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Abstract

In this study, the process of π+π− electroproduction off protons bound in deuterium

nuclei is explored. The exploration is performed through the analysis of experimental

data on electron scattering off the deuteron target, collected in Hall B at Jefferson Lab

with the CLAS detector. As a main result, the set of integrated and single-differential

cross sections of the reaction γvp(n) → p′(n′)π+π− is obtained. The cross sections

are extracted in the quasi-free regime, which implies that only events not affected

by final state interactions are subject to selection. The measurements are performed

in the kinematic region of the invariant mass W from 1.3 GeV to 1.825 GeV and

photon virtuality Q2 from 0.4 GeV2 to 1 GeV2. Sufficient experimental statistics

allows narrow binning, i.e. 25 MeV in W and 0.05 GeV2 in Q2, while maintaining

an adequate statistical uncertainty. The extraction of quasi-free cross sections is

accompanied by the kinematic probing of FSI between the reaction final hadrons

and the spectator neutron in the aforementioned exclusive channel. In this probing

the distributions of missing quantities are used in order to investigate the relative

spread of events with FSI along the reaction phase space, trace the difference of

FSI manifestations in different reaction topologies, reveal details on alterations of the

hadron momentum in FSI, and isolate FSI contributions of various final hadrons. The

performed examination is also capable of retrieving information on some underlying

FSI mechanisms, among which the process of resonance formation in the intermediate

state of pion-neutron interactions is particularly remarkable.
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Chapter 1

Introduction

Exclusive reactions of meson photo- and electroproduction off protons are

intensively studied in laboratories all over the world as a very powerful tool for the

investigation of nucleon structure and the principles of strong interaction. These

studies include the extraction of various observables through the analysis of exper-

imental data as well as subsequent theoretical and phenomenological interpretations

of the extracted observables [1–3].

By now exclusive reactions off the free proton have been studied in considerable

detail, and a lot of information on differential cross sections and different single

and double-polarization asymmetries with almost complete coverage of the reaction

phase-space is available. A large part of this information came from the analysis of

data collected in Hall B at Jefferson Lab with the CLAS detector [4, 5].

Meanwhile, reactions occurring in photon and electron scattering off nuclei are

less extensively investigated, i.e. experimental information on these processes is

scarce and mostly limited to inclusive measurements of total nuclear photoproduction

cross sections [6–8] and nucleon structure function F2 [9–11].

The available inclusive data, however, exhibit some surprising peculiar features

not fully elucidated over the years, which are now attracting significant scientific

attention. Specifically, the nuclear photoproduction cross section (per nucleon) turns

out to be less pronounced and damped in strength compared with the cross section off

the free proton. This effect manifests itself differently depending on the invariant mass
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(W ) range, i.e. the ∆(1232)-resonance peak is damped, but still evident for all nuclei,

however, the second resonance region becomes somewhat less pronounced and damped

for the deuteron and strongly suppressed and structureless for all heavier nuclei.

A similar effect is observed in the behavior of the nucleon structure function F2,

which in the case of the deuteron shows moderate damping and flattening [10] and

completely loses its structure, when measured off carbon [11] (compared with the free

proton structure function [12]). A fact of particular interest is that the intensity of

this effect increases as Q2 grows, i.e. as Q2 = 3 GeV2 is reached, the structure func-

tion F2 becomes almost flat even for the deuteron [11]. These peculiar features cannot

just be explained by the Fermi motion of nucleons in the nucleus and are thought

to be an indication that nucleons and their exited states, bound inside the nuclear

medium, may be subject to some modifications of their properties [6–8, 13, 14].

This phenomenon, which is still not fully understood, generates lots of debates

among scientists, triggering efforts to describe the processes that happen in reactions

off bound nucleons. These studies rely heavily on experimental data, which at the

moment are mostly limited to inclusive measurements [6–11] and lack information

on exclusive reactions. This information, however, is crucial, since various exclusive

channels have different energy dependencies and different sensitivity to reaction

mechanisms. This situation causes a strong demand for exclusive measurements off

bound nucleons, and the deuteron, being the lightest and weakly-bound nucleus, is

the best target for initiating these efforts.

This study represents a thorough exploration of the process of charged double-

pion electroproduction off protons bound in deuterium nuclei. The exploration has

been performed through the analysis of experimental data on electron scattering off

the deuteron target, collected with the CLAS detector [4]. The description of the

detector and target setup is given in Chapter 2 together with information on the

data format and the overall analysis structure.
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The experimental measurements have been performed in the second resonance

region, where the double-pion production plays an important role, i.e. the channel

opens at the double-pion production threshold at W ≈ 1.22 GeV, contributes

significantly to the total inclusive cross section for W . 1.6 GeV, and starts to

dominate all other exclusive channels for W & 1.6 GeV.

In general, experimental identification of exclusive multi-particle final states is a

rather sophisticated task, which requires certain analysis techniques to be elaborated

and established. This was carried out over the last twenty years as different studies

of double-pion production off the free proton were being performed [15–23], and

currently a solid framework for such studies is in place. For this particular study,

focused on the Nππ final state, this framework laid the foundation. However, the

deuteron as a target introduces some specific issues, which are external to the free

proton data analysis and originate from (a) Fermi motion of the initial proton and

(b) complex effects of the final state interactions due to the presence of a spectator

nucleon. This caused some difficulties that were encountered and needed to be

overcome during the analysis and, therefore, in this study special attention is paid

to detailed description of these issues.

As this study represents the first attempt of detailed investigation of the double-

pion exclusive reaction occurring off nucleons in nuclei, its objectives are multifaceted.

The main goal of this study is to obtain the set of integrated and single-differential

cross sections of the reaction γvp(n)→ p′(n′)π+π−. The cross section measurements

are performed in the kinematic region of the invariant mass W from 1.3 GeV

to 1.825 GeV and photon virtuality Q2 from 0.4 GeV2 to 1 GeV2. Sufficient

experimental statistics allows narrow binning, i.e. 25 MeV in W and 0.05 GeV2 in

Q2, while maintaining an adequate statistical uncertainty. The cross sections are

extracted in the quasi-free regime, which implies that only events not affected by

final state interactions were selected.
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The whole enterprise of the cross section extraction is presented in Chapters 3

through 7, which encompass the selection of quasi-free events, the cross section

calculation framework, the description of the corrections applied to the cross sections,

as well as the procedures of normalization verification and uncertainty estimation.

To exploit opportunities offered by this experiment in their full capacity, the main

analysis is accompanied by the complementary examination of FSI effects in the in-

vestigated exclusive channel, which is presented in Chapter 9. The main focus of this

examination is set on events affected by FSI, which were lacking attention throughout

the main analysis being attributed to the background. These events, meanwhile repre-

sent a fruitful ground for probing FSI and revealing their features and manifestations.

Another objective of this study stems from the Fermi motion that initial protons

undergo in deuterium nuclei. The fact that the initial proton is not at rest introduces

several unaccustomed peculiarities into the analysis, which were not relevant for

free proton studies, such as Fermi smearing of some kinematic quantities (e.g. W

and missing masses), blurring of the boundaries of the W versus Q2 distribution,

alterations in the common procedure of the Lab to CMS transformation, etc. To

deal with these issues, special methods and techniques have been developed during

this study, which enrich the conventional analysis framework elaborated in numerous

free proton studies [15–23].

As a matter of fact, effects of the initial proton motion turned out to be tightly

interwoven with many analysis aspects. For this reason, it was found hard to address

them in an isolated Chapter without introducing much repetition. Therefore, the

description of the analysis peculiarities that originate from the Fermi motion is

scattered throughout the thesis. Some of them are also addressed in a separate

study [24], which accompanies this analysis.

It is also worth mentioning that this study benefits from a very fortunate

circumstance; namely from the fact that the corresponding cross sections of the
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same exclusive reaction off the free proton have been recently extracted from CLAS

data [22, 23]. These free proton measurements were performed under the same

experimental conditions as in this study, including the beam energy value and the

target setup. For the majority of (W, Q2) points, the statistical uncertainty combined

with the model dependent uncertainty (δtot
stat, mod) is on a level of ∼1%-3% for the free

proton integral cross sections and on a level of ∼4%-6% for the quasi-free integral

cross sections obtained in this study. Being performed in the same experimental

configuration, both measurements have identical binning in all kinematic variables

and similar inherent systematic inaccuracies.

The free proton study [22, 23], therefore, naturally sets the standard for this

particular study, being used as a reference point for many analysis components. This

unique advantage allows not only the reliability verification of those analysis aspects

that are similar for experiments of free and bound protons, but also for a deeper

understanding of those that differ. The latter include the effects of initial proton

motion and final state interactions.

Additionally, a direct comparison of the cross sections extracted in this study

with their free proton analogues from Ref. [22, 23] may represent a promising further

step in the investigation of the double-pion exclusive channel. Such comparison can

provide experimentally the best possible opportunity to explore distinctions between

the π+π− electroproduction off protons in deuterium and the corresponding reaction

off free protons. In this way, a condition-independent estimation of contribution

from events with FSI to the total number of reaction events can be accomplished

along the entire reaction phase-space. Based on this, other potential reasons that

may contribute to the difference between the cross section sets can be explored,

which includes possible in-medium modifications.
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Chapter 2

Experiment

The experiment of the electron scattering off deuterium nuclei, that provides data

for this study, was conducted at JLab Hall B as a part of the “e1e” run period.

A longitudinally polarized electron beam of 2.039 GeV energy was produced by the

Continuous Electron Beam Accelerator Facility (CEBAF) and then scattered off the

2-cm-long liquid deuterium target, which was located in the center of the CEBAF

Large Acceptance Spectrometer (CLAS) [4]. This state of the art detector covered a

good fraction of the full solid angle and provided efficient registration of the final-state

particles originating from the scattering process.

2.1 Detector setup

The CLAS design is based on a toroidal magnetic field, which is generated by six su-

perconducting coils arranged around the beamline. The magnetic field bends charged

particles toward or away from the beam axis (depending on the particle charge and the

direction of the torus current) but leaves the azimuthal angle essentially unchanged.

The magnet coils naturally separate the detector into six areas, the so-called “sectors”,

each functioning as an independent magnetic spectrometer. Each sector includes four

sub-detectors: Drift Chambers (DC), Čerenkov Counters (CC), Time-of-Flight Sys-

tem (TOF), and Electromagnetic Calorimeters (EC) [4]. A view of the detection

system in the direction of the beam (cut through the target region) is given in Fig. 2.1.
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Figure 2.1: A schematic top view of the CLAS detector cut along the beam line. Typical
photon, electron, and proton tracks (from top to bottom) from an interaction in the target
are superimposed on the figure. The figure is taken from Ref. [4]

15 µm Al
Target windows

Kapton cell wallsµmRadius = 0.35 − 0.60 cm 50
Nominal length = 2 cm

Torlon base

Figure 2.2: The target cell and its support structure used during the “e1e” run period [25].
The figure is taken from Ref. [23].
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The azimuthal coverage for CLAS is limited only by the magnet coils and approxi-

mately 90% at large angles and 50% at forward angles [26]. The coverage in the polar

angle is from 8◦ to 45◦ for the Čerenkov Counters and Electromagnetic Calorimeter

and from 8◦ to 142◦ for the Drift Chambers and the Time-of-Flight system.

The Drift Chambers are located within the region of the magnetic field, which

bends the trajectories of the charged particles traveling through. The Drift Chambers

perform the particle tracking, allowing the determination of the particle momentum

from the curvature of its trajectory. Other sub-detectors are located outside the

magnetic field region, which means that having left the DC, the charged particles

move further along a straight line.

The Čerenkov Counters are located right behind the DC and serve the dual func-

tion of triggering on electrons and separating electrons from pions [27].

The TOF scintillators are located radially outside the Drift Chambers and the

Čerenkov Counters but in front of the Calorimeters [28, 29]. Their alignment and

relative positioning with respect to other detector sub-systems is shown in Fig. 2.1.

The Time-of-Flight system measures the time when a particle hits a TOF scintillator,

thus allowing for the determination of its velocity. With the help of the particle

momentum known from the DC, its mass can then be determined, which means that

the particle can be identified.

The main functions of the Electromagnetic Calorimeter are triggering on and

detection of electrons at energies above 0.5 GeV, detection of photons at energies

above 0.2 GeV (allowing for the π0 and η reconstructions from their 2γ decays), and

detection of neutrons [26].

The six CLAS sectors are equipped with a common data-acquisition (DAQ) system

that collects the digitized data and stores the information for later off-line analysis.
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2.2 Target setup

The target design was specific for the “e1e” run period [25]. The setup of the target

cell with its support structure is presented in Fig. 2.2. For this particular part of the

“e1e” run period, the target cell was filled with liquid deuterium.

The conical shape of the target (with the diameter varying from 0.35 to 0.6 cm)

serves the purpose of effective extraction of gas bubbles, which are formed in the

liquid target content due to the heat that either originates from the beam and/or

comes from outside through the target walls. Due to the conical shape, the bubbles

are drained upwards and into a wider area of the target thus clearing the beam

interaction region and allowing the boiled deuterium to be effectively delivered back

to the cooling system to be condensed.

The interaction region of the target was 2-cm-long. The target cell had 15-µm-

thick aluminum entrance and exit windows. In addition, an aluminum foil was located

2.0 cm downstream of the target. This foil was made exactly to the same specifications

as the entry/exit windows of the target cell and served for both the estimation of the

number of events that originated in the target windows and the precise determination

of the target z-position along the beamline. See also Sect. 3.4.3 for more details.

2.3 Experimental data

The measurements are attributed to the “e1e” run period that lasted from November

2002 until January 2003. This run period included several experiments with differ-

ent beam energies (1 GeV and 2.039 GeV) and different target cell contents (liquid

hydrogen and liquid deuterium). This study is devoted to the experiment conducted

with the 2-cm-long liquid deuterium target and a 2.039 GeV polarized electron beam.
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All data collected with the CLAS detector is stored in a specific format, which

is the BOS format [30, 31]. The information on the detector response to particles

passing through is recorded for each event and sorted into a set of BOS banks. The

original BOS files store the data in terms of “raw” signals (like TDC, ADC). These

“raw” files are then “cooked” with the reconstruction software (recsis), which converts

the detector response to the variables that characterize the events directly, i.e. the

particle momentum, the track coordinates, timing, etc. This information is also

stored in BOS banks. However, since the cooking process introduces new variables,

the structure of the “cooked” BOS files is different from that for the “raw” files. The

“cooked” data is stored in various formats including BOS files and ROOT ntuples.

In this analysis the latter were used.

2.4 Data analysis using the CLAS software

Events corresponding to the investigated reaction ep(n) → e′p′(n′)π+π− are distin-

guished among all other registered events through the event selection procedure, de-

scribed in detail in Chapter 3. The selected exclusive events, however, represent only

a part of the total number of events produced in the reaction, while the remainder

were not registered due to (i) geometrical holes in the detector acceptance and (ii)

less than 100% efficiency of particle detection within the detector acceptance. There-

fore, to extract the reaction cross sections, the experimental event yield should be

adjusted for the geometric acceptance and detection efficiency, thus accounting for

the lost events.

In order to determine the overall detector efficiency, a Monte Carlo simulation

is typically performed. In this analysis, double-pion events are generated with

TWOPEG-D, which is an event generator for the double-pion electroproduction off

a moving proton [24]. These events are hereinafter called “generated” events.
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The generated events are passed through a standard multi-stage procedure of

simulating the detector response [4]. At the first stage the interaction of the generated

events with the CLAS detector is simulated. For this purpose, the GSIM package

(GEANT SIMulation) is used. GSIM incorporates information about the detector

geometry and materials with their electromagnetic properties, magnetic fields, target

material and geometry, etc. It propagates all the particles through the CLAS detector

from the vertex produced by the event generator and provides the detector response

in terms of the same “raw” signals as the actual CLAS detector does.

Although the GSIM package includes all the detector geometry and properties, it

still does not properly reproduce the resolution of the drift chambers and the TOF

system. For that reason the GSIM Post Processor (GPP) is used to better match the

resolution as well as to include the effects of a less-than-perfect detector response (due

to broken drift wires, problematic phototubes, etc.). The latter effects are unique for

a particular run period, and therefore the information on the detector imperfections is

usually provided along with the data files to be then used in the GPP. Meanwhile, the

GPP parameters intended to adjust the resolution (DC and TOF smearing factors)

are typically determined individually during a particular analysis as the resolution

depends on the kinematics and hence on the experimental conditions. This analysis

employs the same values of the resolution related GPP parameters as the study [22, 23]

in which the double-pion cross sections off the free proton are measured under the

same experimental conditions.

At the final stage, GPP output files are “cooked” using the same reconstruction

software that was used for the real data (recsis). Events that survive after the “cook-

ing” process are hereinafter called “reconstructed” Monte Carlo events. They are

analyzed in the same way as real experimental events.
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Chapter 3

Event selection

In the initial analysis step, all collected events are subject to a standard event pre-

selection1, which is performed using specific variables from the BOS banks [30, 31].

Firstly, to ensure that particles within an event were properly reconstructed, the num-

ber of geometrically reconstructed particles (gpart) is required to be greater than zero

for each event. The gpart variable is extracted from the variable NPGP in the HEVT

bank according to the following relation,

NPGP = (Number of final reconstructed particles)× 100 + gpart. (3.0.1)

Then, to exclude from consideration out-of-time particles, the status word stat

(which corresponds to the variable Status in the EVNT bank) is required to be

greater than zero for each particle candidate.

For each event the electron candidate is defined as the first in time particle that

gives signals in all four parts of the CLAS detector (DC, CC, TOF, and EC), which

means that the variables DCStat, CCStat, SCStat, and ECStat from the EVNT

bank should be greater than zero. To select hadron candidates, signals only in two

sub-detectors (DC and TOF) are required, i.e. the variables DCStat and SCStat

from the EVNT bank should be greater than zero.

Finally, all particle candidates should have an appropriate charge, i.e. the variable

Charge from the EVNT bank is required to be ±1 depending on the candidate type.

1 See also Ref. [32].
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The particle candidates that survive this event preselection are then subject to

further detailed selection, which is described below.

3.1 Electron identification

First, the Electromagnetic Calorimeter (EC) and Čerenkov Counter (CC) responses

need to be examined, to reveal good electrons among all electron candidates and to

separate them from electronic noise, accidentals and the π− contamination.

3.1.1 Electron selection in the EC

According to [33], the overall EC resolution as well as uncertainties from the EC

output summing electronics lead to fluctuations of the EC response near the hardware

threshold. Therefore, to select only reliable EC signals, a minimal cut on the scattered

electron momentum Pe′ should be applied in the software. The value of this cut is

chosen according to the relation (3.1.1) suggested in [33],

Pmin
e′ (in MeV) = 214 + 2.47 · Vth (in mV), (3.1.1)

where Vth is the calorimeter threshold voltage.

For “e1e” run Vth = 100 mV, which results in Pmin
e′ = 461 MeV.

Then, the so-called sampling fraction cut is applied to eliminate part of the pion

contamination. To develop this cut, the fact that electrons and pions have different

energy deposition patterns in the EC is used. An electron produces an electromag-

netic shower, where the deposited energy Etot is proportional to the scattered elec-

tron momentum Pe′ , while a π− loses a constant amount of energy per scintillator

(∼2 MeV/cm) independently of its momentum. Therefore, for electrons the quantity

Etot/Pe′ plotted as a function of Pe′ should follow the straight line that is parallel to

the x-axis and located around the value 1/3 on the y-axis, since electrons lose about

2/3 of their energy in lead sheets (in reality this line has a slight slope).
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Figure 3.1: Sampling fraction distributions for the data. The six plots correspond to the six
CLAS sectors. The vertical red line at Pe′ = 0.461 GeV shows the EC threshold cut. Black
points correspond to the positions of Gaussian fit maxima ±3σ for different X-slices of the
2D histograms. These points are fit by a second order polynomial, the resulting functions
are shown by the red curves. Events between the red curves are selected for further analysis.
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Figure 3.2: Sampling fraction distributions for the reconstructed Monte Carlo events. The
six plots correspond to the six CLAS sectors. The vertical red line at Pe′ = 0.461 GeV
shows the EC threshold cut. Black points correspond to the positions of Gaussian fit
maxima ±3σ for different X-slices of the 2D histograms. These points are fit by a second
order polynomial, the resulting functions are shown by the red curves. Events between red
curves are selected for further analysis.
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In Fig. 3.1 the total energy deposited in the EC divided by the particle momentum

is shown as a function of particle momentum. The six plots correspond to the six

CLAS sectors. Events between the red curves are selected as good electron candidates

for further analysis. The vertical red line at Pe′ = 0.461 GeV shows the EC threshold

cut. The upper and lower red curves are obtained in the following way: X-slices of

the 2D histograms are fit by Gaussians. In this way points that correspond to the

positions of the fit maxima ±3σ are obtained. These points are shown by black circles

in Fig. 3.1. They determine the upper and lower boundaries for the cut. Finally, to

obtain smooth curves, all points are fit by a second order polynomial.

Cuts on the minimal electron momentum and on sampling fraction are applied

both to the experimental and reconstructed Monte Carlo events. Since the Monte

Carlo simulation does not reproduce electromagnetic showers well enough, the sam-

pling fraction distributions for the simulation are slightly lower than for the data. EC

cuts for the simulation, obtained using the same procedure as for the data, are shown

in Fig. 3.2. These plots contain no events with Pe′ > 1.5 GeV since only double-

pion events were generated, while for the data events with Pe′ > 1.5 GeV exist since

Figure 3.1 was plotted for inclusive electrons.

3.1.2 Electron selection in the CC

To improve the quality of the electron candidate selection and π−/e− separation, a

Čerenkov counter is used [27]. As shown in [34], there is a contamination in the mea-

sured CC spectra that manifests itself as a so-called single-photoelectron peak, which

is actually located at a few photoelectrons (see the distributions shown in black in

Fig. 3.5). The main source of this contamination are accidental coincidences of PMT

noise signals with measured pion tracks [34]. The goal of CC cuts is to separate

the spectrum of good electron candidates (it corresponds to the main maximum of

the photoelectron distribution) from the single-photoelectron peak, but at the same
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time to minimize the loss of good events. As seen in Fig. 3.5 (black curves), where

photoelectron distributions are plotted, the single-photoelectron peak is rather pro-

nounced and it significantly overlaps with the spectrum of good electron candidates.

Thus the elimination of this contamination is not a straightforward task and a special

procedure has been developed for this purpose.

The following set of CC cuts was applied:

• fiducial cut,

• ϕcc matching cut,

• θcc matching cut,

• geometrical cut that removes inefficient zones, and

• standard procedure of dealing with the single-photoelectron peak contamination

based on the fit of the photoelectron distributions by the modified Poisson

function.

All these cuts, except the last one, are defined in the so-called “CC projective

plane” [34]. This is an imaginary plane behind the CC where the Čerenkov radiation

would arrive if its polygonal (due to reflections in the mirror system) path from

the emission point to the PMT was substituted by a straight line preserving the

initial propagation direction and the total distance traveled [27, 34]. The polar and

azimuthal angles (θcc, ϕcc), which are defined in this projective plane, are not directly

available in the BOS banks [30]. Therefore, some calculations are made to derive

these angles from the variables available in the DCPB bank. Figure 3.3 illustrates

these calculations.

The CC projective plane is defined in the sector reference coordinate system, i.e.

the sector is bisected in the middle by the xz-plane with the z-axis directed along

the beam line. In this reference system the equation of the projective plane is the

following (according to Ref. [34]),
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Ax+By + Cz +D = 0,

A = −0.000785, B = 0,

C = −0.00168, D = 1,

−→
S = (A,B,C),

(3.1.2)

where
−→
S is a vector perpendicular to the projective plane.

In Fig. 3.3 the particle track in the DC is shown by the thin dashed curve. Since

the particle moves through a magnetic field in the DC, the track is curved. Having

left the magnetic field region of the DC, the particle moves further along a straight

line, tangential to a curved DC track in the point of its intersection with the CC. The

unit vector that defines the direction of this tangent is known from the DCPB bank

−→n = (nx, ny, nz) = (CX SC, CY SC, CZ SC). In Fig. 3.3 the vector
−→
t is pointing

this direction and goes from the SC hit point to the CC projective plane.
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Figure 3.3: Illustration for the calculation of the polar θcc and azimuthal ϕcc angles in the
CC projective plane (see text for details).
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The (θcc, ϕcc) angles in the projective plane are determined by the vector
−→
P =

−→
P0 +

−→
t , where

−→
P0 is a vector that goes from the vertex to the point of the track

intersection with the SC. Its components are known from the DCPB bank2 −→P0 =

(p0
x, p

0
y, p

0
z) = (x SC, y SC, z SC).

The vector
−→
t can be defined as

−→
t = |−→t | · −→n =

h

cosα
· −→n , (3.1.3)

where −→n is the unit vector in the
−→
t -direction defined above, while h is the distance

from the SC hit point to the CC projective plane, which is given by3

h =
|(−→S · −→P0) +D|

|−→S |
, (3.1.4)

where
−→
S is the vector normal to the CC projective plane defined by Eq. (3.1.2).

In turn cosα can be calculated as

cosα =
|(−→S · −→n )|
|−→S |

, (3.1.5)

since
−→
S is directed along h and −→n is directed along

−→
t .

This leads to the following expression for the vector
−→
t ,

−→
t = |−→t | · −→n =

∣∣∣∣∣
(
−→
S · −→P0) +D

(
−→
S · −→n )

∣∣∣∣∣ ·
−→n =

∣∣∣∣
A·p0

x +B ·p0
y + C ·p0

z +D

A·nx +B ·ny + C ·nz

∣∣∣∣ ·
−→n . (3.1.6)

2 In the DCPB bank both −→n and
−→
P0 are defined in the sector reference frame.

3 This is a standard relation for the distance from the point (given here by the vector
−→
P0) to the

plane Ax+By + Cz +D = 0.
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Then, obtaining the required vector
−→
P as the sum of

−→
P0 and

−→
t , one can finally

calculate the angles θcc and ϕcc as

θcc = arccos

(
Pz

|−→P |

)
,

ϕcc = arctan

(
Py
Px

)
.

