

The 6 GeV era came to successful close in May 12'after fifteen years of running many productive world-class experiments. We are poised to continue our very successful experimental program with CLAS12.

CLAS12 will be a unique worldwide facility for exploring strong interaction in the non-perturbative regime.

The studies of nucleon resonance (N*) structure: motivation and objectives

Our experimental program seeks to determine

 γ_{v} NN* transition helicity amplitudes (electrocouplings) at photon virtualities 0.2< Q²<6.0 GeV² with CLAS and at 4.0< Q²<12.0 GeV² with CLAS12 detectors for most of the excited proton states through analyzing major meson electroproduction channels independently and in a global multichannel analyses.

This information is absolutely needed to study the non-perturbative strong interaction which generates N* states as the bound systems of quarks and gluons

The non-perturbative strong interaction represents the most important part of the Standard Model that we have yet to explore. The non-perturbative strong interaction is far more complex than the electromagnetic and weak interactions; and very different in nature.

Dynamical mass and structure of dressed quarks

- > 98% of dressed quark and N* masses and their dynamical structure are generated non-perturbatively through dynamical chiral symmetry breaking (DCSB). The Higgs mechanism accounts for less than 2% of the nucleon & N* mass.
- •the data from CLAS/CLAS12 will allow us to explore the nature of the dominant part of hadron mass.
- the momentum dependence of the dressed quark mass reflects the transition from quark/gluon confinement to pQCD.

— Jefferson Lab ——

γ_v NN* electrocouplings as a window to strong interactions in nonperturbative region

Quark core contribution to $\gamma_v NN^*$ electrocouplings

- quark propagators are sensitive to the quark running mass M(p);
- dressed quark e.m. current is sensitive to the quark anomalous electroomagnetic moment (AEM);
- quark interaction vertices
 Γ and X are sensitive to the quark anomalous
 chrmomagnetic moment (ACM).

(efferson Pab

Studies of $\gamma_v NN^*$ electrocouplings at different photon virtualities Q^2 provide access to the quark mass function, structure, and qq-interactions, which are responsible for N^* formation. Our studies will offer a unique way to explore quark/gluon confinement and DCSB in baryons.

Extraction of γ_v NN* electrocouplings from the data on exclusive meson electroproduction off protons

- Separation of resonant/non-resonant contributions within the framework of reaction models; Breit Wigner ansatz for parameterization of resonant amplitudes; fit of $\gamma_v NN^*$ electrocouplings and hadronic parameters to the data.
- Consistent results on γ_v NN* electrocouplings from different meson electroproduction channels demonstrate reliable extraction of N* parameters.

N* electroexcitation in meson electroproduction off protons

Hadronic decays of prominent N*s for W<1.8 GeV.

State	Branch.	Branch.	Branch.Frac
State	Fract. to $N\pi$.	Fract. to Nη	to Nππ
		,	.to miiii
Δ(1232) P ₃₃	0.995		
N(1440) P ₁₁	0.55-0.75		0.3-0.4
N(1520) D ₁₃	0.55-0.65		0.4-0.5
N(1535) S ₁₁	0.48±0.03	0.46±0.02	
Δ(1620) S ₃₁	0.20-0.30		0.70-0.80
N(1650) S ₁₁	0.60-0.95	0.03-0.11	0.1-0.2
N(1685) F ₁₅	0.65-0.70		0.30-0.40
Δ(1700) D ₃₃	0.1-0.2		0.8-0.9
N(1720) P ₁₃	0.1-0.2		> 0.7

CLAS data on yields of meson electroproduction reactions at Q²<4 GeV²

 $N\pi//N\pi\pi$ channels are sensitive to N*s. They are major contributors to meson exclusive electroproduction in the N* excitation region.

