter theory, in which q is a constant. Thus the statistical theory
for the counting-rate meter gives the lower limit for the statistical fluctu-

ations in an ionization current.

Similarly, the theory of scaling circuits serves as the lower limit for

the statistical fluctuations in total ionization collected over a measured

period of time, as in rate-of-drift measurements with an ionization cham-
ber. In the theory of scaling circuits, the effectiveness per particle is

implicitly taken as unity and is included in the term a of Eq. (2.1) et seq.
for the average counting rate.

A second circumstance which can greatly increase the fluctuations in

ionization is the fact that several types of ionizing particle may be acting

simultaneously on the chamber. On this point, reference should be made
to the generalized Poisson distribution in Chap. 26 and the illustrative

examples given there. Circumstances can easily occur in which heavily
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ionizing particles, such as a rays or recoil protons, may produce only a

small portion of the total ionization but may at the same time dominate
the statistical fluctuations in ionization.

Finally, it should be pointed out that, when ionization chambers are

operated as proportional counters, there are statistical fluctuations in the

gas-amplification ratio. This again has the effect of making the specific

effectiveness per particle [as represented by a, 6, ...
?
in Eq. (3.1) of

Chap. 26] a statistically distributed quantity. The general effect is to

impair the resolution in studies of spectral distribution using proportional
counters (H16). Similar statistical considerations apply to other multi-

plicative processes, such as the luminescent counter systems and photo-

multipliers used with fluorescent counters (S28).

5. Rapid Decay of a Single Radionuclide

In the derivation of the Poisson distribution we imposed the con-

dition that the average rate of the process be constant over the period
of the observations. Poisson's distribution and the statistical results of

its simple application therefore cannot be applied directly to data which

are taken in time intervals which are comparable with the mean life of

the radioactive substance being studied. Poisson's distribution can be

used as a basis for developing special statistical treatments which are

applicable to measurements on rapidly decaying sources.

a. Mean -life Determination by Peierls's Method. The statistics of

the rapidly decaying source have been treated in detail by Peierls (P14)
whose minimum-error method for determining exponential coefficients is

of general importance in many physical processes. For example, it

applies to the determination of y-ray absorption coefficients as well as

to the determination of radioactive decay constants.

Peierls's method recognizes that the detecting apparatus possesses a

finite background counting rate whose average rate is constant. There-

fore the rapidly decaying radioactive source must be counted as an addi-

tional effect superimposed upon a statistically distributed background.
Peierls has shown that the radioactive decay constant A is to be

obtained with minimum error by designing the experiment so that the

data can be used to calculate the mean life for the atoms whose disinte-

grations are observed. Figure 5.1 illustrates the method and the princi-

pal statistical problems which are encountered.

At time t = 0, let there be NQ atoms whose disintegrations can be

detected. (The actual initial number of atoms will be greater than N
,

except when a 4?r-geometry detector possessing 100 per cent counting

efficiency is used.) Then the initial instantaneous counting rate due to

the source has the expectation value

(5.1)
t-o r

where r is the mean life of all the NQ atoms. This initial counting rate

should be at least several times the background counting rate.
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Based upon preliminary approximate knowledge of the half-period

and the initial activity, select a time interval At which is less than about

one-third the mean life r, yet is long enough to contain a statistically

significant number Of counts. In an unbroken sequence of n contiguous

equal time intervals At, observe the total number of counts x\, xz , x^,

. . .
,
xn due to the source plus 15Q

the background. Then our best

estimate of the number of counts ^5,

ANi, ANz, . - -
,
due to the source _

alone, is g 100

ANi = x l
- bAt

= xz
- bAt

(5.2)

ANn = xn - bAt

I
75

I 50

where bAt is the expectation value

of the number of background counts

in a time At.