(3.1.7)

The angle ϕcc defined by Eq. (3.1.7) is determined with respect to the center of

each sector. This means that ϕcc = 0 is the middle of the sector, ϕcc < 0 is on the

left side of the sector, and ϕcc > 0 is on its right side.

One should also define the variables CC segment number (that indicates which

segment has been hit) and index (that indicates which PMT has fired). They are

taken from the CCPB bank Status variable according to the following relation,

Status = 10× (CC segment number) + 1000× (1 + index), (3.1.8)

where index is 1 for right PMTs, −1 for left PMTs, and 0 when both PMTs have fired.

After all needed variables have been defined, all the cuts from the list specified

above can be implemented.

First of all the fiducial cut in the CC plane is applied. The shape of this cut is

taken from [35] and is given by

θcc > 7.0 + 0.0032 · ϕcc + 0.0499 · ϕ2
cc,

(
θcc − 45.5o

34.5o

)2

+
(ϕcc

21o

)2

≤ 1,

(
θcc − 45.5o

1.75o

)2

+
(ϕcc

21o

)2

> 1, and

θcc < 45o.

(3.1.9)
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Then the so-called ϕcc and θcc matching procedures (based on the studies [34]

and [36]) are performed. The idea of this matching is quite simple: there must be

one-to-one correspondence between the angles in the CC plane (which are calculated

based on the information from the DC) and PMT signals in the CC for real events,

while background noise and accidentals should not show such correlation.

The principle of the ϕcc matching cut is the following: when the track is on

the right side of the CC segment, the right PMT should be fired, and vice versa.

Therefore, if ϕcc < 0, the index defined in Eq. (3.1.8) is required to be −1 and if

ϕcc > 0, the index is required to be 1. Events that do not satisfy these conditions are

removed. All events with index = 0 are kept.
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Figure 3.4: θcc versus segment distributions for six CLAS sectors. Events between the
horizontal black lines are treated as good electron candidates.

In order to perform θcc matching, the θcc versus segment number cut should be

done. Figure 3.4 shows θcc versus segment distributions for the six CLAS sectors.

Event distributions in each segment have been plotted as a function of θcc and fit by
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Gaussians. The horizontal black lines correspond to the positions of the fit maxima

±4σ. Events between these black lines are treated as good electron candidates.

The influence of ϕcc and θcc matching cuts on the photoelectron distributions is

demonstrated in Fig. 3.5, where the distributions before matching cuts are plotted in

black, distributions after the ϕcc matching are plotted in red, and after the subsequent

θcc versus segment cut are plotted in blue. As seen in Fig. 3.5 both these cuts reduce

the single-photoelectron peak, but leave the main part of the spectrum unchanged.

The same ϕcc and θcc matching cuts are also applied to the reconstructed Monte Carlo

events.

The accidental noise and pion background are not the only source of the single-

photoelectron peak contamination. The peak also partially corresponds to electrons

that hit some specific geometrical zones with low CC efficiency. When an electron hits

such a zone the number of detected photoelectrons turns out to be significantly less

than expected. This leads to the fact that the region of the photoelectron spectrum,

which corresponds to the low number of photoelectrons, appears to be overpopulated

by events. Since low efficiency zones are distributed inhomogeneously in the CC plane

and the Monte Carlo simulation do not reproduce them properly, it is better to remove

them from the consideration completely. For this purpose a special geometrical cut

is established.

This geometrical cut is done in the following way. Distributions ϕcc versus θcc are

plotted for each CLAS sector (see Fig. 3.6, upper frame) with the quantity (3.1.10)

as a color code.

number of events inside (θcc, ϕcc) bin with more than five photoelectrons

total number of events inside (θcc, ϕcc) bin

(3.1.10)

This quantity varies from zero to one and shows the proportion of electron can-

didates with number of photoelectrons greater than five inside a (θcc, ϕcc) bin. The
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value for this criterion (five photoelectrons) was chosen rather arbitrarily, since its

only purpose is to facilitate the separation of inefficient zones (which correspond

mostly to low numbers of photoelectrons) from the regular zones (which correspond

to the full photoelectron spectrum).

The curved vertical stripe in sector five in Fig. 3.6 corresponds to an inefficient

zone that will be discussed further in Sect. 3.4.1.
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Figure 3.5: Influence of different CC cuts on the distributions of the number of photoelec-
trons multiplied by ten for the six CLAS sectors. Black curve – only fiducial cut in the CC
plane is applied, red curve – the ϕcc matching cut is added, blue curve – the θcc matching
cut is added, and green curve – the geometrical cut in the CC plane that removes inefficient
zones is finally added.

For further analysis only fiducial areas with a ratio (3.1.10) greater than the certain

threshold value are selected. This threshold value was chosen to be 0.7, 0.65, 0.7, 0.65,

0.8, and 0.8 for sectors 1, 2, 3, 4, 5, and 6, respectively. Since inefficient zones are not

identical for various CLAS sectors (see Fig. 3.6), different threshold values are needed

for them. Geometrical zones, which are selected for further analysis, are shown in

black in the lower plots of Fig. 3.6. All zones shown in white are treated as inefficient
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and are removed from the analysis. As seen in Fig. 3.6, there is an inefficient zone in

the middle of each sector. This is expected since two CC mirrors are joined here.

The threshold values for the ratio (3.1.10) were chosen in order to keep the balance

between the intention to reduce the amount of low efficient zones as much as possible

and the desire to preserve most of the statistics. The influence of this geometrical

cut on the photoelectron distributions in different sectors is demonstrated in Fig. 3.5,

where the distributions after the cut are plotted in green. As was expected, this

cut leads to some reduction in the low lying part of the photoelectron spectrum,

including the region of the single-photoelectron peak, and leaves the high lying part

of the spectrum unchanged.

This geometrical cut is fully based on the experimental data. It acts as a fiducial

cut, because it simply removes certain geometrical regions in the CC plane. This

means that it can be safely applied to the Monte Carlo simulation, too. Thus, the

same geometrical regions (shown in white in the lower plots in Fig. 3.6) are removed

both for the experimental and reconstructed Monte Carlo events.

After the geometrical cut discussed above is applied, the single-photoelectron peak

appears to be significantly smaller and better separated from the main spectrum,

but still remains (see Fig. 3.5). Therefore, in order to completely get rid of this

contamination, the standard procedure should then be applied [17].

To apply the standard procedure of dealing with the single-photoelectron peak

contamination, the photoelectron distributions are plotted for each PMT on the left

and right sides of each CC segment and for each CLAS sector (see Fig. 3.7).

In Fig. 3.7 the red lines show the cuts that are made in order to eliminate events

under the single-photoelectron peak. The cut position is individually optimized for

each PMT in each sector. The distributions of events, for which both right and left

PMTs have fired (index = 0) are not subject to this cut, since their contamination

caused by the single-photoelectron peak is assumed negligible.
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Figure 3.6: Upper frame: Distributions of the quantity (3.1.10) as a function of the polar
θcc and azimuthal ϕcc angles in the CC plane for the six CLAS sectors. This quantity
varies from zero to one and shows the proportion of electron candidates with number of
photoelectrons greater than five inside a (θcc, ϕcc) bin. Lower frame: Black zones correspond
to the fiducial areas with the ratio (3.1.10) greater than 0.7, 0.65, 0.7, 0.65, 0.8, and 0.8 for
sectors 1, 2, 3, 4, 5, and 6, respectively. These zones are selected for further analysis. All
zones shown in white are treated as inefficient and removed from the analysis.
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Since the Monte Carlo does not reproduce photoelectron distributions well enough,

the cut shown by the red lines in Fig. 3.7 is applied only to the data. To recover the

good electrons that were cut off in this way, a special procedure is applied. The part

of the distributions on the right side of the red line is fit by the function (3.1.11),

which is a slightly modified Poisson distribution.

y = P1


 P

x
P2

3

Γ
(
x
P2

+ 1
)


 e−P3 , (3.1.11)

where P1, P2, and P3 are free fit parameters.
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Figure 3.7: Distributions of number of photoelectrons multiplied by ten for the left side of
sector one of the CC. Various plots correspond to various CC segments. Black curves show
the fit by the function (3.1.11). Red vertical lines show the applied cut. Regions that are
needed to calculate the correction ratio (3.1.12) are shown in blue and green.
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The fitting function is then continued into the region on the left side of the red

line. In this way the two regions, shown in blue and green in Fig. 3.7, are determined.

Finally the correction factors are defined by (3.1.12) and applied as a weight for each

event, which goes to the particular PMT. These correction factors depend on the

PMT number and are typically on a level of a few percent.

Fph. el. =
green area + blue area

green area
(3.1.12)

Note that segments #1 and #18 are removed from the analysis completely (both

in data and Monte Carlo), since they are dominated by events from the single-

photoelectron peak.

3.2 Hadron identification

Hadron are identified relying on the information provided by the TOF system [28,

29]. This information allows the velocity of the hadron candidates to be determined

according to the following relation.

βh =
vh
c

=
lh
th · c

, (3.2.1)

where vh is the hadron velocity, c the speed of light, lh the hadron path length from

the vertex to the SC-plane (variable Path in the SCPB bank), and th the time that

it took the hadron to travel from the vertex to the SC-plane. This time can be

calculated in the following way.

th = te + (ttofh − ttofe ) =
le
c

+ (ttofh − ttofe ), (3.2.2)

27



where te = le
c

is the time that the electron spent on traveling from the vertex to the

SC-plane and le the electron path length. The quantities ttofe and ttofh are the times,

when the electron and hadron hit the SC-plane, respectively (the variable Time in

the SCPB bank).

Equation (3.2.2) assumes that the hadron and electron departed from the vertex

at the same time, but the electron traveling with the speed of light reached the SC-

plane earlier than the hadron. The difference ttofh − ttofe indicates the hadron delay

time, which is the consequence of traveling with the velocity vh < c. Thus Eq. (3.2.2)

makes the hadron time related to that of electron for each event4.

The charged hadron can be identified by comparing βh determined from TOF

according to Eqs. (3.2.1) and (3.2.2) with βn given by

βn =
ph√

p2
h +m2

h

. (3.2.3)

In Eq. (3.2.3) βn is a so-called nominal value that is calculated using the particle

momentum (ph) known from the DC and the exact particle mass assumption (mh).

The usual way to develop hadron id cuts is to investigate β versus momentum

distributions for different TOF paddles for each hadron type separately. This inves-

tigation reveals three types of problematic paddles, i.e.

A Paddles which signals are completely unreliable (bad paddles). These are pad-

dles #16 in sector 2, #44 in sector 3, #17 in sector 5, and #48 in each sector.

They are excluded from this analysis both for experimental data and recon-

structed Monte Carlo events.

4 It worth noting that usually one uses the value of β directly defined in the EVNT bank (vari-
able Betta), but it turned out that this quantity shows noticeable inaccuracies in electron bunch
determination, which were made during the cooking. The value of β calculated by Eqs. (3.2.1) and
(3.2.2) do not show these inaccuracies because in this method the timing of the hadron is related to
that of electron for each event.
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B Paddles in which the distributions are shifted from their expected positions.

The reason for this is most likely mistakes during data cooking/calibration.

Typical examples of such paddles are shown in Fig. 3.8.

C Paddles for which the distributions for a given hadron have double band struc-

ture. This problem appears for most of the paddles with number ≥ 40 and orig-

inates from the fact that (along with the mistakes during cooking/calibration)

for these paddles two scintillation bars were connected to one TDC [29]. Typical

examples of such paddles are shown in Fig. 3.9.
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Figure 3.8: Timing correction for type B problematic paddles #27 in sector 2 (left side)
and #31 in sector 6 (right side) for π+ candidates. The first column in each side shows
the βh versus momentum distributions with the black curve corresponding to the nominal
βn defined by Eq. (3.2.3). The second column in each side corresponds to the ∆T versus
momentum distributions, where the black horizontal line shows the position of zero and the
red line shows the position of shifted ∆T -band. The uncorrected distributions are given in
the first row, while the influence of the correction is shown in the second row.

To cure the latter two types of problems, a so-called timing correction is developed.

To perform this correction, the quantity ∆T is calculated, which corresponds to the

time difference between the real TOF signal and the expected one.

∆T =
lh
c

(
1

βn
− 1

βh

)
. (3.2.4)
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Figure 3.8 illustrates the timing correction for type B problematic paddles #27

in sector 2 (left side) and #31 in sector 6 (right side) for π+ candidates. The plots

in the first row correspond to the βh versus momentum and ∆T versus momentum

distributions before the correction. It is seen that βh versus momentum bands are

shifted from their expected position shown by the black curve, which corresponds to

the nominal βn defined by Eq. (3.2.3). These shifts of βh versus momentum bands

are caused by the corresponding shifts of the ∆T versus momentum bands from zero

position shown by the black horizontal lines. The idea of the timing correction is to

move ∆T bands back to the position around zero, as shown in the corrected ∆T versus

momentum plots in the second row. The corrected value of β is then calculated as

βcorr =
1

1
βn
− (∆T−tshift)·c

lh

, (3.2.5)

where tshift is the position of shifted ∆T -band shown by the corresponding red

horizontal line in Fig. 3.8.

The βcorr versus momentum distributions are shown in second row in Fig. 3.8.

As seen in these plots, βcorr versus momentum bands demonstrate no shift from the

black curves after the timing correction is applied.

Figure 3.9 illustrates the timing correction for type C problematic paddles #46

in sector 3 (left side) and #40 in sector 5 (right side) for π+ candidates. The plots

in the first row clearly show the double band structures in βh versus momentum and

∆T versus momentum distributions. To perform timing correction for this type of

paddles, one needs to determine the position tshift of each incorrect ∆T -band (see

horizontal red lines in Fig. 3.9) and then to move both of them to the correct position

around zero, as demonstrated in the second row. The corrected value of β is again

calculated according to Eq. (3.2.5) with the only distinction, that events from different

∆T -bands are treated separately and different tshift values are used for them.
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Figure 3.9: Timing correction for type C problematic paddles #46 in sector 3 (left side)
and #40 in sector 5 (right side) for π+ candidates. The first column in each side shows
the βh versus momentum distributions with the black curve corresponding to the nominal
βn defined by Eq. (3.2.3). The second column in each side corresponds to the ∆T versus
momentum distributions, where the black horizontal line shows the position of zero and the
red lines show the position of shifted ∆T -bands. The uncorrected distributions are given
in the first row, while the influence of the correction is shown in the second row.

The βcorr versus momentum distributions are shown in the second row in Fig. 3.9.

As seen in these plots, after the timing correction is applied βcorr versus momentum

bands demonstrate neither double band structures nor shifts from the black curves.

Figures 3.8 and 3.9 give examples of the timing correction for π+ candidates.

Similar corrections have also been performed for proton and π− candidates.

After the timing problems are eliminated in each TOF paddle, the hadron iden-

tification can be made. For the hadron identification, only events with good electron

candidates that have been selected in the previous step are used. Figure 3.10 shows

βcorr versus momentum distributions for each type of hadron candidate: protons

(upper plot), positive pions (middle plot), and negative pions (bottom plot). These

distributions include all sectors and all TOF paddles (with the exclusion of bad ones).

The red curves show the corresponding hadron id cuts. These curves were obtained

in the following way. Firstly, x-slices of the 2D histograms are fit by Gaussians. In

this way points that correspond to the positions of the fit maxima ±3σ are obtained.
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Figure 3.10: βcorr versus momentum distributions for proton (upper plot), positive pion
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shown by the red curves. Events between the red curves are selected for further analysis.
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These points are shown by black bullets in Fig. 3.10. They determine the upper and

lower boundaries for the cut5. Finally, to obtain smooth curves, all points are fit by

the following function,

f(ph) =
a0 · ph√

a1 · p2
h +m2

h + a2

+ a3, (3.2.6)

where ph is the hadron momentum, mh hadron mass, and a0, a1, a2, a3 fit parameters.

Events which are located between the red curves in Fig. 3.10 are selected for further

analysis and treated as good corresponding hadron candidates. It also needs to be

mentioned that the distribution for positive pions was plotted only for events that

already have a good proton candidate, and the distribution for negative pions was

plotted only for events with good proton and positive pion candidates. Furthermore,

in order to simplify the analysis process, all hadrons were preselected on an initial

analysis step. The consequence of this preselection is the fact that distributions shown

in Fig. 3.10 contain areas that are not populated with events.

The hadron identification cuts established in this way are applied to the recon-

structed Monte Carlo events as well.

3.3 Momentum corrections

3.3.1 Proton momentum correction (energy loss)

While traveling through the detector and the target, the final state particles lose a

part of their energy due to the interactions with the medium. Therefore, the measured

particle momentum appears to be lower than the actual value. GSIM simulation of

the CLAS detector correctly propagates particles through the media and, therefore,

5 Note that to establish the upper cut boundary for pions, the 3σ value was used only for pπ >
0.54 GeV. For pπ < 0.54 GeV different smaller values were used in order to better separate pions
from the small upper band, which is thought to correspond to muons.
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the effect of the energy loss is included into the efficiency and does not impact the

extracted cross sections. However, in order to avoid shifts in the distributions of

some kinematic quantities (e.g. missing masses) from their expected values, an energy

loss correction is applied to the proton momentum magnitude, since the low-energy

protons are affected the most by energy loss in the materials. This correction is based

on the GSIM simulation of the CLAS detector and is performed for both experimental

and reconstructed Monte Carlo events.
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Figure 3.11: Percentage of momentum that protons lose when they move through the
detector and target media as a function of the momentum Pp′ and scattered angle θp′ of
the final proton.

To obtain the correction function, the quantity ∆P that is the difference between

the generated and reconstructed proton momenta was considered. This quantity was

binned in the reconstructed proton momentum Pp′ and polar angle θp′ and fit by a

Gaussian in each (Pp′ , θp′) bin. The obtained mean values were further fit by a fifth

order polynomial as a function of Pp′ in each θp′ bin. Then the parameters of the

resulting fit functions were fit as a function of θp′ by a second order polynomial.
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The resulting energy loss correction function is shown in Fig. 3.11. It gives the

percentage of the momentum that protons lose when they move through the detector

and target media.

Note that if one wants to isolate the pure effect of the energy loss, the difference

between proton momenta for events reconstructed with and without detector and

target materials must be considered. Since in the applied procedure the difference

between generated and reconstructed proton momenta is analyzed, the correction

function shown in Fig. 3.11 can also include other effects that lead to improper proton

momentum reconstruction.

3.3.2 Electron momentum correction

Due to slight misalignments in the DC position, small inaccuracies in the description

of the torus magnetic field, and other possible reasons the momentum and angle of

particles may have some small systematic deviations from their real values. These

effects being of undefined origin cannot be simulated in GSIM, therefore a special mo-

mentum correction procedure is needed for the experimental data. According to [37],

the evidence of the need for such corrections is most directly seen in the dependence

of the elastic peak position on the azimuthal angle of the scattered electrons. It is

shown in [37] that the elastic peak position is shifted from the true value (0.938 GeV)

and this shift is sector dependent.

The significance of this effect depends on the beam energy. In the analysis [22]

it is shown that a beam energy of 2.039 GeV leads to the small shift (∼ 3 MeV) in

elastic peak position, while the study [37] demonstrates that in case of 5.754 GeV

beam energy this shift reaches 20 MeV. Moreover, the study [37] also shows that

this effect becomes discernible only if the particle momentum is sufficiently high (e.g.

for pions the correction is needed only if their momentum is higher than 2 GeV).

Thus, the small beam energy of this analyzed dataset and the fact that in double-
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pion kinematics hadrons carry only a small portion of the total momentum allows

us to come to the conclusion that the correction is needed only for electrons, while

deviation in hadron momenta can be neglected.
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Figure 3.12: Elastic peak position for the six CLAS sectors before (black squares) and
after (blue stars) electron momentum correction for the proton part of “e1e” dataset. The
horizontal red line shows the proton mass. This figure is taken from the analysis [22].

Since this analysis suffers from additional complications as binding and motion of

the target proton inside the deuteron, it was considered sensible to use the electron

momentum corrections that have previously been developed and tested in the analysis

of the free proton part of “e1e” dataset at the same beam energy [22]. To establish

them, the approach [37], which is based on elastic kinematics, was used. These

corrections include electron momentum magnitude correction as well as electron polar

angle correction, which were developed for each CLAS sector individually.

Figure 3.12, which was taken from the analysis [22], demonstrates that after the

electron momentum corrections the elastic peak position for all CLAS sectors gets

closer to the proton mass, shown by the red horizontal line.
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Figure 3.13: Difference between generated and reconstructed electron momenta before
(left plot) and after (right plot) the correction of the momentum magnitude, which has
been applied to the reconstructed electrons. The vertical black line shows the position of
zero.

The correction discussed above is applied only for experimental data. As for

the Monte Carlo simulation, it turns out that due to unknown reasons (most likely

because electrons lose some energy when they travel through the detector and target

media) the reconstructed electron momentum appears to be slightly lower than the

generated one. This effect is demonstrated in the left plot of Fig. 3.13, where the

event distribution of the quantity ∆P (which is the difference between generated and

reconstructed electron momenta) is presented. Therefore, an adapted procedure of

correcting the electron momentum magnitude is also applied to the reconstructed

Monte Carlo events. This procedure is similar to that used for the proton energy loss

(see Sect. 3.3.1). The correction depends only on the scattered electron momentum

and polar angle, but not on the CLAS sector. The typical value of this correction is

0.2%. The right plot in Fig. 3.13 shows the result of the correction. As seen in this

plot, the mean value of the quantity ∆P demonstrates no shift from zero when the

momentum magnitude for reconstructed electron is corrected.
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3.4 Other cuts

3.4.1 Fiducial cuts

The active detection solid angle of the CLAS detector is smaller than 4π [4]. This

is in part due to the space filled with the torus field coils: the angles covered by the

coils are not equipped with any detection system and therefore form a “dead” area for

detection. Additionally, the detection area is also limited in polar angle from 8◦ up

to 45◦ for electrons and up to 140◦ for other charged particles [4]. Moreover, different

studies and analyses have shown that also the edges of the active area do not provide a

safe region for the particle reconstruction, being affected by rescattering from the coil,

field distortions, and similar effects. Therefore, it is now common practice to accept

for the analysis only events inside specific fiducial cuts, i.e. cuts on the kinematic

variables (momentum and angles) of each particle. This method guarantees that

events accepted in the analysis include only particles detected in “safe” areas of the

detector, where the acceptance is thought to be well understood. These cuts are

applied to both real events and reconstructed Monte Carlo events.

Fiducial cuts for negatively charged particles

In CLAS experiments with normal direction of the torus magnetic field, like in the

“e1e” experiment, negatively charged particles are inbending, which means that their

trajectories are bent in the forward direction. For these particles sector independent,

symmetrical, and momentum dependent cuts are applied.

For electron and negative pion candidates the analytical shapes of the fiducial

cuts can be found in Ref. [32]. They were taken from the similar analysis [22] of the

“e1e” dataset (but off proton target) and carefully adjusted to the data.
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Figure 3.14: ϕ versus θ distributions for electron candidates for different 80-MeV-wide
momentum slices plotted for events from all CLAS sectors. Curves show the applied fiducial
cuts, vertical lines stand for θmine′ and θmaxe′ . The angles are taken at the interaction vertex.
For each momentum slice the shape of the fiducial cut was calculated for the value of the
electron momentum taken in the center of the momentum bin.
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Figure 3.15: ϕ versus θ distributions for negative pion candidates for different 100-MeV-
wide momentum slices plotted for events from all CLAS sectors. Curves show the applied
fiducial cuts, vertical lines stand for θminπ and θmaxπ . The angles are taken at the interaction
vertex. For each momentum slice the shape of the fiducial cut was calculated for the value
of the pion momentum taken in the center of the momentum bin.

The fiducial cut for electron candidates is illustrated in Fig. 3.14, where the cut

curves are superimposed on the ϕ versus θ distributions for different 80-MeV-wide

momentum slices. Vertical lines correspond to θmine′ and θmaxe′ . For each momentum

slice the shape of the fiducial cut was calculated for the value of the electron momen-

tum taken in the center of the momentum bin. The depleted area around ϕe′ = 0

corresponds to the inefficient region in CC and was discussed above in Sect. 3.1.2.

The fiducial cut for negative pion candidates is illustrated in Fig. 3.15, where

the cut curves are superimposed on the ϕ versus θ distributions for different

100-MeV-wide momentum slices. Vertical lines correspond to θminπ and θmaxπ . For
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each momentum slice the shape of the fiducial cut was calculated for the value of the

pion momentum taken in the center of the momentum bin.

The same fiducial cuts for negatively charged particles are also applied to the

reconstructed Monte Carlo events.
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Figure 3.16: θ versus momentum distributions for electron candidates for CLAS sectors
two (left side) and five (right side). The angle θ is taken at the interaction vertex. Top row
corresponds to the data, bottom row corresponds to the reconstructed Monte Carlo events.
Blue curves correspond to θmine′ and θmaxe′ . Black curves correspond to additional fiducial
θ versus momentum cuts. These distributions are plotted under the conditions 1.3 GeV
< W < 1.825 GeV and 0.4 GeV2 < Q2 < 1.0 GeV2 which account for the extra cuts of
the distribution edges. Other small inefficiencies that are seen in these plots are due to the
geometrical cut in the CC plane (see Sect. 3.1.2).