Summary of the CLAS data on single-pion electroproduction off protons

Number of data points >125000, W<1.7 GeV, 0.15<Q²<6.0 GeV², almost complete coverage of the final state phase space. Extended toward W<3.0 GeV Q²<5. GeV²

Observables	Q^2 area, GeV 2	Number of data points
dσ/d $\Omega(\pi^0)$	0.16-1.45 3.0-6.0	39830 9000
dσ/dΩ(π ⁺)	0.25-0.60 1.7-4.3	25588 30 849
$A_e(\pi^0)$, $A_t(\pi^0)$	0.25-0.65	3981
$A_e(\pi^+)$, $A_t(\pi^+)$	0.40-065 1.7 - 3.5	1730 3 535
$A_{et}(\pi^0)$	0.25-0.61	1521

Low Q² results:

I. Aznauryan *et al.*, PRC 71, 015201 (2005); PRC 72, 045201 (2005).

High Q² results on Roper:

I. Aznauryan *et al.*, PRC 78, 045209 (2008).

Final analysis:

I.G.Aznauryan, V.D.Burkert et al. (CLAS Collaboration), PRC 80. 055203 (2009).

The CLAS data on $\pi^+\pi^-$ p differential cross sections and their fit within the framework of meson-baryon reaction model JM

Summary of the CLAS/Hall-C data on ηp electroproduction off protons

Observables	Coverage over Q ² , GeV ²	Coverage over W, GeV	References
dσ/dΩ	2.4, 3.6	1.48-1.62	[1]
dσ/dΩ	0.38-2.5	1.50-1.86	[2]
dσ/dΩ	0.13-3.3	1.50-2.30	[3]
dσ/dΩ	5.7,7.0	1.50-2.30	[4]

- 1. C.S. Armstrong et al., Phys. Rev D60, 052004 (1999).
- 2. R. Thompson et al., (CLAS Collaboration), Phys. Rev. Lett. 86, 1702 (2001).
- 3. H. Denizli et al., (CLAS Collaboration), Phys. Rev. C76, 015204 (2007).
- 4. M.Dalton et al., Phys. Rev. C80, 015205 (2009).

Summary of the CLAS data on KY electroproduction off protons

Observables	Channel	Coverage over Q ² , GeV ²	Coverage over W, GeV	References
$P_{x,y,z}$	$K\Lambda,K\Sigma^0$	0.7-5.4	1.60-2.60	[1]
A _e	KΛ	0.65-1.0	1.60-2.05	[2]
$d\sigma/d\Omega$	$K\Lambda,K\Sigma^0$	0.5-2.8	1.60-2.40	[3]
$P_{x,y,z}$	ΚΛ	0.3-1.5	1.60-2.15	[4]

- 1. D.S. Carman et al., (CLAS Collaboration), Phys. Rev. C79, 065205 (2009).
- 2. R. Nasseripour et al., (CLAS Collaboration), Phys. Rev. C77, 065208 (2008).
- 3. P. Ambrozewicz et al., (CLAS Collaboration), Phys. Rev. C75, 045203 (2007).
- 4. D.S. Carman et al., (CLAS Collaboration), Phys. Rev. Lett. 90, 131804 (2003).

More than 85% of meson electroproduction data worldwide were obtained in experiments with the CLAS detector and available in the CLAS Physics Data Base: http://clasweb.jlab.org/physicsdb/

Approaches for extraction of γ_v NN* electrocouplings from the CLAS data on exclusive meson electroproduction channels

- Analyses of different meson electroproduction channels independently:
- \succ π^+ n and π^0 p channels:

Unitary Isobar Model (UIM) and Fixed-t Dispresion Relations (DR)

I.G.Aznauryan, Phys. Rev. C67, 015209 (2003).

I.G.Aznauryan et al., CLAS Coll., Phys Rev. C80, 055203 (2009).

ηp channel:

Extension of UIM and DR

I.G.Aznauryan, Phys. Rev. C68, 065204 (2003).

Data fit at W<1.6 GeV, assuming $S_{11}(1535)$ dominance

H.Denizli et al., CLAS Coll., Phys.Rev. C76, 015204 (2007).

 $\succ \pi^+\pi^-$ p channel:

Jefferson Fab

Data driven JLAB-MSU meson-baryon model (JM)

V.I.Mokeev, V.D.Burkert et al., Phys. Rev. C80, 045212 (2009).