A veragc Life of the Observed A t-

oms. The ANi atoms which decay

during the first time interval At can

be assigned an average lifetime

of vAt. Similarly, the AN2 atoms
which decay during the second time

interval At to 2At can be assigned
an average lifetime of %At. Then
the total lifetimes of all the atoms

which decay between t = and

t = nAt are

ANi&At) + AN2(%At) + AN*(%At)

i i A AT-
2n ~ * A/ f*t\+ - - - + ANn

~ M (5 -3 )

During this time, the total number
of atoms whose individual lifetimes

are observed is

N =

Initial activity

-Observed values

V Expectation values

Average^
^k /background

+ AJV, +
+ + AATn (5.4)

Time.t >

Fig- B.I Graphical presentation of typi-

cal statistical fluctuations encountered in

measuring the mean life of a rapidly de-

caying source. The instantaneous value

of the initial activity NQ/'T of this source

is only four times the background. In a

sequence of contiguous time intervals AJ,

the expectation values of the number of

counts per interval are shown as circles,

plotted at the mid-points of the time

intervals, and connected by the dotted

decay curve. The actual observations,

shown by the histogram, involve statisti-

cal fluctuations due both to background
and to the source. Table 5.1 shows that

in the calculation of the average life, by
means of Eq. (5.5), observations beyond
To^ 2.&r should be excluded. Each

time interval here is bl = r/4; therefore

only the first n = 11 time intervals

should be included in Eq. (5.5). After

t = nAi = 2.75r, the statistical fluctu-

ations in the background are comparable
with the residual activity of the source.

Hence the average life s of all the

observed atoms is given by Eq. (5.3) divided by Eq. (5.4) which is

+ + (2n -

By terminating the observations at the finite time t = nAt we have

excluded the longest-lived atoms. Therefore the average life s of the
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observed atoms is less than the true mean life T of all the atoms. The

expectation value of s is given by

t dN

dN

e-"r dt
^=

f n\t
~~ "* ^~ "~

F w~A/
~ "

,^r r*^ / v I

g /T ^

8 = T

(5.6)

(5.7)

Equation (5.6) furnishes the means of calculating r from the experi-

mentally determined average life s of the observed atoms. Figure 5.2

relates the observed quantities s and n&t to the true mean life r. It is

obtained from Eq. (5.7) by assuming a series of arbitrary values n&t/r
and computing the corresponding values of T/S and hence nkt/s.

1.1

3 4 n&t 5 6
5

(Duration of the observations) /(observed average life)

Fig. 6.2 The relation, Eq. (5.7), between the true mean life r of all the atoms and the

observed average life s of the atoms decaying in time nAt.

Equation (5.7) and Fig. 5.2 are exact representations of the relation-

ship between r and 8 only if A r, when the summation in Eq. (5.3)

becomes equivalent to the numerator of Eq. (5.6). In any experiment, At

must be finiteand long enough to accumulate a significant number of counts.

Peierls has shown that T, as given by Eq. (5.7) and Fig. 5.2, is 1 to 1.5

per cent high if At = 0.3r. This systematic error in r varies with (A/r)
2

;

therefore it is reduced to about 0.1 to 0.2 per cent if AJ < O.lr. Actu-

ally, very few decay constants are known within an accuracy of 1 per cent.

Optimum Duration of Observations. If the measurements Xi, x2 ,
. . .

are continued for many mean lives, the residual activity of the source

may become small compared with the ever-present statistical fluctuations

in the background. This situation can be seen in Fig. 5.1, beyond t ~ ST.

There comes a time when it is foolish to continue the measurements
because the additional data which can be obtained are so inaccurate that
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their use will actually increase the error in the calculation of the mean
life. Conversely, the measurements should not be discontinued too soon.

Otherwise, data which would be useful statistically will not be obtained.