There are some additional dead areas in CLAS acceptance that are not related

to the gaps between the sectors and limitations on the detection polar angle. They

are typically caused by some inefficiencies in the Drift Chambers and Time-of-Flight

system (dead wires or PMTs). Some of them are well reproduced in the Monte

Carlo simulation, while others are not. To exclude the latter from the analysis and

to eliminate events near the acceptance edges, additional fiducial cuts on θ versus

momentum distributions are applied. These cuts are individual for each CLAS

sector. They are shown by the black curves for real and Monte Carlo events in

Fig. 3.16 for electron candidates and in Fig. 3.17 for negative pion candidates.
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Figure 3.17: θ versus momentum distributions for negative pion candidates for different
CLAS sectors. The angle θ is taken at the interaction vertex. Plots are given both for
real data and reconstructed Monte Carlo events. Blue curves correspond to θminπ and θmaxπ .
Black curves correspond to additional fiducial θ versus momentum cuts.
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For the electron distributions shown in Fig. 3.16 inefficient areas in sectors two

and five correspond to bad TOF paddles #16 and #17, respectively. Other small

inefficiencies that are seen in these plots are due to the geometrical cut in the CC

plane (see Sect. 3.1.2), they are almost identical for data and Monte Carlo events and,

therefore, no additional fiducial cuts are needed for them. θ versus momentum distri-

butions for electron candidates in other sectors do not show significant inefficiencies.

Fiducial cuts for positively charged particles

For positively charged particles, which are outbending in the “e1e” experiment, mo-

mentum independent and symmetrical fiducial cuts suit our purpose best. The ana-

lytical shapes of these cuts can be found in Ref. [32]. They were also taken from the

analysis [22] and carefully adjusted to the data.

Fiducial cuts for positive hadron candidates are illustrated in Fig. 3.18, where the

cut curves are superimposed on the ϕ versus θ distributions for protons (left) and

pions (right). Vertical lines correspond to θmin and θmax. Additional fiducial cuts in

θ versus momentum coordinates are shown in Fig. 3.19 for protons and in Fig. 3.20

for π+. The same fiducial cuts for positively charged particles are also applied to the

reconstructed Monte Carlo events.
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Figure 3.18: ϕ versus θ distributions for positive hadron candidates: left plot – for protons,
right plot – for positive pions. The distributions are plotted for all CLAS sectors. Curves
show the applied fiducial cuts, vertical lines stand for θmin and θmax. The angles are taken
at the interaction vertex.
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Figure 3.19: θ versus momentum distributions for proton candidates for different CLAS
sectors. The angle θ is taken at the interaction vertex. Plots are given both for the real
data and reconstructed Monte Carlo events. Blue lines correspond to θmin and θmax. Black
curves correspond to additional fiducial θ versus momentum cuts.
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Figure 3.20: θ versus momentum distributions for positive pion candidates for different
CLAS sectors. The angle θ is taken at the interaction vertex. Plots are given both for the
real data and reconstructed Monte Carlo events. Blue lines correspond to θmin and θmax.
Black curves correspond to additional fiducial θ versus momentum cuts.
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3.4.2 Data quality check

During a long experimental run, variations of the experimental conditions, e.g. fluc-

tuations in the target density, deviations of the beam current and position as well

as changes in the response of parts of the detector, can lead to fluctuations in event

yields. Only the parts of the run with relatively stable event rates are selected for the

analysis. Therefore, cuts on Data Acquisition (DAQ) live time and number of events

per Faraday cup (FC) charge need to be established.
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Figure 3.21: In the top plot DAQ live time is shown as a function of block number. Each
block corresponds to the portion of events that is accumulated during a single Faraday cup
charge reading cycle. Block numbers range from one to the maximum number and represent
the run duration in the units of Faraday cup readouts. In the middle plot the number of
inclusive events accumulated within each block divided by FC charge accumulated during
the block is plotted versus block number. The bottom plot shows the number of elastic
events accumulated within each block divided by FC charge accumulated during the block
as a function of block number. Horizontal red lines show the applied cuts.

The FC charge updates with a given frequency, so the whole run time can be

divided into so-called blocks. Each block corresponds to the portion of time between

two FC charge readouts. FC charge readouts happen approximately once every ten
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seconds. The block number ranges over the run time from one to a certain maximum

number. The first and last blocks in each run file are excluded from the analysis, since

FC readout is not synchronized in time with the start/stop of writing to the file.

The DAQ live time is the portion of time within the block during which the DAQ

system is able to accumulate events. A significant deviation of the live time from the

average value indicates event rate alteration. For instance, if the live time is close to

one, then the event rate is too low and vice versa. In Fig. 3.21 the DAQ live time (top

plot) as well as the yields of inclusive (middle plot) and elastic (bottom plot) events

normalized to FC charge are shown as a function of block number. Blocks between

the horizontal red lines in Fig. 3.21 are selected for the analysis. Due to the enormous

amount of blocks all of them cannot be made visible in two-dimensional histograms,

therefore, to have a general feeling of what amount of blocks are removed, the y-axis

projections of the histograms in Fig. 3.21 are given in Fig. 3.22. The horizontal red

cut lines in Fig. 3.21 correspond to the vertical red cut lines in Fig. 3.22.
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Figure 3.22: Number of block occurrences (see explanation in the text) as a function of
DAQ live time (left plot), inclusive event yield normalized to FC charge (middle plot),
and elastic event yield normalized to FC charge (right plot). The vertical red cut lines
correspond to the horizontal red cut lines in Fig. 3.21.
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3.4.3 Vertex cut

In Fig. 3.23 distributions of electron z-coordinate at the interaction vertex are shown

for events from both empty and full target runs for all six CLAS sectors. The vertical

red lines show the cut that is applied in addition to the empty target event subtrac-

tion. The vertical dashed line marks the position z = −0.4 cm, where the center

of the target is expected to be. However, as seen in Fig. 3.23, the ze′ distributions

demonstrate small sector dependent deviations from their expected position. The

source of these deviations is an offset of the beam position from the CLAS central

line (x, y) = (0, 0).
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Figure 3.23: Distributions of the electron z-coordinate at the vertex for full (black curves)
and empty (magenta curves) target runs for the six CLAS sectors. Vertical dashed lines
mark the position z = −0.4 cm, where the center of the target is expected to be. Vertical
red lines show the applied cuts. Both full and empty target distributions are normalized to
the corresponding FC charge.

To estimate the beam offset, the ydce′ versus xdce′ distribution was investigated, where

xdce′ and ydce′ are the corresponding coordinates of an electron at the point of interaction,

which are taken from the DCPB bank (variables X v and Y v, respectively). This

distribution is shown in Fig. 3.24, where the intersections of black dashed and solid

red lines indicate the nominal and actual beam positions, respectively. The actual
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beam position was found to be (x, y) = (0.057 cm, -0.182 cm). The generated Monte

Carlo events were reconstructed taking into account the determined beam offset to

improve resemblance to the real data6.
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Figure 3.24: ydce′ versus xdce′ distribution that demonstrates the beam offset. Black dashed
lines mark the position (x, y) = (0, 0), where the beam is expected to be. Red lines
demonstrate the actual beam position at (x, y) = (0.057 cm, -0.182 cm).

In Fig. 3.25 event distributions after the subtraction of the empty target contri-

bution are shown in comparison with Monte Carlo events reconstructed taking into

account the beam offset. As can be seen in this figure the simulation matches the

data well enough and almost completely reproduces the sector dependent deviation

of the distributions from the nominal position marked by the black dashed lines.

To reduce the number of events in which the final state particles came from dif-

ferent events and/or took part in final state interactions, the following two addi-

tional cuts on the particle z-coordinates at the vertex are applied. The first cut is

|zh + 0.4| < 4.4 cm, where the index h corresponds to the final hadron type (proton,

π+, and π−). The left side of Fig. 3.26 shows an example of this cut for the case

6 The following option was used in the ffread card: POSBEAM 0.057 -0.182.
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h = π+. The second cut is |zi − zj| < 5 cm, where the indices i and j (i 6= j) cor-

respond to the final particle type (electron, proton, π+, and π−). The right side of

Fig. 3.26 shows an example of this cut for the case i = π−, j = π+. These additional

cuts are made rather loose in order to avoid unjustified loss of good events.
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Figure 3.25: Distributions of the electron z-coordinate at the vertex for the experimental
data (black curves) and the Monte Carlo events reconstructed taking into account the beam
offset (blue curves) for the six CLAS sectors. For the data empty target contributions are
subtracted. Vertical dashed lines mark the position z = −0.4 cm, where the center of the
target is expected to be. Vertical red lines show the applied cuts. All distributions are
normalized to the integral.
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Figure 3.26: Left plot: an example of the cut on the hadron z-coordinate, |zπ+ + 0.4| <
4.4 cm. Right plot: an example of the cut on the difference of the vertex z-coordinates of the
final particles, |zπ− − zπ+ | < 5 cm. The black curves correspond to the data, while the blue
ones correspond to the reconstructed Monte Carlo events. All histograms are normalized
to their maxima.
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3.5 Exclusivity cut in the presence of Fermi

smearing and FSI

For picking out certain exclusive reactions one needs to register the scattered electron

and either all final hadrons or all except one. In the latter case the four-momentum

of the unregistered hadron can be restored using energy-momentum conservation (a

so-called “missing mass technique”). Thus for the reaction ep → e′p′π+π− one can

in general distinguish between four so-called “topologies” depending on the specific

combination of registered final hadrons. In this particular analysis the following two

topologies are analyzed,

• the fully exclusive topology (all final particles registered) ep→ e′p′π+π−X, and

• the π− missing topology ep→ e′p′π+X.

Due to the experimental conditions the statistics of the fully exclusive topology

is very limited. This happens mainly because CLAS does not cover the polar angle

range 0 ◦ < θlab < 8 ◦ [4]. The presence of this forward acceptance hole does not affect

much the registration of the positive particles (p and π+), since their trajectories are

bent by the magnetic field away from the hole. Meanwhile, the negative particles (e

and π−) are inbending, which means that their trajectories are bent into the forward

direction. Electrons being very light and rapid undergo small track curvature, and

the presence of the forward hole leads for them only to a constraint on the minimum

achievable Q2. However, for negative pions the situation is dramatic: being heavier

and slower they are bent dominantly into the forward detector hole and, therefore,

most of them cannot be registered. This leads to the fact that the π− missing topology

contains the dominant part of the statistics. The contribution of the fully exclusive
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topology to the total analyzed statistics7 varies from ∼5% near the reaction threshold

to ∼25% at W ∼ 1.7− 1.8 GeV.

For reactions with multi-particle final states the problem of limited acceptance is

an essential issue. Specifically, in the case of the pπ+π− final state the cross section

depends on five final hadron variables and hence is multi-dimensional, but the limited

statistics only allows the extraction of a set of one-fold differential cross sections (see

Sects. 4.3 and 4.5). This leads to the necessity to fill kinematic cells with zero

acceptance (so-called “empty cells”) based on some model assumptions, which leads

to model dependent results (see Sect. 5.1). The fully exclusive topology suffers from

the problem of limited acceptance (and therefore large amount of empty cells) that

along with the problem of limited statistics does not allow any sensible cross section

information to be obtained from this topology alone. The π− missing topology, having

significantly fewer empty cells, serves the purpose of the cross section extraction best.

The use of both topologies combined allows the model dependence of the cross section

(that originates from empty cells filling) to be reduced as well as slightly increasing

the statistics.

The aforementioned features of the two topologies are caused by the experimental

conditions and valid either for an experiment off the free proton or for one off the

proton bound in the deuteron. Meanwhile, there are also some features that appear

only in bound proton experiments. Those that are crucial for exclusive event selection

are addressed later in this Section, while others are discussed later in the report.

Actually, two more topologies can be distinguished, i.e. the proton missing topol-

ogy and the π+ missing topology. Both require registration of the π− in the final

state and as a consequence suffer from the similar problems of suppressed statistics8

and limited acceptance as in the case of the fully exclusive topology. Therefore, these

two topologies are usually ignored in analyses of the reaction ep→ e′p′π+π− [15–19].

7 The combined statistics of both the π− missing and the fully exclusive topologies.
8 Each of them contains about 10% of the full statistics of all four topologies combined.
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Nevertheless, as demonstrated in the sophisticated analysis of this reaction off the

free proton target [22, 23], they can be used as complimentary topologies to the main

π− missing topology, that allows a slight increase in the statistics and a reduction in

the amount of empty cells as much as possible, therefore minimizing the model de-

pendence of the extracted cross sections. However, if the pion pair is produced off the

proton bound in the deuteron, additional complications appear: these topologies turn

out to be polluted with events from other reaction channels. In the proton missing

topology the missing mass technique fails to distinguish whether the pion pair was

produced off the proton or off the neutron, because their masses are almost identical.

A similar situation occurs for the π+ missing topology, where the same reason pre-

vents distinguishing between the production of π+π− pair off the proton and π0π−

pair off the neutron, if only the proton and the π− in the final state are registered.

Moreover, the event sample in the π+ missing topology demonstrates strong admix-

ture of events from the reaction en(p)→ e′p′(p′)π−, which was found to be not very

easy to remove.

Taking into account all the above arguments, the following topology ranking takes

place in this particular analysis: the π− topology is the main one and the fully

exclusive topology is treated as the complimentary one, which gives a slight increase

in statistics as well as some reduction in the amount of empty cells, while the proton

missing and the π+ missing topologies are not used at all.

Meanwhile, an exclusive reaction that happens off bound nucleons has some spe-

cific features, which are extrinsic to reactions off free protons. Those of them that

are related to the problem of the channel identification are listed below.

• The Fermi motion of the target proton.

• Complex effects of Final State Interactions (FSI) due to the presence of the

neutron and the multi-particle final state.
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The manifestations of these effects in the π− missing and fully exclusive topologies

differ.

Motion of the target proton within the deuterium nucleus is concealed from

the observer and is not measured9. However, if all particles in the final state are

registered, one can restore the information about the momentum distribution of the

target proton via energy-momentum conservation (see Sect. 3.5.1 for details). This

is not the case for the π− missing topology, where incomplete knowledge about the

final state leads to the fact that information about the motion of the initial proton

turns out to be totally lost. Therefore, one is forced to work under a so-called

“target-at-rest-assumption” that considers the target proton to have no motion and

as a consequence inevitably leads to the smearing of various kinematic quantities,

such as missing mass, reaction invariant mass (W ), etc [38]. Although the fully

exclusive topology has the advantage of the possibility of avoiding the smearing10, all

kinematic quantities are nevertheless calculated under the target-at-rest-assumption

in order to treat this complimentary topology in the same way as the main one.

In order to reliably identify the exclusive channel and correctly calculate the detec-

tor efficiency, the distributions of the reconstructed Monte Carlo events must match

experimental ones as well as possible. As mentioned above, the necessity to work

under the target-at-rest-assumption smears the experimental distributions, which in

turn demands the simulated distributions reproduce this smearing. Therefore, the ef-

fects of the target motion should be properly included in the Monte Carlo simulation.

That is why the event generator TWOPEG-D [24] was used to perform the Monte

Carlo simulation. It is a version of the TWOPEG (event generator for double-pion

electroproduction off the free proton [39]) that was developed for this analysis in

9 In general it can be measured by detecting the recoil nucleon (neutron in this case), but it was
not an option in this experiment.

10 For example, in the fully exclusive topology the value of W , being calculated using the four-
momenta of the registered final hadrons, turns out to be determined within the detector resolution
and not affected by the effects of the target motion.
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order to simulate the effects of the target motion. In this version of the event

generator the Fermi motion of the initial proton is generated according to the Bonn

potential [40] and then naturally merged into the specific kinematics of double-pion

electroproduction.

The second intrinsic feature of an exclusive reaction off bound nucleons is complex

effects of FSI. This phenomenon is driven by the strong interaction and consists

in the fact that after the production of the final state hadrons and before their

registration they manage to interact with each other and/or the recoil nucleon.

Final hadrons produced off free protons are subject to FSI as well, but they are

limited to interactions of the hadrons with each other, which are not substantial.

Meanwhile, for reactions off protons in deuterium, the presence of spectator neutrons

changes the situation drastically as the final hadrons can impact the neutron. As a

result, FSI effects in such reactions are rather strong.

Events, in which all final hadrons manage to avoid FSI, belong to a so-called

“quasi-free regime”. Meanwhile, events with FSI-affected hadrons are attributed to

so-called “FSI-disturbed kinematics” because FSI alter the final hadron momenta.

Events in FSI-disturbed kinematics introduce distortions into distributions of various

kinematic quantities, such as missing masses, thus complicating the identification of

a desired exclusive channel.

The main goal of this study is to extract the double-pion cross sections in the

quasi-free regime, which implies the need to select for the analysis only events in quasi-

free kinematics and to get rid of events with FSI. The latter, however, also deserve

attention as FSI effects represent an essential issue in studies of any exclusive reaction,

especially off nuclei. Therefore, to balance the analysis, Chapter 9 of the thesis is fully

devoted to the examination of features and manifestations of FSI-affected events.

In contrast to the effects of the target motion, which can be simulated fairly easy,

the effects of FSI can hardly be taken into account in the simulation because they
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are of very complex nature and hence not yet fully understood. Therefore, the Monte

Carlo simulation is not able to reproduce the distortions due to FSI that occur in some

experimental distributions, but this is not a problem if events in quasi-free kinematics

are properly separated from those in FSI-disturbed kinematics. This leads to the ne-

cessity to develop special procedures of selecting quasi-free events as well as correcting

for the remaining admixture of undesired events, if they cannot be fully eliminated.

The yield of events in FSI-disturbed kinematics turned out to strongly depend

on (i) the reaction invariant mass (W ) and (ii) on the hadron scattering angles. The

latter issue causes FSI effects to manifest themselves differently depending on the

reaction topology, since the topologies have non-identical geometrical acceptance.

As follows from the above, the two analyzed topologies differ from each other

both in treating of the Fermi motion of the initial proton and in FSI manifestations.

Therefore, the channel identification is performed in each topology individually (see

subsequent subsections).

The problem of background channels is also an issue that deserves special atten-

tion. For the reaction of double-pion production off free protons, the main background

channel is ep → e′p′π+π−π0. In the analysis [22] that was carried out for the same

beam energyEbeam = 2.039 GeV, it is shown that although the admixture of the events

from this background channel becomes discernible at W & 1.6 GeV, it remains negli-

gible and well separated from the double-pion events via the exclusivity cuts. For the

experiments with the deuteron target, the reaction en(p)→ e′p′(p′)π+π−π− can also

act as a background channel for the investigated ep(n)→ e′p′(n′)π+π− reaction, how-

ever it is also expected to give an insignificant and well separated admixture. Here and

hereinafter the term “background channel” is used to denote the reaction that hap-

pened in electron scattering off the target nucleon along with the investigated double-

pion reaction. Any reaction that might occur during the FSI is not treated as the

contribution from “background channels”, but is attributed to the FSI-background.
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3.5.1 Fully exclusive topology

In the fully exclusive topology for the selection of double-pion events in quasi-free

kinematics the distributions of the following quantities were investigated: the miss-

ing momentum PX and the missing mass squared M2
X[0] for the reaction ep(n) →

e′p′(n′)π+π−X as well as the missing mass squared M2
X[π−] for the reaction ep(n)→

e′p′(n′)π+X. These quantities are defined by

PX = |−→P e −
−→
P e′ −

−→
P p′ −

−→
P π+ −−→P π−|,

M2
X[0] = [P µ

e + P µ
p − P µ

e′ − P µ
p′ − P µ

π+ − P µ
π− ]2,

M2
X[π−] = [P µ

π− miss]
2 = [P µ

e + P µ
p − P µ

e′ − P µ
p′ − P µ

π+ ]2,

(3.5.1)

where P µ
i are the four-momenta and

−→
Pi the three-momenta of the particle i. All

three quantities are calculated under the target-at-rest-assumption, i.e. considering

P µ
p = (0, 0, 0, mp), where mp is the proton mass.

The quantities PX and M2
X[0] are unique for the fully exclusive topology as they can

be calculated only if all final hadrons are registered. Although adding the quantity

M2
X[π−] to this set does not seem to provide any additional information, it is examined

in order to observe consistency with the π− missing topology, where the distributions

of M2
X[π−] is the only source for developing a criterion for the channel identification.

See Ref. [41] for details on features of missing mass distributions.

Distributions of the quantities PX (first column), M2
X[0] (second column), and

M2
X[π−] (third column) for five 100-MeV-wide bins11 inW are shown in Fig. 3.27 for the

experimental data (black curves) and reconstructed Monte Carlo events (blue curves).

The quantity PX (first column in Fig. 3.27) is the missing momentum of the

initial proton calculated under the target-at-rest-assumption, therefore the blue

curves stand for the Fermi momentum (simulated according to Bonn potential [40])

convoluted with the detector resolution, whereas the black ones correspond to

11 The value of W is calculated for the initial state under the target-at-rest-assumption.
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Figure 3.27: Distributions of the quantities PX (left column), M2
X[0] (middle column),

and M2
X[π−] (right column) defined in Eq. (3.5.1) for experimental data (black curves) and

Monte Carlo simulation (blue curves) for different 100-MeV-wide W bins. Vertical red
lines indicate the cuts applied for the selection of exclusive quasi-free events. All plotted
quantities as well as the values of W are calculated under the target-at-rest-assumption.
All distributions are normalized to their maxima.
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the experimental momentum of the initial proton, mixed with the FSI effects,

contributions from background channels, and the detector resolution. As seen in the

left column of Fig. 3.27, the simulated distributions perfectly match the experimental

ones for Px < 0.2 GeV, while for Px > 0.2 GeV the simulation underestimates data.

Such behavior is mostly related to the fact that relative contributions from FSI,

which were not included into the Monte Carlo simulation, turn out to be the most

significant outside of the peak region. The background channels, being not included

into the Monte Carlo as well, also contribute to this mismatch, but as mentioned

above their contribution is minor. The value Px = 0.2 GeV (marked by the red

dashed lines in each plot in the left column) was chosen as a criterion for the selection

of events in quasi-free kinematics. Thus, experimental events located at the left side

of this line correspond to the reaction in the quasi-free regime, while events at the

right side correspond mostly to “disturbed” kinematics with great impact of FSI.

The distributions of the quantity M2
X[0] shown in the middle column in Fig. 3.27

deserve more attention. As demonstrated in Refs. [22, 23, 41], in free proton exper-

iments this quantity forms a very narrow peak at zero position barely affected either

by radiative effects or by detector resolution. An admixture from the three-pion

background, if present in the analyzed event sample, forms then an additional peaked

structure at m2
π well-separated from the main distribution peak. Meanwhile, in

this analysis, M2
X[0], being calculated under the target-at-rest-assumption, loses its

thinness and acquires the smearing (mostly left-sided), which is well-reproduced by

the Monte Carlo simulation.

In order to clean up the sample of exclusive events, the cut on the missing

mass squared M2
X[0] was also applied as a complementary to the cut on the missing

momentum. This cut is shown in Fig. 3.27 (middle column) by the vertical red dashed

lines. The plots in the middle column are zoomed near the peak to demonstrate good

agreement between the data and the simulation within the cut limits. The behavior
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of M2
X[0] in a wider range is shown in Fig. 3.28, where the distributions are zoomed in

on small y. As seen, outside the cut boundaries there is a mismatch between the data

and simulation, which originates from FSI effects at the left and the contribution

from the three-pion background at the right. The latter forms a peaked structure

around m2
π (∼0.02 GeV2), which is more smeared compared to the free proton case

due to the target-at-rest-assumption and FSI disturbances. The example is given for

high W to observe the greatest background admixture over the investigated W range.

0.1− 0.05− 0 0.05
)2 (GeV

X[0]
2M

0

0.05

0.1

0.15

0.2
1.7 GeV < W < 1.8 GeV

Figure 3.28: Distributions of the quantity M2
X[0] for experimental data (black curves) and

Monte Carlo simulation (blue curves) zoomed in on small y. Vertical red lines indicate the
applied cut. The mismatch between data and simulation originates from FSI effects at the
left and three-pion background at the right. The example is given for 1.7 GeV < W <
1.8 GeV, where the latter is greatest over the whole W range. The agreement between data
and simulation within the cut boundaries is better shown in Fig. 3.27 (middle column).

The three-pion background in this topology is thus considered to be fully

eliminated by the described above cuts on the quantities PX and M2
X[0].

Meanwhile, the right column in Fig. 3.27 stands for the missing mass squared

M2
X[π−] defined by Eq. (3.5.1) under the target-at-rest-assumption, thus being Fermi

smeared. The observed mismatch between the measured and simulated distributions

is W -dependent and caused mostly by the FSI effects.
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Figure 3.29: Distributions of the missing mass squared M2
X[π−] defined in Eq. (3.5.1) for

the fully exclusive topology plotted for selected quasi-free exclusive events for experimental
data (black curves) and Monte Carlo simulation (blue curves). The comparison is shown
for different 100-MeV-wide W bins. The quantity M2

X[π−] as well as the values of W are
calculated under the target-at-rest-assumption. The vertical red lines show the applied cuts.
All distributions are normalized to their maxima. See text for details.

Figure 3.29 shows the distributions of the quantity M2
X[π−] plotted for quasi-free

exclusive events selected by the cuts on Px and M2
X[0]. The distributions for the exper-

imental (black curves) and reconstructed Monte Carlo (blue curves) events perfectly

match each other in all W subranges, which demonstrates the reliability of quasi-free

exclusive event selection as well as the fact that effects of the target motion are cor-

rectly implemented into the simulation. The vertical red lines in Fig. 3.29 correspond

to the additional cut that was applied on the missing mass squared M2
X[π−].