V.I.Mokeev et al., CLAS Coll., arXiv:1205.3948 [nucl-ex], accepted by PRC.

Global coupled-channel analyses of the CLAS/world data of π N, γ_v N $\to \pi$ N, η N, $\pi\pi$ N, K Λ , K Σ exclusive channels:

N.Suzuki, T.Sato, and T-S. H.Lee, Phys, Rev. C82, 045206 (2010).

Talk by T.Sato, Tuesday, August 14.

Fit of the Legendre Moments of Unpolarized Structure Functions

K. Park et al. (CLAS), Phys. Rev. C77, 015208 (2008)

$$\sigma_T + \epsilon \sigma_L = \sum_{l=0}^n D_l^{T+L} P_l(\cos \theta_{\pi}^*)$$

I. Aznauryan —— DR fit

I. Aznauryan --- DR fit w/o P₁₁

I. Aznauryan —— UIM fit

Two conceptually different approaches DR and UIM are consistent. CLAS data provide rigid constraints for checking validity of the approaches.

JM Model Analysis of the $\pi^+\pi^-$ p Electroproduction

V. I. Mokeev , V.D. Burkert, T.-S.H. Lee et al., Phys. Rev. C80, 045212 (2009)

Major objectives: extraction of gvNN* electrocouplings and $\pi\Delta$, ρp decay widths.

 2π direct production

N* contribute to $\pi\Delta$ and ρp channels only. Resonant amplitudes are parametrized within the framework of an updated BW ansatz, which imposes the constraint of unitarity.

Resonant /non-resonant contributions from the fit of $\pi^+\pi^-p$ electroproduction cross sections within the JM model

full cross sections within the JM model

Jefferson Fab

resonant part non-resonant part

N Δ Transition Form Factor – $G_{M.}$ Meson-baryon dressing vs Quark core contribution in EBAC-DCC analysis.

One third of G^{*}_M at low Q² is due to contributions from meson– baryon (MB) dressing:

Within the framework of relativistic QM [B.Julia-Diaz *et al.*, PRC 69, 035212 (2004)], the bare-core contribution is very well described by the three-quark component of wave function

The transition to pQCD at photon at Q² up to 14 GeV²?

The P₁₁(1440) Electrocouplings from the CLAS Data

The physics analyses of these results revealed the <u>P₁₁(1440)</u> structure as a combined contribution of: a) quark core as a first <u>radial excitation of the nucleon 3-quark ground state and b) meson-baryon dressing</u>.

Evaluation of $P_{11}(1440)$ electrocouplings within Dyson-Schwinger Equation of QCD (DSEQCD)

— DSEQCD.

parameterization of the EBAC-DCC bare electrocouplings.

____ meson-baryon dressing EBAC-DCC (abs. values).

- •Poincare-covariant, symmetry preserving DSEQCD evaluation.
- •Account for quark mass/structure formation in dressing of bare quark by gluon cloud.
- •Simplified contact interaction generates momentum independent quark mass.

D.J.Wilson, et al, Phys. Rev. C85, 025205 (2012).

$$g^2 D_{\mu\nu}(p-q) \Rightarrow \delta_{\mu\nu} \frac{4\pi \alpha_{IR}}{m_C^2}$$

$$\frac{\alpha_{IR}}{4\pi} = 0.93$$
 $m_G = 0.8 GeV$

 $m_a^{bare} = 0.007 \, GeV \Rightarrow m_a^{dressed} = 0.368 \, GeV$

Evidence for substantial contributions from meson-baryon cloud .

Subject for our Workshop:

Jefferson Lab

V.I.Mokeev, EmNN* USC August 13-15 2012

The $D_{13}(1520)$ electrocouplings from the CLAS data

- •a reasonable agreement between the results from N π and $\pi^+\pi^-$ p exclusive channels.
- •contributions from 3 dressed quarks in the first orbital excitation and MB cloud combined.
- •direct access from experimental data on $A_{1/2}$ electrocoupling at $Q^2>2.0$ GeV² to quark core with negligible contribution from MB cloud.