It is seen that there is some optimum time during which counting
should be continued. This optimum duration T is of the order of three

to five mean lives for most practical cases. Peierls has shown that the

minimum error in the determination of the mean life T is obtained by
selecting an optimum duration T which depends upon the ratio of the

initial activity of the source NQ/T to the mean background rate b. These
values are given in Table 5.1. The actual number of intervals used in

Eq. (5.5) should therefore be chosen so that n is the nearest integer to

/, that is,

n ~ ^ (5.8)

The initial activity NQ/T of the source is, of course, greater than

The preliminary estimates of the instantaneous initial activity and of the

mean life, which are needed for the application of Peierls's method, are

TABLE 5.1. OPTIMUM DURATION To OF OBSERVATIONS ON A HAIMDLY

DECAYING SOURCE WHOSE MEAN LIFE Is T, WHEN THE INITIAL RATIO OF

SOURCE ACTIVITY TO BACKGROUND Is Ar

/T&.

The table, also gives typical values of thr ratio T/S of the true mean lifr T to tho

average life of the N atoms observed; the fraction A'/A'o of thr utoins observed;

and the standard error a in the measurement of T, as determined by IVierls (PI 4;.

obtained most readily from a seinilogarithmic graph of the experimental
values of &N/M [Eq. (5.2)] plotted at the mid-points of their respective
time intervals.

Standard Error of Mean Life. One of the greatest advantages of

Peierls's method is that it also allows a calculation of the standard error

in T whenever counting methods have been employed to obtain the data

for Eqs. (5.2) and (5.5). Peicrls's lengthy computations are summarized
in Fig. 5,3, where the fractional standard error aIT is given as a function

of the total number of counts N due to the source, Eq. (5.4), and of T Q/s.

This standard error includes the effects of statistical fluctuations in the
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background, and of the decay of the source. In the limiting case of a

negligible background, cr approaches the Poisson value

for

Ib -0
j

To^ oo (5.9)

Peierls's results have been confirmed by Bartlett (B17), using the

powerful and elegant statistical method introduced by Fisher (F51) and

known as the "method of maximum likelihood."

(Duration of the observations)/ (observed average life)

Fig. 5.3 The standard error a in the mean lift; r determined from counting N particles

in a total time T
,
when T has been chosen in accord with Table 5.1. The probable

error in r would be given approximately by O.G7<r. The four points shown arc based

on Peierls's calculations (PI 4).

b. Determination of Initial Activity of a Source Whose Mean Life

Is Known. Tandberg (T4) has considered the problem of obtaining
minimum statistical error in the determination of the activity of a radio-

active source, from a single observation of the total number of counts

observed in a time TV If the mean life r of the source is known accu-

rately, and the background counting rate b is comparable with the initial

activity NQ/T of the source, Tandberg showed that

\T 1 nm I

7- (5-10)
r b 1 - e- T */r

where T is the optimum duration of the single counting observation.

In this interval T
,
the expected number of background counts is 57

T

,

the expected number of counts due to the source is Af (l e~ To/T
), and

both counts are subject to random fluctuations. Values of T for several

values of (ATo/rb), the ratio of initial source strength NQ/T to background

b, are given in the following table.
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TABLE 5.2. OPTIMUM DURATION To OF COUNTING WHEN r Is KNOWN AND

THE INITIAL ACTIVITY NQ/T Is To BE EVALUATED (T4)

It will l)e noted that these values of the optimum counting time 7\j

are slightly less than the values deduced by Peierls (Table 5.1) for the

optimum duration of counting when r is initially unknown and the best

value ot T is to be determined from a scries of observations on a single

decaying source.