Although in the fully exclusive topology the four-momentum of the π− is

measured precisely within the detector resolution, it is not used in the subsequent

calculation of kinematic variables for the cross section extraction. The measured

four-momentum is instead replaced by the one that is calculated as missing (P µ
π− miss

in Eq. (3.5.1)) and thus is Fermi smeared. This is done to imitate the event selection

in the main π− missing topology in order to treat events in both topologies identically.
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3.5.2 π− missing topology

In the π− missing topology the quantities PX and M2
X[0] defined in Eq. (3.5.1) are

not available due to the incomplete knowledge about the final state, and M2
X[π−] is

the only remaining quantity suitable for the selection of exclusive events in quasi-free

kinematics. The distributions of this quantity are shown in Fig. 3.30 for five 100-

MeV-wide bins in W for the experimental data (black curves) and the Monte Carlo

simulation (blue curves). The comparison shown in this figure demonstrates again

the W -dependent mismatch between data and simulation, which is different from that

seen in the fully exclusive topology. The mismatch is mostly observed at the right

side of the distribution peak and becomes discernible only for W & 1.5 GeV.
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Figure 3.30: Distributions of the missing mass squared M2
X[π−] defined in Eq. (3.5.1) for

the π− missing topology plotted before the selection of quasi-free exclusive events for ex-
perimental data (black curves) and Monte Carlo simulation (blue curves). The comparison
is shown for different 100-MeV-wide W bins. The quantity M2

X[π−] as well as the values of
W are calculated under the target-at-rest-assumption. All distributions are normalized to
their maxima. See text for details.

The similar analysis [22] carried out for the same beam energy but off a free

proton target did not reveal any substantial discrepancies between the experimental

and simulated distributions of the quantity M2
X[π−]; they are shown to be in a very

good agreement for all W values. Figure 3.29 plotted for selected exclusive quasi-free

events in the fully exclusive topology in turn proves that the Monte Carlo simulation

incorporates effects of the target motion correctly. Therefore, the discrepancy between
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data and simulation observed in Fig. 3.30 is attributed mainly to the FSI effects, which

are not included into the simulation.

This mismatch between data and simulation together with the fact that in the

π− missing topology the quantity M2
X[π−] is the only one available for the channel

identification makes the task of selecting events in quasi-free kinematic rather chal-

lenging. To accomplish this goal, a special procedure was developed. This procedure

is described below.

In order to isolate events in quasi-free kinematics, the following quantity is

subjected to examination,

MX[π−] =
√
|M2

X[π−]| =
√
|[P µ

π− miss]
2| =

√
|[P µ

e + P µ
p − P µ

e′ − P µ
p′ − P µ

π+ ]2|. (3.5.2)

The distributions of the quantity MX[π−] in different 25-MeV-wide W bins are

shown in Fig. 3.31 for experimental data (black histograms) and for Monte Carlo

simulation (blue histograms). Both are normalized to their maxima. The mismatch

between data and simulation becomes discernible at W ≈ 1.5 GeV, increases as W

grows and becomes large at W ≈ 1.8 GeV. The magenta histogram stands for the

difference between the black and blue histograms and thus represents the distribution

of background events originated mainly from FSI effects. The green vertical lines

correspond to the position of the cut that is intended to select quasi-free events. This

cut is applied to the reconstructed Monte Carlo events as well. However, as seen in

Fig. 3.31, one can hardly completely separate the quasi-free event sample from the

FSI-background by tightening the cut: in this way the statistics of quasi-free events

will be subject to significant reduction, while the background admixture will still not

be completely eliminated. Therefore, it was decided to perform a so-called “effective

correction” of the FSI-background admixture, which includes the following steps.
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Figure 3.31: Distributions of the quantity MX[π−] (defined by Eq. (3.5.2)) in different 25-
MeV-wide W bins for the experimental data (black histograms), Monte Carlo simulation
(blue histograms), and their difference (magenta histograms). The explanation of the fit
curves is given in the text. Green vertical lines correspond to the position of the cut that
is intended to select quasi-free events. The cut is applied to the reconstructed Monte Carlo
events as well.
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• The distributions of MX[π−] for the reconstructed Monte Carlo events (blue

histograms) were fit by a ninth order polynomial in a slightly wider range than

marked by the green cut lines. The results of the fit are shown in Fig. 3.31 by

the cyan curves.

• The magenta background distributions were fit by Gaussians. The results of

the fit are shown by the dark-magenta curves.

• The cyan and dark-magenta curves were summed up to produce the red curve,

which perfectly matches the black experimental histogram in each W bin.

• The correction factor Ffsi was determined in the left side of the green cut line,

Ffsi(W ) =
area under the cyan curve

area under the red curve
≤ 1. (3.5.3)

• In each W bin the experimental event yield in the π−-missing topology is mul-

tiplied by the factor Ffsi, which serves as an effective correction due to the

remaining admixture of the FSI-background events.

The factor Ffsi is assumed to be only W dependent as it was found that it does not

demonstrate any Q2 dependence, and the dependence on the final hadron variables

is neglected due to the statistics limitation. The value of Ffsi varies from ∼0.97 to

∼0.93 in the W range from 1.4625 GeV to 1.8125 GeV, while for W < 1.4625 GeV

Ffsi = 1 as the correction there is not needed.

Note that the exclusivity cut shown in Fig. 3.31 accompanied by the corresponding

correction cares for all other possible effects that along with the FSI effects may

contribute to the mismatch between the data and the simulation in this topology

(including the three-pion background).
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Chapter 4

Cross section calculation

4.1 W -smearing and blurring of the Q2 versus W

distribution boundaries

The smearing of the invariant mass W has the same origin as the smearing of the miss-

ing mass, which is already discussed in Sect. 3.5, but since W is the variable needed

to describe the reaction (and the extracted cross section is binned in W ), the issue of

W -smearing requires special attention and, therefore, is separately addressed here.

For the process of double-pion electroproduction off the proton (as for any other

exclusive process) the reaction’s invariant mass can in general be determined in two

ways, i.e. either from the initial particle four-momenta1 (Wi) or from the final particle

four-momenta (Wf ) as Eqs. (4.1.1) and (4.1.2) demonstrate.

Wi =
√

(P µ
p + P µ

γv)2 (4.1.1)

Wf =
√

(P µ
π+ + P µ

π− + P µ
p′)

2 (4.1.2)

Here P µ
π+ , P µ

π− , and P µ
p′ are the four-momenta of the final state hadrons, P µ

p is

the four-momentum of the initial proton and P µ
γv = P µ

e − P µ
e′ the four-momentum of

the virtual photon with P µ
e and P µ

e′ the four-momenta of the incoming and scattered

electrons, respectively.

1 Although the scattered electron is treated as a final particle, here it is classified as “initial”,
since it defines the virtual photon, which in turn is attributed to the initial state.
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To determine Wf , all final hadrons should be registered, while for the calculation

of Wi it is sufficient to register the scattered electron. The latter opportunity allows

event samples with one unregistered final hadron, whose four-momentum is recovered

via the missing mass technique, to be used. This approach allows for a significant

increase of the analyzed statistics (see Sect. 3.5).

In experiments off protons at rest Wf and Wi may differ due to the detector

resolution and the radiative effects, which electrons undergo. In moving proton ex-

periments one more aspect takes effect, i.e. in order to calculate Wi, one needs

information about the target proton momentum (P µ
p ), which is accessible only in the

fully exclusive topology2. Therefore, the value of Wi given by Eq. (4.1.1) turns out

to be ill-defined, if one of the final hadrons is not registered. This brings us to the

choice to either demand the registration of all final hadrons to determine Wf (that

reduces the flexibility of the analysis) or to work under a so-called “target-at-rest-

assumption”, which assumes the initial proton to be at rest. In the last approach the

value of Wi appears to be smeared. This smeared value of the invariant mass is here-

inafter denoted as Wsm. Meanwhile, the value Wf corresponds to the true reaction

invariant mass and, therefore, is denoted as Wtrue. It can be calculated only in the

fully exclusive topology.

If a smeared valueWsm is used to describe the reaction, the extracted cross sections

turned out to be convoluted with a function that is determined by the Fermi motion

of the initial proton [24, 38]. To retrieve the non-smeared observable, a correction

that unfolds this effect should be applied to the cross sections.

Besides the W -smearing, the Fermi motion of the target proton is also responsible

for the boundary blurring of the Q2 versus W distribution3. This happens because

the experiment off the moving proton with fixed laboratory beam energy is equivalent

2 If the spectator nucleon momentum is not directly measured in the experiment. This was not
an option in the analyzed “e1e” experiment.

3 This issue is addressed in more details in Ref. [24].
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to that off the proton at rest performed with altered effective beam energy [24]. The

boundaries of the Q2 versus W distribution, however, are beam energy dependent.

Therefore, the distribution edges, being sharp and distinct in the proton at rest

experiment, become blurred in the experiment off a moving proton.

The blurring, however, affects only the edges ofQ2 versusWtrue distribution, where

Wtrue is the true reaction invariant mass given by Eq. (4.1.2), since Wtrue accounts for

the target motion and, therefore, for the alteration of the effective beam energy. If the

smeared value Wsm, calculated by Eq. (4.1.1) under the target-at-rest-assumption, is

used instead, the distribution edges are not subject to the blurring because the fixed

value of the laboratory beam energy is used in calculations.
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Figure 4.1: Experimental Q2 versus W distributions for Wsm (left) and Wtrue (right)
plotted for the fully exclusive topology. The boundaries of the left distribution are sharp,
since the Wsm is calculated under the target-at-rest-assumption and the fixed value of the
laboratory beam energy is used in calculations. The boundaries of the right distribution are
blurred, since the calculation of Wtrue accounts for the target proton motion and therefore
for the alteration of the effective beam energy of the experiment.

This situation is illustrated in Fig. 4.1, where the Q2 versus W distributions are

shown for Wsm (left) and Wtrue (right). These distributions are plotted for the fully

exclusive topology only, since it allows for the determination of both Wsm and Wtrue.

The distributions, therefore, contain only a small portion of the total analyzed statis-

tics. The boundaries of the left distribution are sharp, since the Wsm is calculated

assuming the fixed laboratory beam energy and the target at rest. The boundaries
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of the right distribution are blurred, since the calculation of Wtrue accounts for the

target proton motion and, therefore, for the alteration of the effective beam energy

of the experiment.

The event yield in the blurred region suffers from depletion of events (compared to

that for the case of fixed beam energy and sharp distribution edges). To estimate this

effect, one should know the function that describes the alteration of the effective beam

energy. This function is in turn determined by the target proton momentum distri-

bution. The cross sections extracted in the blurred region need a special correction,

otherwise they will suffer from the underestimation.

The situation described above offers two options, i.e. to use either Wsm or Wtrue to

describe the reaction. The former opportunity leads to the need to apply a correction

that unfolds the cross section smearing, while the latter requires the correction due

to the blurring effect. The first option was chosen in this analysis because it has

the advantage of using the π− missing topology that accumulates the majority of the

experimentally available statistics.

Thus, to calculate the cross section in this analysis, events are binned in Wsm.

Note, however, that the correspondingW points on the chosenWsm grid (see Sect. 4.4)

are then treated as actual W -values where the cross section is eventually reported.

However, the cross section values assigned to these W points is treated as distorted.

The necessary correction to the cross section is based on the TWOPEG-D event

generator [24], which offers a proper Monte Carlo simulation of the double-pion elec-

troproduction off moving protons. This correction is described in Sect. 5.3.

4.2 Lab to CMS transformation

Once the quasi-free double-pion events are selected as described in Chapter 3, the

laboratory four-momenta of all final particles are known: they are either registered
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or calculated as missing. These four-momenta are then used for the calculation of

the kinematic variables, which are introduced in Sect. 4.3. The cross sections mean-

while are extracted in the center-of-mass frame of the virtual photon – initial proton

system (CMS). Therefore, to calculate the kinematic variables, the four-momenta of

all particles need to be transformed from the laboratory system (Lab) to the CMS.

The CMS is uniquely defined as the system, where the initial proton and the

photon move towards each other with the zCMS-axis along the photon and the net

momentum equal to zero. However, the procedure of the Lab to CMS transformation

differs depending on the specificity of the reaction initial state (real or virtual photons,

at rest or moving target). Figure 4.2 illustrates three options4 for the experimental

specification of the reaction initial state.

The correct procedure of the Lab to CMS transformation for an electroproduc-

tion experiment off a moving target (bottom right illustration in Fig. 4.2) can be

subdivided into two major steps.

A. First, one needs to perform the transition to the auxiliary system, where the

target proton is at rest, while the incoming electron moves along the z-axis.

This system is called “quasi-Lab”, since the initial conditions of the reaction

in this frame imitate those existing in the Lab system in the case of the free

proton experiment. The recipe of the Lab to quasi-Lab transformations is given

in detail in Ref. [24].

B. Then, the quasi-Lab to CMS transformation should be performed by the stan-

dard method used for an electroproduction experiment off a proton at rest [22]

(bottom left illustration in Fig. 4.2). Further details are given in App. A.

To perform the first step of this procedure (Lab to quasi-Lab transformation), one

should be aware of the initial proton momentum for each reaction event [24]. In this

4 The fourth option of the reaction off the moving proton induced by real photons is not shown.
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Photoproduction on the free proton

Electroproduction 
on the free proton

Electroproduction 
on the moving proton

CMS

Figure 4.2: Illustration of three options for the experimental specification of the reaction
initial state. Here mp is the proton mass, ~qγ and Eγ are the three-momentum and the
energy of the interacting photon, respectively, while pf is the Fermi momentum of the
target proton.

analysis, however, this information is available only in the fully exclusive topology,

while the main π− missing topology lacks this information. This situation brings us to

the impossibility to perform the correct Lab to CMS transformation for the majority

of events. Therefore, in this analysis the procedure of Lab to CMS transformation

for an electroproduction experiment off a proton at rest [22] is used (bottom left

illustration in Fig. 4.2). The procedure is described in App. A. This is done for both

fully exclusive and main π− missing topologies for consistency.

This approximation in the Lab to CMS transformation introduces a systematic

inaccuracy to the extracted cross sections. A correction for this effect is included into

the procedure of unfolding the effects of the target motion (see Sect. 5.3).
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4.3 Kinematic variables

When the four-momenta of all particles are defined and transformed to the CMS, one

can calculate the kinematic variables that describe the reaction ep(n)→ e′p′(n′)π+π−.

For the description of the reaction initial state two variables are needed. In this study

they are chosen in the following way: the invariant mass W , which is calculated

according to Eq. (4.1.1), and the photon virtuality Q2, which is defined as

Q2 = −(P µ
γv)2 = −(P µ

e − P µ
e′)

2, (4.3.1)

where P µ
γv is the four-momentum of the virtual photon, while P µ

e and P µ
e′ the four-

momenta of the incoming and scattered electrons, respectively.

The three-body final hadron state is unambiguously determined by five kinematic

variables [22], and there are several options for their choice. The following generalized

set of variables is used in this analysis5:

• invariant mass of the first pair of the hadrons Mh1h2 ,

• invariant mass of the second pair of the hadrons Mh2h3 ,

• the first particle solid angle Ωh1 = (θh1 , ϕh1), and

• the angle αh1 between the two planes (i) defined by the three-momenta of the

virtual photon (or initial proton) and the first final hadron and (ii) defined by

the three-momenta of all final hadrons6.

The cross sections in this analysis are obtained in three sets of variables depending

on various assignments for the first, second, and third final hadrons:

1. [p′, π+, π−] Mp′π+ , Mπ+π− , θp′ , ϕp′ , αp′ (or α[pp′][π+π−]),

2. [π−, π+, p′] Mπ−π+ , Mπ+p′ , θπ− , ϕπ− , απ− (or α[pπ−][p′π+]),

3. [π+, π−, p′] Mπ+π− , Mπ−p′ , θπ+ , ϕπ+ , απ+ (or α[pπ+][p′π−]).
5 More details on the organization of the reaction phase-space can be found in App. B.
6 Note that the three-momenta of the π+, π−, p′ are in the same plane, since in the CMS their

total three-momentum has to be equal to zero.
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Let’s explain in more detail the calculation of the kinematic variables for the case

of the set number two. The invariant masses Mπ+π− and Mπ+p′ are calculated from

the four-momenta of the final particles P µ
π− , P µ

π+ , P µ
p′ in the following way:

Mπ+π− =
√

(P µ
π+ + P µ

π−)2 and

Mπ+p′ =
√

(P µ
π+ + P µ

p′)
2.

(4.3.2)

The polar (θπ−) and azimuthal (ϕπ−) angles of the π− in the CMS are shown in

Fig. 4.3. In this figure the z-axis is directed along the virtual photon (with the unit

vector ~nz), while the x-axis is located in the electron scattering plane and follows the

direction of the scattered electron (see App. A for details). The plane A in Fig. 4.3

is defined by the three-momenta of the π− and initial proton.

The angle θπ− varies in the range [0, π] and is calculated as:

θπ− = arccos

(
(~Pπ− · ~Pγ)
|~Pπ− ||~Pγ|

)
, (4.3.3)

where ~Pγ is the three-momentum of the virtual photon and ~Pπ− is the three-

momentum of the π− (both are situated in the plane A).

The angle ϕπ− varies in the range [0, 2π] and is determined as:

ϕπ− = arctan

(
Py
Px

)
, if Px > 0 and Py > 0,

ϕπ− = arctan

(
Py
Px

)
+ 2π, if Px > 0 and Py < 0,

ϕπ− = arctan

(
Py
Px

)
+ π, if Px < 0 and Py < 0,

ϕπ− = arctan

(
Py
Px

)
+ π, if Px < 0 and Py > 0,

(4.3.4)

where Pi is the i-component of the π− three-momentum in the CMS (i = x, y, z).

The calculation of the angle απ− , which is shown in Fig. 4.4, is more complicated.

This is the angle between the two planes A and B, which varies in a range [0, 2π].
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The plane A is defined by the three-momentum of the initial proton and the three-

momentum of the π−. The plane B is defined by the three-momenta of all final

hadrons. For the calculation of the απ− , one determines first three auxiliary vectors

~γ, ~β, and ~δ, which are also shown in Fig. 4.4.

The auxiliary unit vector ~γ is situated in the plane A. This vector is perpendicular

to the three-momentum of the π− and directed toward the vector [−~nz], where ~nz is

the unit vector directed along the z-axis. The vector ~γ can be expressed as

~γ = aα · [−~nz] + bα · ~nπ−

with aα =

√
1

1− (~nπ− · [−~nz])2
and bα = −aα · (~nπ− · [−~nz]) ,

where ~nπ− is the unit vector directed along the three-momentum of the π−.

The auxiliary unit vector ~β is situated in the plane B. This vector is perpendicular

to the three-momentum of the π− and directed toward the three-momentum of the

π+. The vector ~β can be expressed as

~β = aβ · ~nπ+ + bβ · ~nπ−

with aβ =

√
1

1− (~nπ+ · ~nπ−)2
and bβ = −aβ · (~nπ+ · ~nπ−) ,

where ~nπ+ is the unit vector directed along the three-momentum of the π+.

Taking the scalar products (~γ · ~γ), (~β · ~β), (~γ · ~nπ−), and (~β · ~nπ−), it is

straightforward to verify that ~γ and ~β are the unit vectors perpendicular to the

three-momentum of the π−.

The auxiliary unit vector ~δ is the vector product of the auxiliary vectors ~γ and ~β,

~δ = [~γ × ~β]. (4.3.5)
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Figure 4.3: Polar (θπ−) and azimuthal (ϕπ−) angles of the π− in the CMS. The z-axis is
directed along the virtual photon (with the unit vector ~nz), while the x-axis is located in
the electron scattering plane and follows the direction of the scattered electron. The plane
A is defined by the three-momenta of the π− and initial proton.
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Figure 4.4: Definition of the angle απ− between the two planes: the plane A is defined
by the three-momenta of the π− and initial proton, while the plane B is defined by the
three-momenta of all final hadrons. The definitions of auxiliary vectors ~β, ~γ, and ~δ are
given in the text.
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Then the angle απ− is determined as:

απ− = arccos(~γ · ~β), if ~δ ↑↑ ~nπ− ,

απ− = 2π − arccos(~γ · ~β), if ~δ ↑↓ ~nπ− .

(4.3.6)

The kinematic variables for the first and third sets are calculated in a similar

way (see Refs. [22, 32] for details). Further information on the kinematic of reactions

with multi-particle final states can be found in Ref. [42].

4.4 Binning and kinematic coverage

The available kinematic coverage in the initial state variables is shown by the Q2

versus W distribution7 in Fig. 4.5. This distribution is filled with the double-pion

events survived after the event selection described above. The blue boundary limits

the analyzed kinematic area, where the double-pion cross sections are extracted. The

black grid demonstrates the chosen binning in the initial state variables (25 MeV in

W and 0.05 GeV2 in Q2).

The kinematic coverage in the final state variables has the following reaction

related features. The angular variables θh1 , ϕh1 , and αh1 vary in the fixed ranges

of [0, π], [0, 2π], and [0, 2π], respectively. Meanwhile, the ranges of the invariant

masses Mh1h2 and Mh2h3 are W dependent and broaden as W grows. More details on

the specificity of the double-pion production phase-space are given in App. B.

The binning in the final hadron variables used in this study is listed in Tab. 4.1.

In each W and Q2 bin the range of each final hadron variable is divided into bins

of equal size. However, the number of bins differs in various W subranges, in order

to take into account (i) the statistics drop near the reaction threshold, which is at

≈ 1.22 GeV and (ii) the aforementioned broadening of the reaction phase-space with

7 Note that W here is Wsm, and therefore, the distribution boundaries are not subject to the
blurring. See Sect. 4.1 for details.
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increasing W . The chosen amount of bins in each considered W subrange reflects

the intention to maintain reasonable statistical uncertainties of the single-differential

cross sections for all W and Q2 bins.
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Figure 4.5: Q2 versus W distribution populated with the selected double-pion events. The
cross section is calculated in 2D cells within the blue boundaries.

For the binning in the polar angle note the following. The cross section, although

being differential in [− cos θ], is binned in θ. These ∆θ bins are of equal size in the

corresponding W subrange. See also Sect. 4.5 on this matter.

Table 4.1: Number of bins for hadronic variables.

W subrange (GeV)
Hadronic variable [1.3, 1.35] [1.35, 1.4] [1.4, 1.475] [1.475, 1.825]

Mh1h2 Invariant mass 8 10 12 12
Mh2h3 Invariant mass 8 10 12 12
θh1 Polar angle 6 8 10 10
ϕh1 Azimuthal angle 5 5 5 6
αh1 Angle between planes 5 6 8 8

Total number of bins
in hadronic variables

9600 24000 57600 69120
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The total numbers of multi-dimensional bins for the corresponding W ranges

are listed in the last row of Tab. 4.1 and require some clarification. In fact the

invariant masses border of the double-pion production phase-space is W -dependent

and determined by the Byckling function (see App. B). Therefore, the bins located

outside this border contain no double-pion events and hence do not contribute to

the cross section. For a given W value, the border is distinct, however for a W bin,

which corresponds to a range of W values, it is somewhat diffused. If events are

binned in Wtrue (like in a free proton experiment) and the bin is small, e.g. 25 MeV,

this diffusion is marginal. Then the quantity of bins involved in the cross section

calculation (including both non-empty and empty cells) varies from 90% to 70% of

the total numbers given in the last row of Tab. 4.1 as W increases from the threshold.

However, if events are binned in Wsm (like in this analysis), each Wsm value in a

bin corresponds to a sequence of Wtrue spread over 50-100 MeV. In this case a very

pronounced boundary diffusion takes place, increasing the quantity of bins filled with

events, i.e. the fraction of bins involved in the cross section calculation turn out to

vary from 100% to 80% as W increases8.

The specific organization of the double-pion production phase-space in the invari-

ant masses (Mh1h2 ,Mh2h3) causes the need to pay special attention to the binning in

these variables. Equation (4.4.1) gives the expressions for the lower and upper bound-

aries of the Mh1h2 distribution and demonstrates that the upper boundary depends

on the value of W , while the lower does not (see also App. B on this matter).

Mlower = mh1 +mh2

Mupper(W ) = W −mh3 .

(4.4.1)

Here mh1 , mh2 , and mh3 are the masses of the final hadrons.

8 This estimation is based on the Monte Carlo simulation performed with TWOPEG [39] and
TWOPEG-D [24] for the reactions off the proton at rest and off the moving proton, respectively.
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Since the cross section is calculated in a bin Wleft < W < Wright, the boundary

of Mupper is not distinct. For the purpose of binning in mass, the value of Mupper is

calculated using Wcenter, at the center of the W bin. As a result, some events with

W > Wcenter turned out to be located beyond Mupper. Hence it was decided to use a

specific arrangement of mass bins with the bin width ∆M determined by

∆M =
Mupper −Mlower

Nbins − 1
,

(4.4.2)

where Nbins is the number of bins specified in the first row of Tab. 4.1. The left

boundary of the first bin is set to Mlower.

The chosen arrangement of bins forces the last bin to be situated completely out

of the boundaries9 given by Eq. (4.4.1) using Wcenter. Therefore, the cross section in

this extra bin finally is not reported. However, this bin is kept in the analysis since its

content (though being very small) contributes to all cross sections that are obtained

by integrating over the corresponding invariant mass distribution.

Note that the cross section in the next to last bin in invariant mass needs a special

correction. This correction is described in Sect. 5.4.

4.5 Cross section formulae

4.5.1 Electron scattering cross section

The experimental electron scattering cross section σe for the reaction ep(n) →

e′p′(n′)π+π− is seven-fold differential and calculated as10

d7σe

dWdQ2d5τ
=

1

R·F ·

(
Nfull

Qfull
− Nempty

Qempty

)

∆W ·∆Q2 ·∆5τ ·
[
l·ρ·NA

qe·µd

]
·E

, where (4.5.1)

9 Note that for each W bin and for each invariant mass, ∆M given by Eq. (4.4.2) is greater than
12.5 MeV, which is the half of the W bin width.