Subject for our Workshop:

Prospects for evaluation of $D_{13}(1520)$ electrocouplings within the framework of approaches which are explicitly related to QCD at photon virtualities up to 12 GeV²

S₁₁ (1535) electrocouplings and their interpretation

Branching ratios: $\beta_{N\pi} = \beta_{Nn} = 0.45$

- Analysis of pη channel assumes $S_{1/2}=0$ $\triangleright A_{1/2}$ (Q²) from Nπ and pη are consistent
 - \triangleright First extraction of $S_{1/2}(Q^2)$ amplitude
- •LQCD & LCSR calculations (black solid lines) by Regensburg Univ. Group reproduces
- •data trend at 2.0<Q²<11.0 GeV². V.Braun et al., Phys. Rev. Lett., 103, 072001 (2009).

Subject for our Workshop:

Prospects for evaluation of $\gamma_v NN^*$ electrocouplings for other pairs of N* parity partners; access to quark distribution amplitudes in N* states of different quantum numbers.

High lying resonance electrocouplings from the $\pi^+\pi^-$ p CLAS data analysis

•the $\pi^+\pi^-$ p electroproduction channel provided first preliminary results on $S_{31}(1620)$, $S_{11}(1650)$, $F_{15}(1685)$, $D_{33}(1700)$, and $P_{13}(1720)$ electrocouplings of a good accuracy. Information on electrocouplings of most N* with $M_N^*<1.8$ GeV is available and will be extended in few years up to $Q^2=5.0$ GeV² and at W<3.0 GeV. This considerably extend the scope on baryon structure theory.

Jefferson Fab

Impact of the Recent LQCD studies of N* Spectrum and Structure on the N* Program with CLAS/CLAS12

J.J.Dudek, R.G.Edwards, Phys. Rev. D85, 054016 (2012).

•each N* state with M_{N*} <1.8 GeV has partner in computed LQCD spectrum, but level ordering is not always consistent to the data

•wave functions of the low-lying N* states dominate by 1-2 SU(6) configurations, while the wave function of high lying N*'s may contain many SU(6) configurations

•presence of hybrid-N*s with dominant contribution of hybrid components at M_{N*}>1.9 GeV marked by

Should be verified by experiment!

New direction in N* studies proposed in V.D.Burkert, arXiv:1203.2373 [nucl-ex]: Search for hybrid N*-states looking for:

- **≻overpopulation of SU(6)-multiplet**;
- > particular behavior of γ_v NN* electrocouplings, which reflects presence of the hybrid component.

Signals from N* states in the CLAS KY electroproduction data

 $C_{l} = \int \left\{ \frac{d\sigma}{d\theta_{K_{T}}} + \varepsilon \frac{d\sigma}{d\theta_{K_{L}}} \right\} P_{l}(z) d(-z)$ $z = \cos(\theta_{K})$

the structures in W-dependencies of C_I – moments at the same W-values in all Q²-bins are consistent with the contributions from resonances of spin-parities listed in the plots

reaction model(s) are needed for extraction of N* parameters from KY electroproduction

W GeV

CLAS12

CLAS12 supports a broad program in hadronic physics.

Plans to study excited baryons and mesons:

- Search for hybrid mesons
- Spectroscopy of Ξ^* , Ω^-
- N* Transition form factors at high Q².

Anticipated N* Electrocouplings from data on N π & N $\pi\pi$ electroproduction

Open circles represent projections and all other markers the available results with the 6-GeV electron beam

- Examples of published and projected results obtained within 60d for three prominent excited proton states from analyses of N π and N π π electroproduction channels. Similar results are expected for many other resonances at higher masses, e.g. S₁₁(1650), F₁₅(1685), D₃₃(1700), P₁₃(1720), ...
- This experiment will for the foreseeable future be the only experiment that can provide data on $\gamma_v NN^*$ electrocouplings for almost all well established excited proton states at the highest photon virtualities ever achieved in N* studies up to Q² of 12 GeV².