Problems

1. The usual experimental approximation to the true instanUuicous activity
dN i dt at any time I is obtained from the particlr count AN over tin 1 finite time

interval of duration At extending from (t %At) to (t + $At). Show that this

average activity AN/ At always exceeds the instantaneous activity dN /dt at the

mid-point of the time interval At and is given by

AN = d,V
[

sirih (At/2r) ] dN_
[

_1_
/At\

z

At
~~

(It [ At/2r \~ dt
[

24 \T /

2. Show that the total lifetimes of the atoms which decay between t = and
/ = At are

[

M
t<L\ = AtAN(\ -

\
- + -

./O \ b T

3. Carry out the integrations indicated in Eq (5.6) and show also that:

(a) The expectation value of AT, the number of atoms whose disintegrations
:t re observed, is

AT = JV (l
- P-H*/T)

(6) The expectation value of s becomes the ordinary mean life r when the

mean life is negligible compared with the duration of the observations.

4. Show that the greatest contribution to the sum of the lifetimes, Eq. (5.3),

is due to those atoms which have an actual lifetime equal to the mean life r.

5. Determine the half-penod, and its standard error, from the following
data. The average background of the counter is 25 counts per minute (scale of

1 ). In successive J-min intervals, the number of counts due to source plus back-

ground is 106, 102, 73, OS, 48, 52, 51, 3S, 38, 32, 32, 37, 27, 23, 26, 2S. Ans.:

From semilogarithmic graph of AN /At: AVi"^ 100 counts per minute; T c^ 4

miii; therefore, T
7

,,

~ H inin; n =-- 11. Finally, T = 4.1 0.6 (S.H.) min, or

T
k
= 2.8 0.4 (S.E.) miri.

6. If the experimental conditions are such that the radionuclide studied in

Prob. 5 cannot be made with greater initial activity, how many times must exper-
iments like that of Prob. 5 be repeated in order to obtain a value of r which has a

standard error of 1 per cent?

7. Calculate by Peierls's method (a) the mean life and (6) the standard error

in the mean life of a radioactive isotope, from the following data. Using a



818 The Atomic Nucleus [CH. 28

scale-of-2 recorder, the total number of impulses, including background, in suc-

cessive 10-min intervals were 960, 820, 650, 560, 450, 420, 350, 330, 290, 260,

240, 230, 220, 210, 205. The scale-of-2 background is ISO per 10 min, the initial

activity of the sample is about five times the background, and the half-period
of the isotope is about 28 min.

6, Radioactive-series Disintegrations

In the derivation of the Poisson distribution we required that each

event be independent of all others. In radioactive-series decay this

condition is sometimes violated, depending on the time intervals chosen

for observation. Thus AcA, the 0.001 8-sec half-period decay product
of Ac, gives OL rays whose appearance is strongljr governed by the decay
of its parent product. The discovery of AcA by Geiger (Gil) was
directed by the excessive number of short intervals between successive a

rays from actinon and its decay products, i.e., by deviations from the

Poisson and interval distributions.

Cases of series decay can often be treated statistically by proper com-

pounding of simple Poisson distributions. Adams (A8) has so treated

the statistics of -ray counting from Th in equilibrium with its decay
products RdTh, ThX, Tn, ThA, ThB, ThC, etc. The half-period of

ThX is 3.0*1 days. If in. any 5-min observational interval a ThX a ray
is counted, this will be closely followed by a rays from the successive dis-

integration products Tn and ThA (half-periods 54.5 sec and 0.158 sec,

respectively). These latter n rays are therefore not randomly distributed

in the time intervals chosen because they are dependent on the emission of

the ThX a ray. Alternatively, it is seen that tin- total equilibrium amount
of Tn and ThA present in this experiment its vanishingly small, being

only those few atoms which have decayed out of the ThX state but not

yet out of the ThA state. They therefore do not satisfy one of the condi-

tions for the validity of Poisson
J

s distribution because their probability
of decay in the large time interval chosen is nearly unity, instead of nearly
zero. Adams found the standard deviation for counting in 5-min

intervals on the Th series to be 1.45 times the Poisson value for a purely
random process.

In general, the statistics of counting a series of substances which arc

in radioactive equilibrium can be deduced from Ihe Poisson distribution

if (S9) each radioactive mean life is either much longer or much shorter

than the duration of the individual observations