10 To deal with the multi-differential cross section, THnSparse multi-dimensional root histograms
are used.
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• d5τ = dMh1h2dMh2h3dΩh1dαh1 is the differential of the five independent vari-

ables of the π+π−p final state, which are described in Sect. 4.3;

• Nfull and Nempty are the numbers of selected double-pion events inside the seven-

dimensional bin for runs with deuterium and empty target, respectively;

• the quantity in the square brackets in the denominator corresponds to the lu-

minosity of the experiment L in the units cm−2·C−1 and its components are

l = 2 cm the length of the target,

ρ = 0.169 g·cm−3 the density of liquid deuterium,

NA = 6.022·10−19 mol−1 Avogadro’s number,

qe = 1.602·10−19 C the elementary charge, and

µd = 2.014 g·mol−1 the molar mass of deuterium,

which results in the luminosity value of L = 0.63·1042 cm−2·C−1 = 0.63·1012

µb−1·C−1;

• Qfull = 3734.69 µC and Qempty = 464.797 µC are the values of the charge

accumulated in the Faraday Cup for deuterium and empty target runs, respec-

tively11, which results in the corresponding values of the integrated luminosity

L = L ·Q of 2.35·109 µb−1 and 0.29·109 µb−1;

• E = E(∆W,∆Q2,∆5τ) is the detector efficiency (which includes the detector

acceptance) for each seven-dimensional bin as determined by the Monte Carlo

simulation (see Sect. 4.6);

• R = R(∆W,∆Q2) is the radiative correction factor described in Sect. 5.2;

• F = F(∆W,∆Q2,∆5τ) is the correction factor that aims at unfolding the effects

of the target motion (see Sect. 5.3).

11 They are calculated by summing up the charges of all analyzed blocks (see Sect. 3.4.2 for details).
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The electron scattering cross section σe in the left hand side of Eq. (4.5.1) is

assumed to be obtained in the center of the finite seven-dimensional kinematic bin

∆W∆Q2∆5τ .

4.5.2 Virtual photoproduction cross section

The goal of the analysis is to extract the virtual photoproduction cross section σv of

the reaction γvp(n) → p′(n′)π+π−. This virtual photoproduction cross section σv is

five-fold differential and in the single-photon exchange approximation connected with

the seven-fold differential electron scattering cross section12 σe via

d5σv

d5τ
=

1

Γv

d7σe

dWdQ2d5τ
, (4.5.2)

where Γv is the virtual photon flux given by

Γv(W,Q
2) =

α

4π

1

E2
beamm

2
p

W (W 2 −m2
p)

(1− εT )Q2
. (4.5.3)

Here α is the fine structure constant (1/137), mp the proton mass, Ebeam = 2.039

GeV the laboratory energy of the incoming electron beam, and εT the virtual photon

transverse polarization given by

εT =

(
1 + 2

(
1 +

ν2

Q2

)
tan2

(
θe′

2

))−1

, (4.5.4)

where ν = Ebeam − Ee′ is the virtual photon energy, while Ee′ and θe′ are the energy

and the polar angle of the scattered electron in the lab frame, respectively.

The value of the virtual photon flux given by Eq. (4.5.3) is calculated for the

central point of the ∆W∆Q2 bin.

12 Note that after the corrections introduced in Eq. (4.5.1) by the factors R and F , the cross section
σe is the true electron scattering cross section attributed to the central values of the corresponding
∆W∆Q2∆5τ bin and the distinct value of the beam energy Ebeam = 2.039 GeV.
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The limited statistics of the experiment does not allow for estimates of the five-fold

differential cross section σv with a reasonable accuracy. Therefore, the cross section σv

is first obtained on the multi-dimensional grid and then is integrated over at least four

hadron variables. Hence, only the sets of the single-differential and fully-integrated

cross sections are obtained.

For each W and Q2 bin, the following cross sections are extracted for each set of

variables,
dσv

dMh1h2

=

∫
d5σv

d5τ
dMh2h3dΩh1dαh1 ,

dσv
dMh2h3

=

∫
d5σv

d5τ
dMh1h2dΩh1dαh1 ,

dσv
d[− cos θh1 ]

=

∫
d5σv

d5τ
dMh1h2dMh2h3dϕh1dαh1 ,

dσv
dαh1

=

∫
d5σv

d5τ
dMh1h2dMh2h3dΩh1 , and

σintv (W,Q2) =

∫
d5σv

d5τ
dMh1h2dMh2h3dΩh1dαh1 .

(4.5.5)

As a final result for each W and Q2 bin, the integral cross section σintv , aver-

aged over the three variable sets, is reported together with the nine single-differential

cross sections given in (4.5.6), where each column is taken from the corresponding

variable set.
dσv

dMp′π+

dσv
dMπ−π+

dσv
dMπ−p′

dσv
d[− cos θp′ ]

dσv
d[− cos θπ− ]

dσv
d[− cos θπ+ ]

dσv
dαp′

dσv
dαπ−

dσv
dαπ+

(4.5.6)

Regarding the middle row in (4.5.6) note the following. Although being dif-

ferential in [− cos θ], the cross sections are calculated in ∆θ bins, which are of

equal size in the corresponding W subrange (see Sect. 4.4 for details). This is a

conventional way of presenting the θ-distributions in the studies of double-pion cross

sections [15–19, 21–23].
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4.6 Efficiency evaluation

For the Monte Carlo simulation the TWOPEG-D event generator was used [24]. This

is the version of TWOPEG (an event generator for double-pion electroproduction

off the free proton [39]), which is able to simulate the effects of the initial proton

motion. In this version of the event generator the Fermi motion of the initial proton

is generated according to the Bonn potential [40] and then naturally merged into

the specific kinematics of double-pion electroproduction. TWOPEG-D accounts for

radiative effects according to the approach described in Refs. [39, 43].

The generated events are passed through the standard detector simulation (GSIM,

GPP) and reconstruction procedures (recsis) with the majority of parameters kept

the same as in the studies [22, 44], which were also devoted to the “e1e” run period13.

In the studies of double-pion production cross section it is especially important to

generate enough Monte Carlo statistics in order to saturate each multi-dimensional

bin of the reaction phase-space with events (see Tab. 4.1). Insufficient Monte Carlo

statistics leads to an improper efficiency evaluation and an unnecessary rise in the

empty cells contribution (see Sect. 5.1), thus systematically affecting the accuracy

of the extracted cross sections. For this study the total of about 4·1010 double-

pion events were generated in the investigated kinematic region, which is considered

adequate.

The TWOPEG-D event generator performs a weighted event generation [39], i.e.

all kinematic variables are generated randomly according to the double-pion produc-

tion phase-space, while each event generated at a particular kinematic point acquires

an individual weight, which corresponds to the cross section at this point. Therefore,

the efficiency factor E from Eq. (4.5.1) is calculated in each ∆W∆Q2∆5τ bin as

13 See Sect. 2.4 and also Ref. [32] for more details on the simulation/reconstruction procedure and
for the information on the corresponding parameters used in this analysis.
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E(∆W,∆Q2,∆5τ) =
Nrec

Ngen

=

Nrec∑
i=1

wi

Ngen∑
j=1

wj

, (4.6.1)

where Ngen is the number of generated double-pion events (without any cuts) inside

the multi-dimensional bin, Nrec is the number of reconstructed double-pion events that

survived in the bin after the event selection, while Ngen and Nrec are the weighted

numbers of the corresponding events and w is a weight of an individual event.

The efficiency in some kinematic bins could not be reliably determined due to

boundary effects, bin to bin event migration, and limited Monte Carlo statistics.

Such cells were excluded from consideration. They can be differentiated from the

cells with reliable efficiency by a larger relative efficiency uncertainty δE/E .

Meanwhile, the calculation of the efficiency uncertainty δE is not straightforward

and needs special attention, since (i) Ngen and Nrec in Eq. (4.6.1) are not independent

and (ii) Monte Carlo events in this equation are subject to weighting. Therefore, the

special approach described in Ref. [45] was used to calculate δE . Neglecting the

event migration between the bins, this approach gives the following expression for

the absolute statistical uncertainty of the efficiency in a bin for the case of weighted

Monte Carlo simulation,

δE =

√√√√Ngen − 2Nrec

N3
gen

Nrec∑

i=1

w2
i +

N2
rec

N4
gen

Ngen∑

j=1

w2
j . (4.6.2)

Meanwhile, according to Ref. [45], in the case of unweighted Monte Carlo simula-

tion, the formula in Eq. (7.1.3) reduces to

δẼ =

√
Nrec(Ngen −Nrec)

N3
gen

, where Ẽ =
Nrec

Ngen

. (4.6.3)
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Figure 4.6 (a) shows the distribution of the relative efficiency uncertainty δE/E

versus efficiency E plotted taking the weights (see Eq. (7.1.3)) into account. In this

plot the statistical effects turn out to be convoluted with the distribution of weights

thus complicating the revealing of cells with unreliable efficiency. To isolate only

the statistical effects, the distribution δẼ/Ẽ versus Ẽ , which is produced ignoring the

weights (see Eq. (4.6.3)), is plotted in the panel (b). As seen in this plot, the cells

with high relative efficiency uncertainty are clustered along the horizontal stripes.

This clustering originates from the fact that (if the weights are ignored) the efficiency

is obtained by the division of two integer numbers, which reveals the bins with small

statistics of the reconstructed events. These horizontal stripes, furthermore, contain

many cells with unreliable extremely small efficiency. Therefore, the following crite-

rion for the selection of cells with reliable efficiency is used δẼ/Ẽ < 0.3. This cut

is shown in Fig. 4.6 (b) by the red horizontal line. All cells above this line were

excluded from the analysis. The influence of this cut on the distribution δE/E (with

the weights taken into account) is shown in Fig. 4.6 (c).
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/Ẽ

δE
/E

Figure 4.6: Distributions of the relative efficiency uncertainty versus efficiency (a) taking
into account the weights (see Eq. (7.1.3)) and (b) ignoring them (see Eq. (4.6.3)). The
cut that aims to select the cells with reliable efficiency is shown by the red horizontal line
in panel (b). Panel (c) shows the influence of this cut on the distribution δE/E (with the
weights taken into account). The distributions are provided for one particular ∆W∆Q2 bin
(with the central values specified in figure), and the color code represents the number of
multi-dimensional cells within this bin. Note that the z-axis maximum for the plot (a) is
set the same as for the plot (c).
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The number of reconstructed events in the revealed cells with unreliable efficiency

is set to zero (Nrec = 0). Then such a cell is ranked as an “empty cell” and, along with

other empty cells, is subject to the filling procedure, which is described in Sect. 5.1.

The described above cut on the relative efficiency uncertainty directly impacts

the cross section’s uncertainties. On the one hand, it eliminates the ∆5τ bins with

high relative efficiency uncertainty, thus reducing the total statistical uncertainty of

the extracted cross sections (see Sect. 7.1). On the other hand, this cut increases the

amount of empty cells, thus increasing the cross section’s model dependence and the

uncertainty associated with it (see Sect. 7.2). The cut value is therefore chosen as a

compromise between these two effects.

The idea of this cut is taken from the study [22, 23], which uses unweighted

Monte Carlo simulation and therefore employs Eq. (4.6.3) to calculate the efficiency

uncertainty. The study [22, 23] observed the similar cell clustering along horizontal

stripes as that revealed in this analysis in the distributions of δẼ/Ẽ versus Ẽ (produced

ignoring the weights) and also set the cut at the position of 0.3.

Note that in this particular analysis the formula (4.6.3) for the unweighted Monte

Carlo is used only for selecting the bins with reliable efficiency, since it allows the pure

statistical behavior of the efficiency uncertainty to be determined. For the estimation

of the cross section’s statistical uncertainty the weights are taken into account and

the formula (7.1.3) is applied (see Sect. 7.1).
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Chapter 5

Corrections to the cross sections

This chapter gives the description of the corrections to the extracted cross sections

in the order they were applied.

5.1 Filling kinematic cells with zero acceptance

Due to blind areas in the geometrical coverage of the CLAS detector, some kinematic

bins of the double-pion production phase-space turned out to have zero acceptance.

In such bins, which are usually called empty cells, the cross section cannot be ex-

perimentally defined. For the studies, which aim at extracting fully-differential cross

sections (i.e. single-pion production analyses), this is not a problem of great im-

portance, since the cross section in blind areas is just not reported. However, in

the studies of double-pion production, where the limited experimental statistics al-

lows only single-differential cross sections to be extracted, this issue becomes a point

of special attention [17–19, 21–23]. The empty cells contribute to the integrals in

Eqs. (4.5.5) along with the other kinematic bins. Ignoring the contribution from

the empty cells leads to a systematic cross section underestimation and, therefore,

some assumptions for the empty cells’ content are needed. This situation causes some

model dependence of the final result.

The map of the empty cells is determined using the Monte Carlo simulation. A cell

is treated as empty, if it contains generated events (Ngen > 0), but does not contain

any reconstructed events (Nrec = 0). The cells with unreliable efficiencies, revealed

87



based on the cut on the efficiency uncertainty (see Sect. 4.6), are also treated as empty.

Empty cells should not be confused with the cells that contain both generated and

reconstructed events, but do not contain experimental data, i.e. they appear due to

the limited experiment duration, which is taken into account via the normalization on

the Faraday Cup charge, and therefore, no model assumptions for them are needed.

It is conventional practice in the studies of the double-pion production to fill the

empty cells by means of the Monte Carlo event generator (usually the one that is used

to evaluate the efficiency). The studies [15–19, 21] used GENEV [46] (the double-pion

event generator based on the JM05 reaction model) for this purpose. The empty cells

in these studies were filled with the generated events, which were subject to a special

scaling procedure in order to match the experimental data in the regular (non-empty)

cells. Meanwhile, the study [22, 23] used TWOPEG [39] for the empty cells filling.

TWOPEG is the new double-pion event generator, which is based on the JM15 model

and up to now provides the best cross section estimation in the kinematic region W <

2 GeV and Q2 < 1.3 GeV2. Since TWOPEG is capable of providing the absolute cross

section value for a given kinematic point, the study [22, 23] used the cross section

estimated by TWOPEG as an assumption for the empty cells content.

In this particular study the empty cells are filled by means of the TWOPEG-D

event generator [24], which is the version of TWOPEG for moving protons. Although

TWOPEG-D is also capable of providing the absolute cross section value, the empty

cells in this study were nevertheless filled with the scaled generated events (as in

Refs. [15–19, 21]). This method was chosen because TWOPEG-D assumes all events

to be produced in the quasi-free regime (ignoring FSI) and therefore somewhat over-

estimates the quasi-free cross section.

Thus, in this study empty multi-dimensional cells are filled with the Monte Carlo

events generated by TWOPEG-D (following Refs. [15–19, 21]), relying on the cross

section shape implemented in the generator. These generated events are subject to
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the scaling, which leaving the shape unchanged adjusts the empty cells content to

the experimental yield in the regular (non-empty) cells. The scaling is performed

individually in each ∆W∆Q2 bin according to the integral yields of the experimental

and simulated events in the non-empty cells within this bin. The number of events

Nmodel that is assigned as a content for the empty ∆5τ cell located in the corresponding

∆W∆Q2 bin is then estimated as

Nmodel(∆W,∆Q
2,∆5τ) =

N int
data

N int
rec

·Ngen(∆W,∆Q2,∆5τ), (5.1.1)

where Ngen is the weighted number of generated events in the corresponding multi-

dimensional bin, while the fraction represents the integral scaling factor with N int
data

andN int
rec being the total number of experimental events (normalized by the FC charge)

and the total number of reconstructed events in all non-empty ∆5τ bins within the

considered ∆W∆Q2 bin, respectively. These quantities are given by

N int
data(∆W,∆Q

2) =
∑

All ∆5τ
with Nrec>0

[
Nfull

Qfull

− Nempty

Qempty

]
, and

N int
rec (∆W,∆Q

2) =
∑

All ∆5τ
with Nrec>0

Nrec,

(5.1.2)

where Nrec is the weighted number of reconstructed events in the ∆5τ bin.

For each empty ∆W∆Q2∆5τ bin, the quantity given by Eq. (5.1.1) imitates the

yield of experimental events normalized by the FC charge and corrected by the detec-

tor efficiency (see Eq. (4.5.1)). The cross section in the empty cells is then calculated

as the following,

d7σe

dWdQ2d5τ
=

Nmodel

∆W ·∆Q2 ·∆5τ ·[L]
, (5.1.3)

with Nmodel given by Eq. (5.1.1), and all other variables explained after Eq. (4.5.1).

Note that the empty cells are filled before applying the correction factors R and F .

89



Figure 5.1 introduces the single-differential cross sections given by Eqs. (4.5.5)

and (4.5.6)1. The empty squares correspond to the case when the contribution from

the empty cells was ignored, and the black circles are for the case when that was

taken into account in the way described above. The figure demonstrates a satisfac-

tory small contribution from the empty cells (and therefore a small model dependence

of the results). Only the edge points in the θ distributions (middle row) reveal pro-

nounced empty cell contributions due to the negligible/zero CLAS acceptance in the

corresponding directions.

Table 5.1 demonstrates the relative empty cell contribution to the integral cross

sections for all reported (W, Q2)-points1. Different shades of red correspond to differ-

ent percentage ranges, i.e. the lightest shade corresponds to the contribution ≤ 20%,

darker shade – from 21% to 30%, and the darkest one shows the contribution > 30%.

As seen from the table, for most of the (W, Q2)-points the contribution from the

empty cells is kept on a low level of ∼15%, having a small rise at the low Q2

and high W boundaries, which originates from the momentum-dependent restric-

tions on the minimal and maximal polar angles of the scattered electron, respectively

(see Sect. 3.4.1). Additionally, the rise of the empty cells contribution for small

W ∼ 1.3 GeV is thought to be related to the fact that near the production thresh-

old the hadrons carry small momentum and hence failed to be registered since (i)

they are more likely bent to the detector holes, (ii) CLAS is not designed to register

hadrons with a momentum less than a certain value (see e.g. Fig. 3.10), and (iii) the

smaller the hadron velocity is, the more energy it loses in materials (Bragg peak). A

similar rise of the empty cells contribution near the threshold was also observed in

Refs. [17, 18, 22, 23], which are devoted to the double-pion electroproduction off the

free proton.

1 Both Figure 5.1 and Table 5.1 are given for the cross sections, which (although being divided
by the virtual photon flux) are neither corrected for the radiative effects (see Sect. 5.2) nor for the
effects of the target motion (see Sect. 5.3).
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To account for the model dependence, the approach established for the previous

studies of double-pion production cross sections is followed [19, 20, 22], i.e. the part of

the single-differential cross section that came from the empty cells is assigned a 50%

relative uncertainty. The corresponding absolute uncertainty δmodel is then combined

with the total statistical uncertainty, as was done in Refs. [19, 20, 22] (more details

are in Sect. 7.1).
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Figure 5.1: Extracted single-differential cross sections for the cases when the contribution
from the empty cells was ignored (empty squares) and when it was taken into account (black
circles). The former are reported with the uncertainty δtot

stat given by Eq. (7.1.4), while the
latter are with the uncertainty δtot

stat,mod given by Eq. (7.4.1). All distributions are given for

one particular bin in W and Q2 (W =1.6375 GeV, Q2 =0.625 GeV2).

91



Table 5.1: Relative empty cell contribution to the integral cross sections for all reported (W, Q2)-points. The
columns correspond to the Q2 values in GeV2 and the rows to the W values in GeV. Different shades of red
correspond to different percentage range, i.e. the lightest shade corresponds to the contribution ≤ 20%, darker
shade – from 21% to 30%, and the darkest one shows the contribution > 30%.

0.425 0.475 0.525 0.575 0.625 0.675 0.725 0.775 0.825 0.875 0.925 0.975

1.3125 – 41 34 32 35 37 41 33 33 45 35 48

1.3375 – 28 28 27 26 28 31 32 33 35 33 35

1.3625 – 28 26 23 24 25 25 25 27 27 28 27

1.3875 – 21 19 18 17 19 19 18 18 21 23 21

1.4125 – 27 20 18 17 17 18 20 19 20 20 20

1.4375 – 23 17 17 14 14 14 17 15 15 16 18

1.4625 – 21 16 14 13 13 12 13 13 13 14 16

1.4875 – 24 18 15 14 14 13 13 15 15 15 16

1.5125 – 23 18 16 15 14 14 13 14 15 16 16

1.5375 – 23 19 16 16 14 14 14 14 17 18 15

1.5625 – 22 19 16 16 15 15 15 15 17 17 17

1.5875 – 23 18 17 20 15 15 17 16 18 17 –

1.6125 26 20 17 16 15 15 15 15 17 16 15 –

1.6375 26 19 17 16 14 16 14 16 17 16 – –

1.6625 25 19 17 15 15 15 15 17 18 17 – –

1.6875 24 20 17 16 15 15 16 19 18 – – –

1.7125 23 19 17 17 16 17 19 18 – – – –

1.7375 23 20 17 17 17 18 19 – – – – –

1.7625 22 20 18 18 18 19 – – – – – –

1.7875 21 19 18 18 – – – – – – – –

1.8125 21 17 – – – – – – – – – –
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5.2 Radiative correction

The incoming and scattered electrons are subject to radiative effects, which means

that they can emit photons thus reducing their energy. However, in the experiment the

information on these emissions is not accessible, and one has to assume the electron

energy to be unchanged. Therefore, when extracting the cross sections, one assumes

the energy of the incoming/scattered electron to be greater/smaller than it actually

was in the reaction. This, in turn, leads to the systematic overestimation of the virtual

photon energy with the consequent overestimation2 of W . As a result, the extracted

cross section is assigned to the W value higher than the actual one. This distorts the

measured W spectrum and leads to its agglomeration in the high-lying region.

The common way of handling this problem is to apply the radiative correction to

the extracted cross sections. In this study the radiative correction is performed using

TWOPEG-D [24], which is the event generator for the double-pion electroproduction

that simulates effects of the target motion. TWOPEG-D accounts for the radiative

effects by means of the well-known approach of Ref. [43], which is traditionally used for

the radiative corrections in the studies of double-pion electroproduction [15–19, 21–

23]. In Ref. [43] the approach is applied to the inclusive case, while in TWOPEG-D,

the double-pion integrated cross sections are used instead [24, 39].

In the approach [24, 39, 43] the radiative photons are supposed to be emitted

collinearly either to the direction of the incoming or scattered electron (the so-called

“peaking approximation”). The calculation of the radiative cross section is split into

two parts. The “soft” part assumes the energy of the emitted radiative photon to be

less than a certain minimal value (10 MeV), while the “hard” part is for the photons

with an energy greater than that value. The “soft” part is evaluated explicitly, while

2 The Q2 value is overestimated if the incoming electron emits and underestimated if the scattered
electron emits. That is why the radiative effects do not significantly impact the Q2 dependence of
the cross section.
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for the calculation of the “hard” part, an inclusive hadronic tensor is assumed. The

latter assumption is however considered adequate, especially taking into account that

approaches that are capable of describing radiative processes in exclusive double-pion

electroproduction are not yet available.

The radiative correction factor R in Eq. (4.5.1) is determined in the following way.

The double-pion events either with or without radiative effects are generated with

TWOPEG-D. Both radiated and non-radiated events are subjected to the smearing

due to the Fermi motion of the target. Then the ratio given by Eq. (5.2.1) is taken

in each ∆W∆Q2 bin.

R(∆W,∆Q2) =
Nrad

Nnorad

, (5.2.1)

where Nrad and Nnorad are the weighted numbers of generated events in each ∆W∆Q2

bin with and without radiative effects, respectively. Note that neither Nrad nor Nnorad

are subject to any cuts.
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Figure 5.2: Reciprocal of the radiative correction factor (1/R) as a function of W for
different Q2 bins (see Eq. (5.2.1)).
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This approach gives the correction factor R only as a function of W and Q2,

disregarding its dependence on the hadronic variables. However, the need to integrate

the cross section at least over four hadronic variables (see Eq. (4.5.5)) considerably

reduces the influence of the final state hadron kinematics on the radiative correction

factor, thus justifying the applicability of the procedure [24, 39, 43].

The quantity 1/R is plotted in Fig. 5.2 as a function of W for different Q2 bins.

The uncertainties associated with the statistics of generated events are very small

and therefore not seen in the plot3. Note that the correction factor introduced in

Fig. 5.2 is slightly different from that given in Ref. [22] for the same beam energy of

the free proton experiment (Ebeam = 2.039 GeV). This difference comes from the fact

that generated events in Eq. (5.2.1) are subjected to the smearing due to the Fermi

motion of the target proton.

Once this correction is applied, the extracted cross sections are treated as non-

radiated, but Fermi-smeared.

5.3 Unfolding the effects of the target motion

The motion of the target proton in a deuterium nucleus introduces into this analysis

some specific issues that are not inherent for the previously conducted studies of the

double-pion cross sections [15–19, 21–23]. As was described in Sects. 3.5 and 4.1,

the intention to use in the analysis the π− missing topology (that serves the purpose

of the cross section extraction best) leads inevitably to working under the target-at-

rest-assumption. The latter, however, not only complicates the selection of exclusive

events (see Sect. 3.5), but also impacts the extracted cross sections due to the following

reasons.

3 The total of about 2.5·109 either radiated or non-radiated events were generated in the investi-
gated kinematic region for the calculation of the radiative correction factor.
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• One has to use the smeared reaction invariant mass Wsm for the cross section

binning (see Sect. 4.1). As a result, the extracted cross section is assigned

to the W value different from the actual one. This makes both integral and

single-differential cross sections to be distorted.

• One has to use an approximate Lab to CMS transformation that ignores the

target motion (see Sect. 4.2). This approximation introduces some inaccuracy

to the measured angular (θ, ϕ, and α) distributions without having an impact

on the invariant mass distributions and W and Q2 cross section dependencies

due to their Lorentz invariance.