γ_νNN* Electrocouplings: A Unique Window into the Quark Structure

Data on $\gamma_v NN^*$ electrocouplings from E12-09-003 experiment (Q² > 5 GeV²) will afford for the first time direct access to the non-perturbative strong interaction among dressed quarks, their emergence from QCD, and the subsequent N* formation.

CLAS12 Resonance Transitions at 12 GeV

Electromagnetic form factors are sensitive to the running quark masses and their dynamical structure

12 GeV experiment E12-09-003 will extend access to transition FF for all prominent N* states in the range up to $Q^2 = 12 GeV^2$.

Probe the transition from confinement to pQCD regimes, allowing us to explore how confinement in baryons emerge from QCD and how >98 % of baryon masses are generated non-perturbatively via dynamical chiral symmetry breaking.

γ_v NN* Electrocoupling Sensitivity to Momentum Dependent Quark Mass & Structure

DSE expectation for QCD qq-interaction and momentum dependent mass function

 γ_v NN* electrocouplings measured at the Q²> 5.0GeV² are sensitive to momentum dependence of dressed quark mass and structure.

Reaction Models for Extraction of $\gamma_v NN^*$ Electrocoupling at Q²>5.0 GeV²

- •All currentl reaction models for extraction of $\gamma_v NN^*$ electrocouplings employ meson-baryon •degrees of freedom . They can be applied at $Q^2 < 5.0 \text{ GeV}^2$, where meson-baryon mechanisms are most relevant.
- •The models explicitly account for the transition from meson-baryon to quark degrees of freedom are needed for extracting of $\gamma_v NN^*$ electrocouplings from $N\pi$ and $N\pi\pi$ electroproduction data at 5.0<Q²<12.0 GeV² and W<2.0 GeV.

The starting point:

Description of non-resonant mechanisms in π^+ n, π^0 p, $\pi\Delta$, and ρ p electroproduction channels with the full coverage of reaction phase, including:

- hand-bag diagrams with GPD's structure function from DIS studies;
- ➤ reggeized meson-baryon amplitudes;
- >color dipole
- >others.....

Most urgent need for γ_v NN* electrocpoupling studies with the CLAS12!

Time scale:

Should be ready by 2015, when E-12-09-003 experiment is scheduled to start the collection of $N\pi$ and $N\pi\pi$ electroproduction data

Conclusions and outlook

- Data on γ_vNN* electrocpouplings of most of the excited proton states in mass range M_{N*} <1.8 GeV are available from analyses of the CLAS meson electroproduction data at photon virtualitues Q² <5.0 GeV² for single meson and at Q²<1.5 GeV² for double pion electroproduction. The files with numerical results can be requested from V.Mokeev (mokeev@jlab.org).
- γ_vNN* electrocpoupling of most excited proton states in mass range up to
 2.0-3.0 GeV will become available in future from analyses of both single and double pion electroproduction off protons at photon virtualities up to 5.0 GeV².
- CLAS data on KY electroproduction are important for the studies high-lying N* electrocouplings. Reaction models for KY channels are needed.
- The CLAS12 detector is key for the N* Program. Reaction models for extraction of $\gamma_v NN^*$ electrocpoupling from $N\pi$ & $N\pi\pi$ electroproduction off protons at 5.0<Q²<12.0 GeV² should be ready by 2015.
- Discussions at our Workshop will help on focusing on the where we need to go from here.

Major features of strong interaction in non-perturbative regime

$$\alpha_s(Q^2) = \frac{12\pi}{(33-2n_f)\ln\frac{Q^2}{\Lambda^2}}$$

- •quark-gluon running coupling α_{s} increases with distance
- •anti- screening (b) prevails screening (a)
- • α_{s} ~ 1 as Q² \rightarrow few GeV²

Generation of dressed quarks and gluons

Dressing contribution $\sim (\alpha_s)^{N/2}$ (N stands for the number of interaction vertices) . Becomes dominant for the light u and d quarks and gluons as $\alpha_s \sim 1$

Dressed quarks and gluons acquire dynamical, momentum (distance) dependent masses, structure, and quark-gluon interaction amplitudes

- Quark/Gluon Confinement
- Dynamical ChiralSymmetry Breaking