The former effect is thought to have a much greater impact on the cross section

than the latter. Thus, being folded with the aforementioned effects of the target

motion, the extracted cross sections are seeking the corresponding unfolding correc-

tion. This correction is performed by means of two Monte Carlo event generators

TWOPEG [39] and TWOPEG-D [24]. TWOPEG is the event generator for the

double-pion electroproduction off the free proton that currently provides the best

cross section estimation in the investigated kinematic region. TWOPEG-D is the

event generator for the same exclusive reaction but off the proton that moves in the

deuterium nucleus. This event generator was especially developed to be used in the

studies, where the experimental information of the target proton momentum is inac-

cessible, and one is forced to work under the target-at-rest-assumption. TWOPEG-D

convolutes the double-pion cross section with effects of the target motion and thus

imitates the conditions of the experimental cross section extraction.

To calculate the correction factor, two samples of double-pion events produced ei-

ther off the proton at rest and off the moving proton were generated (with TWOPEG

and TWOPEG-D, respectively). Both event generators provide the particle’s four-

momenta written in the Lab system and distribute events according to the correspond-

ing electron-scattering cross section. As the reaction invariant mass both samples use
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the value calculated from the initial particles (see Eq. (4.1.1)), which for the “moving

proton” events is calculated under the target-at-rest-assumption (as was done for the

cross section calculation). The generated four-momenta are then subject to the trans-

formation to the CMS. For both samples the transformation is performed according

to the procedure given in App. A for the case of the proton at rest. For the “moving

proton” sample, this approximation introduces in the event distributions the same

inaccuracy as appears in the extracted cross sections. Then the kinematic variables

are calculated and the generated events of both samples are binned in the same way

as the extracted cross sections (see Sect. 4.4).

Therefore, the distributions of events generated with TWOPEG-D acquire the

same inaccuracies as the extracted cross sections, i.e. the value Wsm is used for

the binning and the approximate Lab to CMS transformations are applied. The

manifestation of these inaccuracies differs depending on various final state variables

and has a strong W dependence as Figs. 5.3 and 5.4 demonstrate. These figures

show the single-differential distributions of Nnofermi (blue symbols) and Nfermi (black

symbols), which are the weighted numbers of events generated with TWOPEG and

TWOPEG-D, respectively. In Fig. 5.3 these distributions are shown for a low W =

1.3375 GeV, while in Fig. 5.4 they are shown for a higher W = 1.5625 GeV. The

uncertainties associated with the statistics of generated events are very small and

therefore not seen in the plots4.

As seen from Figs. 5.3 and 5.4, the target motion considered under the itemized

conditions listed above affects mostly the cross section near the threshold, while for

higher W their impact is significantly less pronounced. This happens due to the

following. Let’s consider a particular Wtrue bin. As shown in Ref. [24], each value

of Wtrue corresponds to a sequence of Wsm values, which are symmetrically scattered

in the vicinity of Wtrue with a spread of 50-100 MeV. This leads to the fact that

4 For each event sample the total of about 2.5·1010 events were generated in the investigated
kinematic region for the calculation of the correction factor.
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Figure 5.3: Single-differential distributions of generated double-pion events produced off
the proton at rest (blue symbols) and off the moving proton (black symbols). The former
were generated with TWOPEG [39] and the latter with TWOPEG-D [24]. The example is
given for the particular ∆W∆Q2 bin with the central point at W = 1.3375 GeV and Q2 =
0.475 GeV2. As this bin is located near the threshold, the moving proton distributions (black
symbols) have a high relative event excess comparing with the free proton distributions (blue
symbols). See text for details.
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Figure 5.4: Single-differential distributions of generated double-pion events produced off
the proton at rest (blue symbols) and off the moving proton (black symbols). The former
were generated with TWOPEG [39] and the latter with TWOPEG-D [24]. The example is
given for the particular ∆W∆Q2 bin with the central point at W = 1.5625 GeV and Q2 =
0.475 GeV2. As the bin is located in the peak region, the moving proton distributions (black
symbols) have a small relative event deficit comparing with the free proton distributions
(blue symbols). See text for details.
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the same bin in Wsm has a different number of events compared to the Wtrue bin.

This difference depends on the cross section behavior in the vicinity of 50-100 MeV

of this bin. The cross section abruptly rises from the threshold with a strong convex

nonlinearity, which smooths as W grows up to 1.4 GeV, and then turns to a concave

nonlinearity forming the left slope of the resonance peak at 1.5 GeV. Then the cross

section modestly increases and decreases several times changing its nonlinearity type.

In any Wtrue subrange the cross section can be written as a+f(W ), where a = const,

while f(W ) evolves from zero and determines the cross section nonlinearity within the

subrange. Then the absolute variation in the event number in Wsm bin is determined

solely by the nonlinearity of the function f(W ), i.e. convex nonlinearity leads to an

event excess in the bin, while concave nonlinearity – to an event deficit. Hence, in the

resonance peaks an event deficit is observed, while the region close to the threshold

and the dip between the peaks have an event excess. However, the relative event

variation depends on a and is higher for smaller a. The smallest value of a is reached

at the threshold (a = 0), therefore the near-to-threshold subrange has the greatest

relative variation of event number.

Indeed, in Fig. 5.3, which is plotted for the W bin located close to the threshold,

the moving proton distributions (black symbols) have a high relative event excess

compared to the free proton distributions (blue symbols). Meanwhile, in Fig. 5.4,

which is plotted for the W bin located at the peak region, the moving proton dis-

tributions (black symbols) have small relative event deficit comparing with the free

proton distributions (blue symbols).

For the low W region (as in Fig. 5.3) it is noteworthy that a very large relative

difference between the free proton and the moving proton cross sections is observed for

the right part of the invariant mass distributions. This happens due to the phase space

broadening with W that takes place for invariant masses (see App. B). The invariant

mass distribution typically has a maximum in the middle and gradually goes to zero
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on both edges. The lower the W value is, the narrower is the distribution width.

As W grows, the distribution widens to the right and goes to zero farther away.

Meanwhile, each bin in Wsm contains a mixture of events with the values of Wtrue

spread within 50-100 MeV near this bin. For low W this spread is comparable with

the total width of the invariant mass distribution. Therefore, the right distribution

side acquired the event excess that comes from the same bins in invariant mass but

located at higher Wtrue and hence having high cross sections.

The unfolding correction is performed in each multi-dimensional bin of the double-

pion production phase-space (see Sect. 4.3 as well as App. B), i.e. in each ∆W∆Q2∆5τ

bin the cross section is divided by the correction factor F (see Eq. (4.5.1)) that is

calculated as

F(∆W,∆Q2,∆5τ) =
Nfermi

Nnofermi

, (5.3.1)

where Nnofermi and Nfermi are the weighted numbers of generated double-pion events

in the ∆W∆Q2∆5τ bin produced off the proton at rest and off the moving proton,

respectively. Both event samples were generated without radiative effects, since the

correction factor F is applied to the cross sections that are already corrected for the

radiative effects (see Sect. 5.2).

The impact of the unfolding correction on the extracted integral cross sections

is illustrated in Fig. 5.5, where the distributions before the correction are plotted in

orange, while the distributions after the correction are plotted in dark blue. The

comparison is given for two Q2 bins. As was expected, the correction causes a slight

cross section increase in the resonance peaks and a decrease near the threshold and

in the dip between the peaks.

The value of the correction factor in Eq. (5.3.1) depends on both the free proton

cross sections and the model of the deuteron wave function that were employed in

the event generators. The former relies strongly on the JM model fit of the available

data on double-pion cross sections, while for the latter the Bonn model was used (see
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Figure 5.5: Impact of the unfolding correction on the extracted integral cross sections.
The cross section before the correction is plotted in orange, while the cross section after
the correction is plotted in dark blue (both are divided by the virtual photon flux). The
comparison is given for two Q2 bins as specified above the plots.

Refs. [24, 39] for more detail). Therefore, the uncertainty of the extracted cross sec-

tions that comes from this unfolding correction is attributed to the model dependence

uncertainty and is discussed in Sect. 7.2.

Once corrected for the effects of the target motion and then divided by the virtual

photon flux, the cross section is treated as the true virtual photoproduction cross

section and is attributed to the central point of the corresponding ∆W∆Q2∆5τ bin.

5.4 Correction for binning effects

The cross section, extracted in bins of a finite size, is assigned to the central point of a

bin. On this way the cross sections acquire binning caused distortions and, therefore,

are seeking the corresponding corrections. In this section, which is devoted to the

binning effects, two separate binning issues are distinguished, i.e. (i) the specific

issue of affecting the cross section value in the next to last point of the invariant mass

distributions and (ii) the common binning issue that impacts the cross section value

in any bin of finite size.
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Let’s address the specific binning issue in the invariant mass distributions first.

As shown in Sect. 4.4, the binning in invariant mass requires special attention due

to the broadening of the reaction phase-space with W (see App. B) and the corre-

sponding W dependence of the upper boundary of the invariant mass distributions

(see Eq. (4.4.1)). This effect makes the upper boundary Mupper to be indistinct, since

the cross section is calculated in a bin Wleft < W < Wright. To deal with this diffi-

culty, the value of Mupper is calculated using Wcenter, the center of the W bin. Then

a specific arrangement of mass bins is used, which forces the last bin to be situated

completely out of the boundaries given by Eq. (4.4.1) using Wcenter. When integrating

the cross section over the mass distribution, the events in the extra bin are included,

but a cross section for this bin is not reported.

Meanwhile, the cross section in the next to last bin (labeled as bin number

Nbins − 1) should be treated carefully. This is best illustrated in Fig. 5.6, which

shows schematically the event distribution in mass, ending in Mupper for three choices

of W at Wleft (dot-dashed), Wcenter (solid) and Wright (dashed). The black points

at MNbins−1
left and MNbins−1

right show the left and right boundaries of the next to last bin,

respectively. In the next to last bin events with W < Wcenter are distributed over a

range, which is less than ∆M defined by Eq. (4.4.2). However, when extracting the

cross sections, the event yield was divided by the full bin width ∆M , thus leading to

an underestimation of the cross section.

The correction for this effect was taken from Ref. [22, 23]. It was made using

the TWOPEG double-pion event generator [39]. The correction factor to the cross

section in the next to last bin is the ratio of the simulated cross sections calculated

with fixed ∆M defined by Eq. (4.4.2) and with ∆̃M = W −mh3 −MNbins−1
left , which

was different for each generated event. This factor provides the correction to the cross

section in the next to last bin that varied from ∼5% to ∼10%.
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Figure 5.6: Schematic representation of the invariant mass distributions ending in Mupper

calculated according to Eq. (4.4.1) for three choices of W at Wleft (dot-dashed), Wcenter

(solid) and Wright (dashed). The black points at MNbins−1
left and MNbins−1

right show the left and
right boundaries of the next to last bin, respectively, while the remaining point marks the
right boundary of the last mass bin.

Let’s now address the common binning issue that impacts the cross section value

in any bin of a finite size. Extracted in a finite bin, the cross section is subject to

averaging within this bin. For instance, if there is a sharp peak in the middle of a

bin, then the average value of the cross section in that bin will always be smaller

than the peak value. Any non-linear behavior of the cross section will likely result in

an offset of the obtained value. There are two methods of correcting this offset, i.e.

(i) to correct the kinematic quantities associated with the bin and use the corrected

values instead of the central values or (ii) to correct the cross section value in the

center of the bin. Both these methods are widely used for the binning corrections.

In the studies of double-pion cross sections, however, the second method has become

conventional [17, 18, 22, 23]. Therefore, in this study the second method is chosen,

in order to keep the initial binning over the kinematic variables and to facilitate the

cross section comparison with the results obtained off the proton at rest [22, 23].

In this study one-dimensional binning corrections are performed, i.e., the cross

section dependence on each kinematic variable x is corrected individually (where x
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corresponds to W , Q2, and hadron variables). In any one-dimensional bin [xmin, xmax]

the cross section value is multiplied by the correction factor Cbin. To estimate this

factor some assumptions about the cross section behavior within the bin are needed,

and hence, the cross section shape should be described by a continuous function f(x).

The multiplicative correction factor Cbin is then calculated in each bin [xmin, xmax] as

Cbin =
f(xcenter)
xmax∫
xmin

f(x)dx

,
(5.4.1)

where xcenter is the central point of the [xmin, xmax] bin.

For the single-differential distributions a cubic spline approximation is chosen to

continuously describe the cross section shape, as shown in Fig. 5.7. The black and

red points in this figure are the cross sections before and after binning corrections,

respectively, and the curves correspond to the spline approximation. For the invariant

mass and θ angular distributions the splines are forced to pass through the interme-

diate points that are obtained by averaging over two neighboring cross section points.

This method reduces the splines sensitivity to accidental cross section fluctuations.

Besides this, for the invariant mass distributions the splines are required to give zero

at the distribution edges. For the α angular distributions the splines are forced to

pass through the points that are obtained by averaging over two cross section points

symmetrical with respect to α = 180o. This approach reflects the fact that after the

integration over ϕ, the cross section must be symmetrical in the α angle (meanwhile,

the extracted experimental distributions are slightly asymmetrical)5.

The integral cross sections are subjected to individual corrections of the Q2 depen-

dence inside the W bins and the W dependence inside the Q2 bins, as shown on the left

and right plots of Fig. 5.8, respectively. In this figure black and red points represent

5 Although the ϕ distributions are not reported here, they were nevertheless extracted and added
to the CLAS physics database [5]. The ϕ distributions were thus subjected to the binning correction
with the same approach used for the θ distributions.
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Figure 5.7: Single-differential cross sections as functions of the final hadron variables before
(black points) and after (red points) the binning corrections. Curves represent a cubic spline
approximation. The example is given for a particular ∆W∆Q2 bin with the central point
W = 1.6375 GeV and Q2 = 0.525 GeV2.
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the cross section values before and after binning corrections, respectively, while the

curves correspond to the continuous cross section approximation. The latter are based

on a second order polynomial fit of theQ2 distributions (left plot) and on a cubic spline

approximation for the W distributions (right plot). The splines are forced to pass

through the intermediate points that are obtained by averaging over two neighboring

cross section points. In this way, the integral cross section value in each ∆W∆Q2

bin acquires two multiplicative correction factors. The corrections obtained for the

integral distributions are then propagated to the single-differential cross sections.
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Figure 5.8: Q2 dependence (left plot) and the W dependence (right plot) of the integral
cross sections before (black points) and after (red points) the binning corrections. The
curves correspond to a second order polynomial fit for the left plot and a cubic spline
approximation for the right one. Each distribution is plotted for one particular bin as
specified above the plots.

Since in this analysis a relatively fine binning in all kinematic variables is chosen

(see Sect. 4.4), the effect of the binning corrections is almost insignificant. This

is why in Figs. 5.7 and 5.8 the black points (before the correction) are almost

completely covered by the red ones (after the correction). For the Q2 dependences

the correction factors are less than 1% in all bins, and for the W dependences they

are ∼2%-3% for the first two low W bins and less than 1% in all other bins. For

the single-differential distributions, the corrections are on the level of 1%-2% for the

majority of bins, but rise for some points (mostly at low W ) up to 5%-6%.
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Chapter 6

Normalization verification

To prove the credibility of an extracted observable, some well-established quantity is

commonly used as a reference point. For this purpose one can use already published

measurements of this observable, if they exist in the desired kinematic region, but this

usually is not the case. Alternatively, one can focus on some quantity, which can be

reliably approximated in this kinematic region by a theoretical model or parameteri-

zation. This auxiliary quantity is then extracted from the analyzed dataset, and the

comparison of the measured value with the approximated one allows the reliability of

the main result to be judged.

For experiments off free protons, the elastic cross section usually serves as such a

reference quantity as it can be approximated in a wide kinematic region by P. Bosted

parameterization with an excellent accuracy of a few percent, as Ref. [47] demon-

strates (see App. B there). Thus, an agreement between the auxiliary measured

elastic cross section with the parameterized one, if achieved, indicates both the correct

normalization of the main result and the trustworthy quality of the electron selection.

Meanwhile, for experiments off a deuterium target, the quasi-elastic cross section

off nucleons can serve as the corresponding reference quantity. However, this

observable, if compared with the elastic free proton cross section, is less understood

and lacking the same quality of theoretical description [47]. Nonetheless, several

techniques have been developed in this matter with the Bosted parameterization of

the deuteron quasi-elastic peak being the most commonly used tool.
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Ref. [47] gives some details on the performance of the Bosted parameterization of

the deuteron quasi-elastic peak [48, 49] and tests its ability to describe experimental

data by comparing the parameterized cross sections with published measurements [50–

52]. This testing, being performed in the Q2 range from ∼0.3 GeV2 to ∼4 GeV2, is

of great importance for the current analysis as its Q2 coverage falls within this range.

As follows from Ref. [47], the Bosted parameterization in its default implemen-

tation systematically overestimates the measured integrals under the quasi-elastic

peak and the overall description quality gradually decreases from several percent

to almost 20% as Q2 grows from 0.3 GeV2 to 4 GeV2. The default implementation

corresponds to the case when the nuclear scaling function is estimated using a PWIA

calculation and the Paris deuteron wave function (see Refs. [48, 49] for details).

Meanwhile, as also shown in Ref. [47], the Bosted parameterization in its alterna-

tive implementation systematically underestimates the corresponding integrals with

the description quality gradually increasing from ∼15% to a few percent as Q2 grows

from 0.3 GeV2 to 4 GeV2. The alternative implementation corresponds to the case

when the nuclear scaling function is estimated according to the parameterization

from Ref. [53] and is available with some minor modifications of the source code.

Besides this, Ref. [47] describes a useful approximation formula for the cross sec-

tion at the quasi-elastic peak, which came from Durand’s theory [54]. This formula is

of particular interest for this analysis, since it describes very nicely the experimental

peak values in the Q2 range from ∼0.3 GeV2 to ∼1.8 GeV2. As shown in Ref. [47], the

normalization of the cross section distributions of the Bosted parameterization to the

values provided by this formula improves the data description quality in this Q2 range.

Once we have acquired an impression of the performance and reliability of the

parameterizations currently available for the deuteron quasi-elastic peak, let’s now

estimate the quasi-elastic cross section from the analyzed dataset and then perform

its comparison with the cross section approximated by various implementations of
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the Bosted parameterization. This investigation is carried out in the framework

established in Ref. [47] and therefore, uses the same notations and color codes.

To extract the cross section in the region of the quasi-elastic peak, the only

particle that should be registered is the scattered electron. With the electron

selection being exactly the same as for the double-pion cross section extraction, the

quasi-elastic cross section is defined in each ∆E ′∆θe′ bin by

dσexp
dΩdE ′

=
1

2π
·

(
Nfull

Qfull
− Nempty

Qempty

)

∆E ′∆(− cos θe′)[L]
· Ngen

Nrec

, (6.1)

where Nfull and Nempty are the numbers of selected events inside the ∆E ′∆θe′

bin for runs with deuterium and empty target, respectively. Ngen and Nrec come

from the Monte Carlo simulation and correspond to the numbers of generated and

reconstructed quasi-elastic events inside the ∆E ′∆θe′ bin, respectively. The latter

were subject to the same electron selection cuts as the experimental events. For

the Monte Carlo simulation an event generator based on the measurements from

Ref. [10] was used. The other variables are defined in the context of Eq. (4.5.1).

The cross section calculated according to Eq. (6.1) is shown by the black symbols

in Fig. 6.1 (note that it is the radiated cross section). The blue and green histograms

in this figure correspond to the Bosted parameterization with the default and

alternative methods of calculating the nuclear scaling function, respectively. The

green horizontal lines correspond to the prediction of the peak value given by the

aforementioned approximation formula.

Since the experimental cross section is radiated, while the parameterized cross

section is not, their visual comparison looses informativeness. To judge more

definitely the agreement of the measurement with the parameterization, the corre-

sponding integrals under the quasi-elastic peak were compared. The distributions

were integrated within the limits shown by the vertical lines in Fig. 6.1. To determine

the positions of these limits, the procedure suggested in Ref. [47] was used. First,
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Figure 6.1: Black symbols correspond to the (radiated) cross section in the region of the
quasi-elastic peak extracted from the analyzed dataset according to Eq. (6.1). The results
of the Bosted parameterization [48, 49] are shown by the histograms. The blue histograms
correspond to the default method to calculate the nuclear scaling function, while the green
histograms to the alternative method. The green horizontal lines correspond to the peak
values approximated by the formula described in Ref. [47]. The vertical lines correspond to
the integration limits.

111



the quasi-elastic peaks in the experimental spectra were fit by Gaussians with

polynomial background. Then the values µ − σ and µ + 3σ were set as the left and

right integration limits, respectively, with µ and σ being the mean value and the

standard deviation of the corresponding Gaussian function. The integration limits

were chosen to be asymmetrical in order to minimize the inelastic background under

the quasi-elastic peak. This procedure of obtaining the integration limits allows to

achieve consistency among all plots, since the width of the quasi-elastic peak and its

proximity to the inelastic part of the spectrum depend on the kinematics.

The experimental integrated cross sections were divided by the radiative correc-

tion factors (R), which were calculated in each θe′ bin according to the Mo&Tsai

approach [43]. These correction factors are listed in Tab. 6.1 together with the

positions of the corresponding left integration limits. The peak cross section values

given by the approximation formula are also given there. The last four columns

contain the values of the ratio of the experimental integral under the quasi-elastic

peak (σexp) to that obtained from the Bosted parameterization with the nuclear

scaling function calculated by the default (σ1
par) and alternative (σ2

par) methods. The

index norm indicates that the parameterization histogram was scaled in a way that

its maximum is equal to the prediction of the considered approximation formula.

The cells’ coloring is the same as for Tab. 1 in Ref. [47], i.e. the dark-green shade

stands for deviations ≤ 5%, light-green for 5%-10%, and light-red for more than 10%.

The ratios of the experimental integrals to the parameterized ones are also shown

in Fig. 6.2 as a function of the polar angle of the scattered electron (θe′). The

left side corresponds to the case, when the nuclear scaling function was calculated

by the default method (blue symbols), while for the right side it was calculated

by the alternative method (green symbols). The top row stands for the unscaled

parameterization histograms, while for the bottom row they were scaled to the peak

value given by the approximation formula.
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Table 6.1: Ratios of the experimental integrals under the quasi-elastic peak (σexp) obtained from the analyzed dataset to
those obtained from the Bosted parameterization [48, 49] with the nuclear scaling function calculated by the default (σ1

par) and
alternative (σ2

par) methods. The index norm means that the parameterization histogram was scaled in a way that its maximum
was equal to the prediction of the formula described in Ref. [47]. The dark-green shade stands for deviations ≤ 5%, light-green
for 5%-10%, and light-red for more than 10%.

θe′ , deg Q2, GeV2 E ′peak, GeV Left cut R σpeak, µb σexp/σ
1
par σexp/σ

1
par,
norm

σexp/σ
2
par σexp/σ

2
par,
norm

23 0.56 1.739 0.9811 0.8222 1.817E0 0.91 1.03 1.13 0.98

25 0.65 1.694 0.9784 0.8280 1.014E0 0.89 1.02 1.10 0.96

27 0.73 1.649 0.9761 0.8325 5.876E-1 0.87 1.00 1.07 0.95

29 0.82 1.602 0.9757 0.8324 3.531E-1 0.89 1.04 1.10 0.99

31 0.91 1.556 0.9736 0.8362 2.188E-1 0.87 1.03 1.07 0.98

33 0.99 1.51 0.9722 0.8384 1.397E-1 0.85 1.02 1.05 0.97

35 1.08 1.464 0.9715 0.8394 9.162E-2 0.84 1.02 1.04 0.98

37 1.17 1.418 0.9714 0.8390 6.167E-2 0.83 1.03 1.04 0.99

39 1.25 1.374 0.9694 0.8427 4.244E-2 0.83 1.04 1.04 1.00

41 1.33 1.33 0.9691 0.8428 2.988E-2 0.84 1.07 1.05 1.03

43 1.41 1.287 0.9686 0.8436 2.147E-2 0.83 1.07 1.04 1.03

45 1.49 1.246 0.9680 0.8444 1.571E-2 0.83 1.09 1.04 1.04

47 1.56 1.206 0.9688 0.8427 1.171E-2 0.83 1.10 1.04 1.05
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Figure 6.2: Ratios of the experimental integral under the quasi-elastic peak to the param-
eterized one as a function of the angle θe′ . The left side corresponds to the case, when
the nuclear scaling function was calculated by the default method (blue symbols), while
for the right side it was calculated by the alternative method (green symbols). The top
row stands for the unscaled parameterized histograms, while for the bottom row, they were
scaled to the peak value approximated by the formula described in Ref. [47]. The red solid
line marks the position of unity. The dark-green dashed lines mark the deviation of 5%,
while the light-green ones show the deviation of 10%.

As seen from both Tab. 6.1 and Fig. 6.2, the measured integrals under the

quasi-elastic peak were found to be lower than the values given by the Bosted

parameterization in its default implementation and their difference increases from

∼10% to ∼15% as Q2 grows. The measured integrals were also found to be higher

than the values given by the Bosted parameterization in its alternative implementa-

tion with the difference decreasing with Q2 from ∼10% to ∼5%. Meanwhile, if the

parameterization histograms are scaled to the peak values predicted by the formula

described in Ref. [47], the corresponding ratio stays in the vicinity of unity with a

reasonable deviation for both options of scaling function calculation.

This result is fully consistent with the conclusion made in Ref. [47] regarding the

ability of the Bosted parameterization to describe experimental measurements in this

kinematic region. The deviations of the measured integrals from their parameterized

114



values revealed in this analysis and the Q2 behavior of those deviations are almost

exactly the same as those found in Ref. [47] for already established measurements.

Thus, one can conclude that the quality of agreement between the quasi-elastic

cross section estimated in this analysis with the Bosted parameterization [48, 49] is

the same as was observed for other published measurements. This, in turn, indicates

that in this particular analysis, both the electron selection and overall cross section

normalization are under control.

The value of the uncertainty due to normalization and electron identification is

then estimated considering the following arguments.

• as shown in this chapter, the quasi-elastic cross section extracted from the

current dataset have the same quality of agreement with the Bosted parame-

terization as other published measurements demonstrate [47];

• as follows from Tab. 6.1 and Fig. 6.2, one can achieve a good ∼5% agreement

between the measured and parameterized values of the quasi-elastic cross sec-

tions when the parameterized distributions are normalized to the peak values

approximated by the formula that was proven to describe well the experimental

peak cross sections in this kinematic region [47];

• as shown in [22, 23], the elastic cross section off protons estimated from the same

“e1e” run period (as it included both hydrogen and deuterium target runs in

the same experimental configuration) agrees within∼3% with the corresponding

Bosted parameterization. The latter, meanwhile, employs the same empirical

fit of the nucleon electromagnetic form factors as the Bosted parameterization

of the quasi-elastic cross section off deuteron used in the current study [55].

Taking these facts into account, a 5% global uncertainty is assigned to the ex-

tracted double-pion cross sections due to potential inaccuracies in the normalization

and electron selection.
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Chapter 7

Cross section uncertainties

In this study (like in other studies of the double-pion cross sections [15–19, 21–23])

three separate types of the cross section uncertainties are considered, i.e. statistical

uncertainty, uncertainty due to the model dependence, and systematic uncertainty.

The recipe for estimating the uncertainty of each type is given below.

7.1 Statistical uncertainties

The limited statistics of both the experimental data and the Monte Carlo simulation

are the two sources of statistical fluctuations of the extracted cross sections. The cut

on the efficiency uncertainty described in Sect. 4.6 was chosen in a way that the latter

source gives a minor contribution to the total statistical uncertainty.

The statistical uncertainty to the five-fold differential virtual photoproduction

cross section is calculated individually in each non-empty multi-dimensional ∆5τ bin

as described below.

The absolute statistical uncertainty due to the limited statistics of the experimen-

tal data is calculated in the non-empty bins as (see Eq. (C.1) in App. C).

δexp
stat(∆

5τ) =
1

E ·R·F ·Γv
·

√(
Nfull

Q2
full

+ Nempty

Q2
empty

)

∆W ·∆Q2 ·∆5τ ·L , (7.1.1)
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where Γv is the virtual photon flux given by Eq. (4.5.3), while the other ingredients

are explained after Eq. (4.5.1).

The absolute uncertainty due to the limited Monte Carlo statistics is estimated

in the non-empty bins as (see Eq. (C.2) in App. C).

δMC
stat(∆

5τ) =
d5σv

d5τ

(
δE
E

)
, (7.1.2)

where d5σv
d5τ

is the virtual photoproduction cross section given by Eq. (4.5.2), E is

the efficiency inside the multi-dimensional bin defined by Eq. (4.6.1), while δE is its

absolute statistical uncertainty.

Meanwhile, the calculation of the efficiency uncertainty δE is not straightforward

and needs special attention, since (i) Ngen and Nrec in Eq. (4.6.1) are not independent

and (ii) Monte Carlo events in this equation are subject to weighting. Therefore, the

special approach described in Ref. [45] was used for this purpose. Neglecting the

event migration between the bins, this approach gives the following expression for

the absolute statistical uncertainty of the efficiency in a bin for the case of weighted

Monte Carlo simulation,

δE(∆5τ) =

√√√√Ngen − 2Nrec

N3
gen

Nrec∑

i=1

w2
i +

N2
rec

N4
gen

Ngen∑

j=1

w2
j , (7.1.3)

where Ngen and Nrec are the numbers of the generated and reconstructed Monte

Carlo events inside the multi-dimensional bin, respectively, Ngen and Nrec are the

corresponding weighted event numbers, while w is a weight of an individual event.

The two parts of the statistical uncertainty given by Eqs. (7.1.1) and (7.1.2) are

combined quadratically into the total absolute statistical uncertainty in each non-

empty ∆5τ bin,

δtot
stat(∆

5τ) =

√
(δexp

stat)
2 + (δMC

stat)
2
. (7.1.4)
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The cross section assigned to the empty ∆5τ cells (see Eq. (5.1.3)) acquires zero

statistical uncertainty.

For the extracted single-differential cross sections the statistical uncertainty

δtot
stat(∆X) (where X is one of the final state variables, i.e. Mh1h2 , Mh2h3 , θh1 , αh1) is

obtained from the uncertainties δtot
stat(∆

5τ) of the five-fold differential cross sections

according to the standard error propagation rules1.

7.2 Model dependent uncertainties

In the studies of the double-pion cross sections off the free proton [15–19, 21–23], the

uncertainty of the model dependence is commonly treated as a unique uncertainty

type and is associated with the filling of the empty cells. In this analysis one more

source of the cross section model dependence had to be considered, which is unfolding

the effects of the target motion. These two sources give comparable uncertainties only

for the two lowest W bins, while for the other bins the dominant part of the model

dependent uncertainty comes from the filling of the empty cells.

Both the contribution from the empty cells and the value of the unfolding cor-

rection vary greatly (from completely insignificant to considerable) for different final

state variable bins. Therefore, it is convenient to estimate the model dependent un-

certainties in each ∆X bin of the single-differential cross sections (where X is one of

the final state variables introduced in Sect. 4.3).

1 The THnSparse root histograms offer an easy way of dealing with the uncertainties. Each multi-
dimensional bin of the histograms with the experimental data acquires the absolute uncertainty√
Nfull and

√
Nempty for full and empty target runs, respectively. The efficiency histograms get the

uncertainty δE(∆5τ) given by Eq. (7.1.3). Then the uncertainty automatically propagates upon all
manipulations with these histograms (addition, division, scaling).
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7.2.1 Uncertainty of the empty cells filling

During the empty cell filling the extracted cross sections acquire a moderate model

dependence (see Sect. 5.1). Once the empty cells are filled, the part of the single-

differential cross section that came from the empty cells is assigned a 50% relative

uncertainty2 (see Sect. 5.1). The absolute cross section uncertainty δ̃cells
model(∆X) is

hence given by

δ̃cells
model(∆X) =

1

2

([
dσ

dX

]

filled

−
[

dσ

dX

]

not filled

)
, (7.2.1)

where the parentheses contain the difference between the cross section values calcu-

lated with the empty cell contributions (“filled”) and without them (“not filled”).

The corresponding relative uncertainty εcells
model(∆X) is in turn given by

εcells
model(∆X) =

δ̃cells
model[

dσ
dX

]
filled

. (7.2.2)

After the filling of the empty cells the cross section is subject to several subse-

quent manipulations, i.e. virtual photon flux normalization, radiative correction, and

unfolding the effects of initial proton motion. Along this path the absolute uncer-

tainty δ̃cells
model(∆X) is propagated in such a way as to keep the relative uncertainty

εcells
model(∆X) in each ∆X bin of the single-differential distribution unchanged.

Therefore, the absolute uncertainty δcells
model(∆X) for the final single-differential dis-

tributions is obtained by

δcells
model(∆X) =

[
dσv

dX

]

final

· εcells
model, (7.2.3)

with the relative uncertainty εcells
model given by Eq. (7.2.2) and the single-differential

cross section determined according to Eq. (4.5.5).

2 This conservative way to estimate this uncertainty has become conventional for the studies of
double-pion production cross sections [19, 20, 22].

119



7.2.2 Uncertainty of unfolding the effects of target motion

In this study the cross sections are subjected to one extra correction compared to the

cross sections extracted off the free proton [15–19, 21–23], i.e. unfolding the effects

of initial proton motion. The potential inaccuracies due to this procedure are also

attributed to the model dependent uncertainty, since the procedure is based on (i)

the free proton cross sections taken from the model JM and (ii) the model of the

deuteron wave function, which was the Bonn model (see Sect. 5.3 for more detail).

For each ∆X bin of the single-differential distributions the relative uncertainty

due to the unfolding procedure was estimated by3

εunfold
model (∆X) =

∣∣∣∣∣

[
dσ
dX

]
folded

−
[

dσ
dX

]
unfolded[

dσ
dX

]
folded

+
[

dσ
dX

]
unfolded

∣∣∣∣∣ . (7.2.4)

The corresponding absolute uncertainty is then given by

δunfold
model (∆X) =

[
dσv

dX

]

final

· εunfold
model . (7.2.5)

7.3 Systematic uncertainties

The systematic uncertainty of the extracted cross sections is estimated in each bin in

W andQ2. As in the previous studies of the double-pion production cross sections [15–

19, 21–23], the dependence of the systematic uncertainty on the hadronic variables is

not investigated.

The following sources are considered to contribute to the total systematic uncer-

tainty of the extracted cross sections.

3 Although the relative uncertainty due to empty cell filling can also be estimated in this way, it was
decided to calculate it according to Eq. (7.2.2) to observe consistency with the free proton study [22].
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7.3.1 Normalization and electron identification

The presence of quasi-elastic events in the dataset advantages the verification of both

the overall cross section normalization and the quality of the electron selection. The

former may lack accuracy due to potential miscalibrations of the Faraday cup, fluctu-

ations in the target density, deviations of the beam current and position, inaccuracies

in determining the DAQ live-time as well as imprecise knowledge of other “luminosity

ingredients” such as target length or the density of liquid deuterium (see Eq. (4.5.1)).

Meanwhile, the quality of the electron selection may suffer from potential miscalibra-

tions of different detector parts, inaccuracies in the electron tracking and identification

as well as uncertainties of the cuts and corrections involved in the electron selection.

To verify the correct cross section normalization and the quality of the electron

selection, the study [22, 23] (which is the study of double-pion cross sections off the

free proton in the same kinematic region) estimates the elastic cross section and then

compares it with the Bosted parameterization [55]. This comparison revealed a 3%

agreement between the experimental and parameterized cross sections that allowed

to assign a 3% global uncertainty to the extracted double-pion cross sections due to

inaccuracies in the normalization and electron selection.

To achieve the same goals in the current analysis, the quasi-elastic cross section

was estimated and then compared with the Bosted parameterization of the quasi-

elastic cross section off the deuteron [48, 49] (see Sect. 6 for details). This comparison

allows to claim a 5% agreement between the experimental and parameterized cross

sections and, therefore, to assign a 5% global uncertainty to the extracted double-pion

cross sections due to inaccuracies in the normalization and electron selection.
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7.3.2 Integration over three sets of final hadron variables

According to Sect. 4.3, the cross sections are extracted in three sets of the kine-

matic variables. The integral cross sections are found to slightly differ among the

sets due to the different data and efficiency propagation to various kinematic grids.

As a final result, the integral cross sections averaged (as an arithmetic mean) over

these three grids are reported. The standard error of the mean is interpreted as a

systematic uncertainty (which is calculated according to Eq. (C.4) in App. C). The

single-differential cross sections and the uncertainty δtot
stat,mod are scaled to the mean

integral value.

Since different variable sets correspond to different registered final hadrons (and,

therefore, to different combinations of the hadron cuts), this systematic error includes

the error due to the shapes of the hadron cuts that are used in the analysis. The

average value of this uncertainty among all W and Q2 bins is 1.6%. However, the

error is larger in the first two W bins (with the maximum of 9.5% achieved in the

first W bin at Q2 = 0.675 GeV2), which being located near the reaction threshold,

correspond to low momenta of the final hadrons.

7.3.3 Relative efficiency uncertainty cut

The cut on the relative efficiency uncertainty directly impacts both the cross section

value and the cross section uncertainties, since it excludes entire kinematic cells from

further consideration (see Sect. 4.6). This cut, therefore, reduces the total statistical

uncertainty and increases the model dependent uncertainty, and a cut value δẼ/Ẽ =

0.3 is chosen as a compromise between these two effects. To estimate the systematic

effect of the cut, the integral cross sections were also calculated for the cut values

0.25 and 0.35. As a final result, the arithmetic mean of the integral cross sections for

these three cut values is reported, and the standard error of the mean is interpreted
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as a systematic uncertainty (which is calculated according to Eq. (C.4) in App. C).

The single-differential cross sections and the uncertainty δtot
stat,mod are reported for the

cut value 0.3, being scaled to the mean integral value.

The systematic effect of the relative efficiency uncertainty cut is estimated for each

bin in W and Q2 individually and is found to be minor, i.e. the average uncertainty

value is 0.8%. Taking into account that the cut on the relative efficiency uncertainty

impacts directly the amount of empty cells, the revealed small uncertainty associated

with this cut indicates that the procedure of the empty cell filling is well under control

and that the cross section inaccuracy caused by the corresponding model dependence

is not significant.

7.3.4 Correction due to FSI-background admixture

One more part of the systematic uncertainties comes from the effective correction

due to FSI-background admixture. This correction is performed for the experimental

events in the π− missing topology and described in Sect. 3.5.2. The fit shown in

Fig. 3.31 (as well as the corresponding correction factor given by Eq. (3.5.2)) turned

out to be slightly dependent on the histogram binning. To account for this uncer-

tainty, the correction factor is estimated for five different histogram bin sizes, and the

arithmetic mean of these five individual values is used for the correction (for each bin

in W ). The absolute uncertainty of the resulting correction factor is estimated as a

standard error of the mean (which is calculated according to Eq. (C.4) in App. C).

The corresponding cross section uncertainty is estimated by Eq. (C.3), where the

quantity a includes the number of events from the π− missing topology, while c in

the denominator includes the efficiency estimated for both topologies.

The systematic effect of the FSI-background correction is estimated for each bin

in W and Q2 where the correction is applied. For such bins, the average value of the

relative systematic uncertainty is 0.4%, which is rather marginal.
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7.3.5 Radiative corrections

As a common practice in studies of the double-pion cross sections with CLAS [15–

19, 21–23], a 5% global uncertainty is assigned to the cross section due to the inclusive

radiative correction procedure (see Sect. 5.2).

7.3.6 Total systematic uncertainty

The average values of integral systematic errors with their sources are presented in

Tab. 7.1. The uncertainties due to these sources were summed up in quadrature in

each W and Q2 bin to obtain the total systematic uncertainty for the integral cross

sections. The common value of the total systematic uncertainty in the bin is ∼7% (it

is, however, higher near the threshold).

Table 7.1: Average values of integral systematic uncertainties.

Source Average value
Normalization and electron identification 5%
Integration over three sets of hadron variables 1.7%
Relative efficiency uncertainty cut 0.6%
Correction due to FSI-background admixture 0.4%
Radiative corrections 5%
Total 7.4%

7.4 Summary for the cross section uncertainties

Finally, the model dependent uncertainties δcells
model(∆X) and δunfold

model (∆X) defined by

Eq. (7.2.3) and Eq. (7.2.5), respectively, are combined with the total statistical un-

certainty δtot
stat(∆X) defined in Sect. 7.1 as the following.

δtot
stat,mod(∆X) =

√
(δtot

stat)
2 +

(
δcells

model

)2
+
(
δunfold

model

)2
. (7.4.1)
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The extracted cross sections are reported with the uncertainty δtot
stat,mod, which

for the single-differential distributions is given by Eq. (7.4.1), while for the integral

cross sections is obtained from the uncertainty of the single-differential distributions

according to the standard error propagation rules4.

For the majority of (W, Q2) points of the integral cross sections the uncertainty

δtot
stat,mod stays on a level of ∼ 4%-6%.

It should be mentioned that to combine the statistical uncertainty with the un-

certainty of the model dependence and to report the final cross sections with the

resulting uncertainty δtot
stat,mod have become conventional for the studies of double-

pion production cross sections [15–19, 21–23].

In addition to the uncertainty δtot
stat,mod, for the integral cross sections the total sys-

tematic uncertainty is also reported as a separate quantity. If necessary, the relative

systematic uncertainty (εsys) in each W and Q2 bin can be propagated as a global

factor to the corresponding single-differential distributions.

In this study the uncertainty δtot
stat,mod is less than the total systematic uncertainty

for the majority of (W, Q2) points, exceeding it only near the threshold (for W .

1.4 GeV). This happens because the former rises close to the threshold due to small

experimental statistics, large contribution of the empty cells (see Sect. 5.1), and

pronounced impact of the unfolding correction (see Sect. 5.3).

4 Note that for the integral cross sections the value of δtotstat,mod was averaged (as arithmetic mean)
among the three sets of final hadron variables.
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Chapter 8

Some other issues

8.1 The cross section beam energy dependence

The ϕ-integrated virtual photoproduction cross section σv can be decomposed into

the combination of the structure functions [3, 39],

σv = σT + εLσL with εL =
Q2

ν2
εT , (8.1.1)

where σT and σL are the transverse and longitudinal structure functions, respectively,

and εL the longitudinal polarization of the virtual photon with εT given by Eq. (4.5.4).

Being decomposed in this way, the cross section σv has a specific beam energy

dependence, which is incorporated into the coefficient εL. The structure functions

themselves, meanwhile, do not depend on the beam energy. A single experiment con-

ducted with a certain beam energy allows for the extraction of σv as a whole without

accessing the separate structure functions. Thus, the beam energy dependence turns

out to be implicitly incorporated into the extracted cross sections.

Although the experiment is conducted with a fixed value of the laboratory beam

energy, the actual energy of the incoming electron involved in the reaction turns out

to alter and differ from the fixed laboratory value due to (i) the radiative effects that

electrons undergo and (ii) the Fermi motion of the target proton. As a consequence,

the extracted cross section cannot be associated with a distinct value of the electron

beam energy, and this may complicate the interpretation of the results. Below these

issues are addressed in more detail.
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(i) The incoming and scattered electrons can emit photons thus reducing their en-

ergy. Due to the change of the incoming electron energy, the extracted cross

sections correspond to the superposition of various beam energies. The correc-

tion due to this effect is included into the radiative corrections (see Sect. 5.2).

(ii) The experiment off the moving proton with fixed laboratory beam energy cor-

responds to that off the proton at rest performed with varying effective beam

energies [24]. As a result, the extracted cross sections off moving protons are

convoluted with the dependence of the quantity εL on the beam energy (see

Eq. (8.1.1)). A study in Ref. [24], however, proves that this effect has an in-

significant influence on the cross section. The correction due to this effect (which

is negligible anyway) is automatically included into the procedure of unfolding

the effects of the target motion (see Sect. 5.3)1.

Being corrected, the cross sections extracted in this analysis may be assigned to

the distinct value of the laboratory beam energy of Ebeam = 2.039 GeV.

8.2 Off-shell effects

The target proton is bound in the deuterium nucleus and thus undergoes nucleon-

nucleon interactions. The nucleon mass, however, is thought to be an interaction-

dependent quantity, i.e. the nucleon’s physical mass in a nucleus is smaller than that

of a free nucleon [14]. In other words, the target proton bound in the deuteron is off-

shell, which means that its four-momentum squared is not equal to its mass squared.

In the study [56], which aimed at π− electroproduction off the neutron in

deuterium, the impact of the off-shell effects on the measured cross sections was

shown to be marginal. In this study the off-shell effects are ignored.

1 Note that the radiative effects decrease the beam energy, while the Fermi motion leads to a
symmetrical spread of the effective beam energy around the laboratory value.
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Chapter 9

Discussion on final state interactions

9.1 Introduction to FSI for γvp(n)→ p′(n′)π+π−

Hadrons produced in exclusive reactions are subject to Final State Interactions (FSI).

The nature of this phenomenon is complicated due to numerous mechanisms being

involved, most of which are driven by the strong interaction. If the reaction happens

off nucleons contained in nuclei, then one can separate FSI into two general types:

• interactions between the final hadrons1 and

• interaction of the final hadrons with the spectator nucleons2.

Both FSI types can involve simple momentum exchanges between the hadrons as

well as far more complicated processes such as nucleon resonance excitations.

Apparently, FSI in the reactions off a free proton are limited to the first type.

Interactions of the final hadrons with the spectator nucleons are thought to be

far more pronounced than their interactions with each other. The arguments for that

are the following. In general, the probability to interact in the final state depends

on the distance between hadrons and their relative velocity, i.e. for slower and closer

traveling particles the chance to interact is higher than for fast-moving and distant

ones [57]. Final state hadrons are produced in one vertex, which means that in the

1 Here the term “final hadrons” denotes p′, π+, and π−, which define the reaction final state.
2 Here the term “spectator” is related to a spectator of the original exclusive reaction, which is

the neutron.
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beginning, they are very close to each other and therefore have a high chance to

interact as their wavefunctions are overlapping largely. However, immediately after

the production, they start to fly apart from the vertex in radial directions increasing

the distance between each other, which causes the interaction probability drop rapidly.

Meanwhile, the presence of a spectator nucleon changes the situation drastically.

The neutron, which initially was not involved in the reaction of hadron production, is

located slightly aside of the interaction vertex, but at the same time very close to it,

so that the flying-off final hadrons can impact the neutron. In addition to that, the

neutron also moves with Fermi momentum, which turns FSI into usual hadron-hadron

collisions with the full range of related mechanisms being involved. Thus, hadron-

hadron collisions, which are unlikely to occur in the reaction off the free proton as

the final hadrons fly apart from one point, start to play a role in the reaction off

the bound proton in the presence of the neutron. As a result, interactions with the

spectator nucleons turn out to be more pronounced compared to interactions between

the final hadrons.

Figure 9.1 schematically sketches the leading contributors to the process of the

double-pion production off the proton bound in deuterium. The process (a) corre-

sponds to the situation when the final hadrons manage to avoid any interaction with

the neutron. In this case, the reaction is considered to occur in a so-called “quasi-free

regime”. Meanwhile, the processes (b-d) illustrate the situation when one of the final

hadrons was involved in the interaction with the neutron. Such interactions represent

the main components of FSI for the considered exclusive channel.

In fact, the process (b) in Fig. 9.1 corresponds the proton-neutron scatter-

ing [57, 58], while the processes (c) and (d) correspond to the pion-neutron

scattering [59–61]. Therefore, FSI with spectator nucleons in the double-pion

production channel represent a superposition of a broad spectrum of mechanisms

inherent for these two scattering types.
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Figure 9.1: Illustration of the leading contributors to the process of the double-pion pro-
duction off the proton bound in deuteron. (a) Quasi-free regime, (b) NN-FSI, and (c-d)
πN -FSI.

One mechanism of the proton-neutron scattering seems to be very interesting

in the context of this study, i.e. the charge exchange mechanism, in which proton

and neutron can exchange their characteristics, literally turning one into another.

This may complicate the interpretation of the experimentally collected information.

For example, some protons of the original exclusive reaction are not registered as

they have undergone the exchange transformation to neutrons. Furthermore, some

registered protons may turn out to be actually “transformed” neutrons from an

exclusive reaction off neutrons bound in deuterium.
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The pion-nucleon scattering also involves a remarkable mechanism that deserves

special attention, namely, the pion to neutron coupling with resonance formation.

Section 9.5 of this chapter explores manifestations of this mechanism in the analyzed

experimental data.

Among the main FSI components shown in Fig. 9.1, proton-neutron interactions,

which correspond to the process (b), are thought to dominate over the pion-neutron

interactions, sketched in (c) and (d). Using the “black disk” analogy, this ranking

can be understood from the fact that a proton, being larger than a pion, has higher

chances to spatially overlap with the neutron while traveling away from the vertex.

In addition to that, due to the large difference in mass, protons and pions of a

same momentum differ significantly in their velocity with the former being much

slower. This makes the protons spend more time near the vertex (and hence near

the neutron), which increases the interaction probability.

Due to the relatively low energy of the final hadrons, the majority of FSI in the

investigated reaction are thought to happen elastically, which implies that (i) the

quantum numbers of the participating hadrons do not change and (ii) no new par-

ticles are produced in such interactions. Note that the aforementioned mechanisms

of the charge exchange in the proton-neutron scattering and the resonance formation

in the process πn → πn are still attributed to elastic mechanisms. The minority of

FSI in this reaction then evolves via inelastic scenarios [57].

The main goal of this study is to extract the double-pion cross sections in the

quasi-free regime. Such an approach implies that quasi-free events that correspond

to the process (a) in Fig. 9.1 are of interest, while events with FSI are treated as

undesirable background and have to be eliminated. The analysis, therefore, was

seeking special methods of separating these two types of events and correcting for the

remaining admixture of events with FSI if the complete separation was not possible.

These methods are described in detail in Sect. 3.5.
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Thus, being attributed to the background and hence subjected to elimination,

events with FSI were deprived of attention throughout the analysis. These events,

therefore, were lacking detailed investigation, which they definitely deserve as FSI

effects represent an essential issue in studies of any exclusive reaction, especially off

nuclei. To regain fairness and balance into the analysis, this particular chapter is

fully focused on the events with FSI and is devoted to the discussion of their peculiar

features and manifestations.

9.2 Probing FSI kinematically

Recall that in general one can distinguish between two FSI types: (i) interactions

between the final hadrons and (ii) interactions with spectator nucleons. These two

FSI types, both driven by the strong interaction, seem to be similar to each other

from the point of view of involved FSI mechanisms. Meanwhile, from the point of

view of the reaction kinematics they differ. To discern this difference, let’s consider

each FSI type in more detail.

In general, all interactions that possibly could happen between the hadrons share

the following three features,

• they preserve the total momentum of the participating hadrons, thus maintain-

ing energy-momentum conservation between them,

• after FSI the participating hadrons are left on their mass shell, and

• the momentum of each participating hadron is altered and thus does not match

its value before FSI.

These features deliver the following important conclusion: interactions between

the final hadrons do not alter missing mass distributions3. As an interesting exam-

ple, one can consider the situation when in a missing hadron topology FSI happens

3 If new particles are not produced in these interactions.
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between a registered hadron and the unregistered one. In this case, the calculated

four-vector of a missing particle matches its actual four-momentum after FSI (in

the absence of other factors, such as detector resolution, radiative effects, etc.) be-

cause the interaction keeps the energy-momentum conservation between the reaction

particles. Then, as the unregistered particle ends up being on-shell after FSI, the

calculated missing mass turns out to match the particle rest mass.

Although having no impact on the missing mass distributions, FSI between final

hadrons nonetheless affect the experimentally extracted cross sections. This happens

due to the following reason. Let’s suppose that in the reaction of the double-pion pro-

duction, two final hadrons interact with each other, while the third one avoids any

interactions. In this case, the two interacting hadrons change their four-momenta

(keeping their cumulative momentum unchanged though), while the third one man-

ages to reach the detector unaltered. Then, for such an event, the calculated final

hadron variables will differ from their true values before FSI. Specifically, the invari-

ant mass of the pair of interacting hadrons will be preserved (due to the conservation

of their cumulative four-momentum), whereas the invariant masses of an interact-

ing hadron and the unaltered one will change. Moreover, the spatial angles of the

unaltered hadron will be preserved, whereas the angles of both interacting hadrons

will change. Such an event then will contribute to the “wrong” point of the reaction

phase-space that is different from the point it is supposed to contribute without FSI.

As a result, the measured cross sections acquire disturbances.

This issue with the cross section disturbances can hardly be avoided on the

level of the experimental data analysis due to the insensitivity of the missing mass

distributions to interactions of the final hadrons with each other. Therefore, mea-

sured cross sections (no matter whether off a free or bound nucleon) are inevitably

convoluted with effects of this FSI type. This issue is supposed to be treated on the

level of theoretical/phenomenological cross section interpretation.
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Meanwhile, FSI with spectator nucleons have one distinctive feature, which

differentiate them from FSI between the final hadrons. Specifically, as the spectator

nucleon is extrinsic to the original exclusive reaction, any FSI with it causes in/out

momentum flows, thus breaking the energy-momentum conservation imposed on the

reaction particles. This means that after FSI the total energy/momentum of the

reaction final hadrons is different from what they had before FSI as some part of

it was either given to or taken from the neutron. As a consequence, for events with

FSI, the missing mass technique gives faulty results for both the fully exclusive event

sample or the one with a missing hadron, which means that FSI with the spectator

introduce disturbances into the missing mass distributions.

Note that interactions between one of the final hadrons and the spectator

neutron should anyway comply with the three above features, which implies not

only the energy-momentum conservation in this particular interaction, but also the

on-shellness of both interacting particles after the interaction happens.

The revealed specificity of FSI with spectator neutrons (i.e. the ability to disturb

missing mass distributions), allows for a kinematic probing of this FSI type, which

is unfortunately not possible for the case of final hadrons interacting with each

other. Seeking to exploit this unique opportunity offered by “e1e” deuteron target

experiment, the rest of this chapter is devoted to the kinematic examination of

FSI with spectator nucleons in the reaction of the double-pion electroproduction off

protons bound in deuterium nuclei. This implies that hereinafter whenever FSI is

mentioned, the processes (b-d) of Fig. 9.1 are assumed unless specified otherwise.

It is convenient to start kinematic probing of FSI by recalling a few general facts.

First, it is worthwhile to recall that the amount of events produced in an exclusive

reaction depends on a certain number of independent variables, which in the case

of double-pion electroproduction is seven as described in Sect. 4.3. The yields of

quasi-free events and events with FSI represent complementary portions of the total
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number of reaction events, and hence both of them depend on these variables as well.

Therefore, it is reasonable to consider the relative spread of events with FSI, which

implies that the amount of events affected by FSI in any part of the reaction phase

space is analyzed with respect to the corresponding amount of quasi-free events.

Meanwhile, the portion of events with FSI is not expected to be the same along the

reaction phase space. Instead, their relative spread is anticipated to rise in the region

of small hadron momenta as slower traveling hadrons have higher interaction prob-

ability. Meanwhile, in the acceptance of the CLAS detector the region of large polar

angles corresponds mostly to low-momentum hadrons4. Therefore, a relative excess

of events with FSI is also expected with increasing hadron polar angles. In addition

to that, as various reaction topologies cover different ranges of hadron momenta and

angles, the relative spread of events with FSI acquires topology dependence.

It is also important to emphasize that in general final state interactions are

very complicated and involve numerous mechanisms. Their complete theoretical

description requires application of the theory of the strong interactions and so far

is not fully accomplished. However, all mechanisms that possibly could happen

during FSI have one simple feature in common, i.e. they alter the momentum of the

participating hadrons.

With regards to alterations of hadron momenta in collisions with the spectator

neutrons, the following kinematic aspects should be taken into consideration. The

neutrons move with the Fermi momentum, which for the vast majority of events is less

than ∼250 MeV, but rarely can be higher. Meanwhile, in the analyzed experiment,

the momentum of all final hadron types can be as high as ∼1.5 GeV. Therefore,

in collisions with neutrons, rapid final hadrons are expected to mostly lose their

momentum, whereas for slow hadrons a momentum gain is quite likely to occur. Here

4 The mentioned correlation between the momentum and the polar angles of the final hadrons
can be observed in the θ versus momentum distributions provided in Sect. 3.4.1.
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one should also take into account that due to the presence of registration thresholds,

pions slower than ∼100 MeV and protons slower than ∼300 MeV are not registered.

Now, having highlighted important general facts, it is worthwhile to recapitulate

those features of FSI with spectator nucleons, which form the basis of the kinematic

examination of FSI effects presented further in this chapter. Specifically, FSI with

spectator nucleons (i) alter the momentum of the participating particles and (ii) do

not preserve energy-momentum conservation between the final hadrons of the initial

exclusive reaction. As a result, distributions of kinematic quantities calculated from

the registered final hadron four-momenta acquire disturbances caused by agglomer-

ations of events with FSI. These disturbances can be better visually distinguished,

if the corresponding distributions of pure quasi-free events are used as reference.

The outlined effect was already exploited in this analysis on the quasi-free event

selection level as described in detail in Sect. 3.5. The disturbances caused by events

with FSI were observed in the distributions of missing quantities PX , M2
X[0], and

M2
X[π−], which were used to establish the exclusivity cuts. However, the examination

conducted in Sect. 3.5 was mostly concentrated on quasi-free events as they were the

main point of interest for the analysis, while events with FSI lacked consideration.

In this chapter, the distributions of missing quantities are examined once again with

attention focused on FSI induced disturbances.

The two reaction topologies are again considered separately as FSI effects turn

out to be topology dependent. The fully exclusive topology is addressed first as it

benefits from capturing FSI for all three final hadrons including the π−.
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9.3 FSI in the fully exclusive topology

9.3.1 Relative spread of FSI events along the phase space

For the fully exclusive topology, the distributions of the following quantities are ex-

amined5: the missing momentum PX for the reaction ep(n)→ e′p′(n′)π+π−X and the

missing mass squared M2
X[π−] for the reaction ep(n)→ e′p′(n′)π+X. These quantities

are defined by

PX = |−→P e −
−→
P e′ −

−→
P p′ −

−→
P π+ −−→P π−|,

M2
X[π−] = [P µ

π− miss]
2 = [P µ

e + P µ
p − P µ

e′ − P µ
p′ − P µ

π+ ]2,

(9.1)

where P µ
i are the four-momenta and

−→
Pi the three-momenta of the particle i. Both

quantities are calculated under the target-at-rest-assumption, i.e. considering P µ
p =

(0, 0, 0, mp), where mp is the proton mass.

As reference distributions of pure quasi-free events, the distributions of the same

quantities plotted for the Monte Carlo simulation are used. The Monte Carlo sim-

ulation was performed on the basis of the TWOPEG-D event generator [24], which

nicely reproduces the Fermi smearing of the missing quantities, but does not include

FSI effects. The comparison of the FSI disturbed experimental distributions with

these reference histograms reveals the features of events with FSI.

In the first step, the relative spread of events with FSI along the magnitude of the

final hadron momenta is examined. Figures 9.2, 9.3, and 9.4 show the distributions of

the quantities PX (first row) and M2
X[π−] (second row) plotted in different ranges of π−,

π+, and proton momentum magnitudes, respectively. The relative spread of events

with FSI can be visually judged by the mismatch between the experimental (black)

and simulated (blue) histograms. The considered ranges of the hadron momenta are

specified for each plot. Note that these ranges are not equidistant and were chosen in

5 The quantity M2
X[0] is not examined here as it was shown in Ref. [41] to be quite insensitive to

FSI with spectator nucleons.
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such a way that the relative amount of events with FSI does not change significantly

within each range. The distributions are plotted for events from the fully exclusive

topology and normalized in a way that the maxima of the main peaks are equal to one.

As follows from Fig. 9.2, events with low π− momenta (. 0.5 GeV) contain

a considerable fraction of events with FSI, while events with higher π− momenta

(& 0.5 GeV) are mostly quasi-free. However, the relative spread of events with FSI

along the π+ momentum demonstrates a different tendency as shown in Fig. 9.3, i.e.

the fraction of events with FSI does not vary significantly along the π+ momentum,

staying sizable for all momentum values.
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Figure 9.2: Relative spread of events with FSI among different ranges of the π− momentum
magnitude is demonstrated by the mismatch between the experimental (black) and the
simulated (blue) distributions of the quantities PX (first row) and M2

X[π−] (second row)

defined by Eqs. (9.1). The corresponding ranges of the π− momentum are specified above
the plots. Note that these ranges are not equidistant and were chosen in a way that the
relative amount of events with FSI does not change significantly within each range. The
distributions are plotted for events from the fully exclusive topology and normalized in a way
that the maxima of the main peaks are equal to one. The presented statistics corresponds
to the experimental data.

Meanwhile, the relative spread of events with FSI varies dramatically along the

proton momentum as illustrated by Fig. 9.4. In the region of low proton momenta

. 0.4 GeV no quasi-free events are present6. As the proton momentum grows up

6 Note that in this region an admixture of spectator protons from the reaction off neutrons may be
present. Also, in CLAS, reconstruction of protons with pp′ . 0.4 GeV is in general not quite reliable.
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Figure 9.3: Relative spread of events with FSI among different ranges of the π+ momentum
magnitude is demonstrated by the mismatch between the experimental (black) and the
simulated (blue) distributions of the quantities PX (first row) and M2

X[π−] (second row)

defined by Eqs. (9.1). The corresponding ranges of the π+ momentum are specified above
the plots. Note that these ranges are not equidistant and were chosen in a way that the
relative amount of events with FSI does not change significantly within each range. The
distributions are plotted for events from the fully exclusive topology and normalized in a way
that the maxima of the main peaks are equal to one. The presented statistics corresponds
to the experimental data.
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Figure 9.4: Relative spread of events with FSI among different ranges of the proton mo-
mentum magnitude is demonstrated by the mismatch between the experimental (black) and
the simulated (blue) distributions of the quantities PX (first row) and M2

X[π−] (second row)

defined by Eqs. (9.1). The corresponding ranges of the proton momentum are specified
above the plots. Note that these ranges are not equidistant and were chosen in a way that
the relative amount of events with FSI does not change significantly within each range.
The distributions are plotted for events from the fully exclusive topology and normalized
in a way that the maxima of the main peaks are equal to one. The presented statistics
corresponds to the experimental data.
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to ∼0.5 GeV quasi-free events begin to appear in the sample, which is however still

dominated by events with FSI. Then, in the region & 0.5 GeV quasi-free events begin

to prevail, but the fraction of events with FSI is still essential up to the values of

& 0.6 GeV. As the proton momentum grows further, the admixture of events with

FSI is mitigated and for the values & 0.7 GeV mostly quasi-free events are left.
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Figure 9.5: Relative spread of events with FSI among different ranges of the π− polar angle
is demonstrated by the mismatch between the experimental (black) and the simulated (blue)
distributions of the quantities PX (first row) and M2

X[π−] (second row) defined by Eqs. (9.1).

The corresponding ranges of the π− polar angle are specified above the plots. Note that
these ranges are not equidistant and were chosen in a way that the relative amount of events
with FSI does not change significantly within each range. The distributions are plotted for
events from the fully exclusive topology and normalized in a way that the maxima of the
main peaks are equal to one. The presented statistics corresponds to the experimental data.

In the next step, the relative spread of events with FSI along the polar angle

of the final hadrons is examined in the same way. Figures 9.5, 9.6, and 9.7 show

the distributions of the quantities PX (first row) and M2
X[π−] (second row) plotted in

different ranges of π−, π+, and proton polar angle, respectively. The relative spread

of events with FSI is again demonstrated by the mismatch between the experimental

(black) and simulated (blue) histograms and the considered ranges of hadron polar

angles are specified for each plot. These ranges are again not equidistant and as

they were chosen in such a way that the relative amount of events with FSI does not

change significantly within each range.
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Figure 9.6: Relative spread of events with FSI among different ranges of the π+ polar angle
is demonstrated by the mismatch between the experimental (black) and the simulated (blue)
distributions of the quantities PX (first row) and M2

X[π−] (second row) defined by Eqs. (9.1).

The corresponding ranges of the π+ polar angle are specified above the plots. Note that
these ranges are not equidistant and were chosen in a way that the relative amount of events
with FSI does not change significantly within each range. The distributions are plotted for
events from the fully exclusive topology and normalized in a way that the maxima of the
main peaks are equal to one. The presented statistics corresponds to the experimental data.
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Figure 9.7: Relative spread of events with FSI among different ranges of the proton polar
angle is demonstrated by the mismatch between the experimental (black) and the simulated
(blue) distributions of the quantities PX (first row) and M2

X[π−] (second row) defined by

Eqs. (9.1). The corresponding ranges of the proton polar angle are specified above the
plots. Note that these ranges are not equidistant and were chosen in a way that the relative
amount of events with FSI does not change significantly within each range. The distributions
are plotted for events from the fully exclusive topology and normalized in a way that the
maxima of the main peaks are equal to one. The presented statistics corresponds to the
experimental data.
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As follows from Fig. 9.5, events with low values of the π− polar angle . 40◦ are

mostly quasi-free, while in the region & 40◦ a discernible fraction of events with FSI

appears. This fraction gradually grows with increasing polar angle and in the region

of 120◦ < θπ− < 140◦ becomes considerable.

The relative spread of events with FSI along the π+ polar angle again demonstrates

a slightly different tendency, as seen in Fig. 9.6. The fraction of events with FSI turns

out to be discernible for all values of the π+ polar angle, showing a mild growth as

the angle increases up to 100◦. Then, in the region of 100◦ < θπ+ < 120◦ the number

of events with FSI rises suddenly up to a rather essential portion.

The correlation between the fraction of events with FSI and the proton polar angle

is again more dramatic. As seen in Fig. 9.7, in the region θp < 35◦, which contains

the majority of registered protons, the portion of events with FSI is discernible but

small. However, for higher polar angles a rather steep rise of this portion takes place,

i.e. in the narrow slice of 35◦ < θp < 40◦ it becomes considerable and in the next

5◦-range – very large. Finally, for θp > 45◦ quasi-free events turn out to vanish, while

events with FSI prevail.

The examination performed above confirms the expected increase in the relative

amount of events with FSI in the regions of low momentum and large polar angles,

which is observed for all final hadrons, to one extent or another. The anticipated

dominance of proton-neutron interactions over the pion-neutron interactions is also

in agreement with the observations. In addition to these general statements, the

following more specific conclusions can be made.

• The fraction of events with FSI is strongly correlated with the proton kinemat-

ics, giving steep rises in the low-momentum region as well as for the region of

large polar angles.

• The correlation with the π− kinematics is mild with no steep alterations seen.
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• The correlation with the π+ kinematics is quite weak, with the only one excep-

tion of an essential rise for θπ+ > 100◦.

• In the regions of the π− momentum & 0.5 GeV and the π− polar angle . 40◦

the event sample is completely dominated by quasi-free events.

• In the regions of the proton momentum . 0.4 GeV and the proton polar angle

& 45◦ the event sample is completely dominated by events with FSI.

Note that the above observations are to a high degree determined by experimental

conditions, as for instance, by the hardware threshold on the minimal detectable

hadron momenta, which affects manifestations of proton and pion FSI in a different

way. The point is that protons and pions that carry equal momenta differ significantly

in their velocity: the former turn out to be much slower than the latter due to the

difference in their mass. As a result, pions with potentially high probability of FSI

have a tendency to be located in the region of extremely low momenta, which lies

below the registration threshold. Meanwhile, protons with high probability of FSI

turn out to be located in the region of moderately low momenta, comparable with

the threshold value. Thus, the majority of pions that experienced FSI failed to be

registered, while for protons the situation is different as the large number of them

cross the threshold and hence managed to be registered.

The following several aspects are also noteworthy in the examination described

above. First, the examination was performed for hadron momenta and polar angles

defined in the laboratory system because this system is the only one that offers a

sensible, unambiguous, and the most accurate determination of these quantities for

events with FSI (which here are the main focus of interest). The arguments for this

statement are given below.

The point is that the typically performed transformation to the CMS remains

sensible only for quasi-free events, while for events with FSI it is no longer relevant.

143



This happens because once participating in FSI, events do not further keep the

kinematics of the initial reaction and hence formally do not belong to “reaction

events” anymore as in fact they were not produced off the target proton that defines

the reaction CMS. Therefore, the usual CMS turns out to be an ill-defined system

for events with FSI, and the transformation to this system would introduce further

ambiguity into the examination.

In addition to that, the proper transformation to the reaction CMS requires the

knowledge of the Fermi momentum of the initial proton for each event. The fully

exclusive topology in general allows the reconstruction of this momentum as missing,

which actually outputs the quantity PX . However, being reconstructed in such a way

this momentum not only suffers from poor resolution, but is also in fact incorrect for

events with FSI as their initial kinematics is altered. Another option, i.e. performing

the transformation under the target-at-rest assumption, convolutes the transformed

quantities with effects of the target motion and hence lacks enough accuracy as well7.

Therefore, being transformed to CMS, hadron momenta and angles would acquire

an unnecessary systematic uncertainty, which would tangle the examination.

Taking into account all above arguments, the laboratory system was considered to

give the best possible opportunity for the examination of features and manifestations

of FSI effects.

The performed examination was conducted on a qualitative level without giving

any definitive quantitative conclusions on the observed percentage of events with

FSI in the analyzed event sample. This examination style is determined by the fact

that the interrelation between the quasi-free events and events with FSI is strongly

dependent on experimental conditions, detector acceptance/efficiency, the chosen

reaction topology, the event selection employed in the analysis, etc. Therefore, any

quantitative conclusion on the revealed ratio of quasi-free and FSI-affected events

7 For the purpose of calculating quasi-free cross sections in the main analysis this option was
considered adequate as it was accompanied by the corresponding correction. See Sects. 4.2 and 5.3.
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would have been very condition-specific and thus misleading. Meanwhile, general

tendencies observed in the spreading of FSI events along the reaction phase-space

are thought to be more universal and stable, and therefore gain the main focus of

this kinematic examination.

Meanwhile, sensible quantitative conclusions on this matter should be established

on the cross section level other than on a level of event yields. An excellent

opportunity to achieve this goal opens up with the completion of this analysis as now

the newly extracted quasi-free cross sections can be compared with the analogous

double-pion cross sections off free protons obtained in Ref. [22, 23]. In this way,

a condition-independent impartial estimation of the relative contribution of events

with FSI to the total amount of reaction events can be made.

9.3.2 Revealing details on hadron momentum alterations

Another noteworthy aspect of the performed examination is that one should be care-

ful when considering the amount of events that fall within a certain range of hadron

momentum/angle. One should remember that quasi-free events carry the actual val-

ues of these variables, i.e. the same as they had once been produced. However, for

events with FSI, the hadron momentum/angle values are those they acquire after

they underwent FSI, while the actual values for them are no longer known. There-

fore, the “fraction of events with FSI” referred above does not reflect the portion

of reaction events that were affected by FSI within the considered ranges of hadron

momentum/angles, but corresponds to the portion of events that after FSI acquire

such momentum/angle values which under the given experimental conditions fall into

a certain range defined for quasi-free events (or for initial reaction events).

With regards to this point, one should recall that during FSI, both momentum loss

and gain for affected hadrons are in general possible. In collisions with the spectator

neutron, the type of the momentum alteration (gain/loss) depends on the relation
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between the final hadron momentum and the neutron Fermi momentum. Here one of

the fundamental differences between the two considered missing quantities becomes

evident. Specifically, in the PX distributions, FSI-affected events with a hadron mo-

mentum gain and loss are intermixed and no visual separation between them is possi-

ble. Whereas, the M2
X[π−] distributions turn out to be more sophisticated in this sense

as they allow one to distinguish between these two situations, at least to some extent.

For further discussion the examination performed in Ref. [41] can be of great

use. The study [41] explores the influence of different factors on missing mass

distributions and includes an attempt of naive modeling of kinematic effects of FSI

with spectator nucleons for the case of double-pion production off bound protons.

According to this modeling, the distributions of the quantity M2
X[π−] (defined in the

same way as here) demonstrate different structure depending on (i) the type of the

hadron affected by FSI, (ii) kinematics of the affected hadron, (iii) the degree and

type (gain/loss) of the hadron momentum alteration, and (iv) the relative spread of

events with different degrees of momentum alterations within the event sample.

Specifically, Ref. [41] demonstrates that the left-side tail of the M2
X[π−] distribu-

tion turns out to accumulate those FSI events, in which (i) relativistic hadrons gain

the momentum in FSI and (ii) non-relativistic hadrons lose the momentum in FSI.

Meanwhile, the right-side tail contains those events, in which (i) relativistic hadrons

lose the momentum in FSI and (ii) non-relativistic hadrons gain the momentum in

FSI, see more details in Ref. [41].

When applying these discoveries of Ref. [41] to this particular study, several as-

pects should be accounted for. The Fermi smearing of the M2
X[π−] distributions, which

was not considered in the FSI modeling in Ref. [41], is one of them. Being associated

with event shuffling, Fermi smearing blurs the patterns of the FSI-event allocation

described above. Beside this general impact, it has a few more specific effects on miss-
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ing mass distributions that may interfere with FSI manifestations. One thing is that

the Fermi smearing is W dependent, i.e. it increases as W grows from the threshold.

The other thing about the Fermi smearing, which is more important in the context

of this study, is the following. If isolated from other effects, the Fermi smearing leads

to a W -dependent asymmetry of the M2
X[π−] distributions. Specifically, near the

threshold more events are tossed to the left, then the asymmetry decreases with the

growth of W , and at W∼1.7-1.8 GeV the distributions regain their symmetry. This

effect alters the common appearance of the M2
X[π−] distributions, familiar from the

free proton studies, with the asymmetric right-side tail caused mostly by the radiative

effects (see Ref. [22, 23]). In contrast, the Fermi smeared distributions, if radiated,

still keep a slight left-sided asymmetry near the threshold, which becomes smaller

with growing W , leading to the visually symmetric distributions at W∼1.6-1.7 GeV.

The outlined features of the Fermi smearing can be seen in Figs. 3.27, 3.29

and 3.30 from Sect. 3.5 as well as in those given below here. The simulated

distributions show the influence of the Fermi smearing on quasi-free events, while

its influence on events with FSI is not known. One may however anticipate them

to follow the revealed tendency, thus forming an event excess at the left, which

gradually vanishes as W grows from the threshold.

The next aspect to consider is related to the kinematics of the “e1e” experiment.

To be more specific, in this experiment, pions registered in the detector are mostly

relativistic as the momentum of the vast majority of non-relativistic pions turns

out to be lower than the registration threshold. Meanwhile, the momentum range

of non-relativistic protons extends far beyond the registration threshold, which

(together with the low beam energy of the experiment) causes the major part of

registered protons to be non-relativistic.

Finally, one should keep in mind that for rapid hadrons it is unlikely to gain

the momentum through the momentum exchange with spectator neutrons as this
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requires high values of the spectator Fermi momentum, which is a rare occasion.

Although for some other mechanisms (e.g. resonance formations in the process

πn→ πn) such gain is in general possible, the process of rapid hadrons gaining their

momentum in FSI is not expected to belong to the leading contributors.

Taking into account all above arguments, the following consistent pattern can

be stated for the allocation of events with FSI in the M2
X[π−] distribution. The

left-side tail is dominated by FSI events, in which non-relativistic protons lose their

momentum. Meanwhile, the tail at the right is mostly populated by FSI events, in

which relativistic protons and pions lose the momentum as well with those, in which

non-relativistic protons gain the momentum8. This pattern is blurred by the Fermi

smearing, which not only widens with W , but also promotes gradual event flow from

the left tail to the right side as W grows from the threshold.

Considering the pattern described above, one can now examine the M2
X[π−]

distributions shown in Figs. 9.2–9.7 paying more attention to the right and left tails

as they have been proven to provide some information on momentum alterations of

FSI-affected hadrons.

This examination reveals that in those regions, where the fraction of events with

FSI gives a steep rise (such as low proton momentum and high angles of protons

and π+), a very prominent left-side tail is observed in the M2
X[π−] distributions

with the almost complete absence of the right-side tail. Whereas, in the regions

with small and moderate contributions from FSI events, both left and right tails

are mild. This situation indicates that in the regions with large FSI contribution

kinematically available in this experiment, FSI are dominated by the processes,

in which non-relativistic protons lose their momentum. Meanwhile, events that

correspond to other kinematic mechanisms of potentially comparable overall intensity

either fall into kinematically not available regions (e.g. events with FSI-affected

8 See Figs. 3.5 and 3.6 from Ref. [41] for better visualization of the described pattern.

148



low momentum pions, which fall below the registration threshold) or have a more

homogeneous distribution along the reaction phase space.

At this point, it is worthwhile to mention again the low beam energy of the

analyzed dataset, which promotes the abundance of non-relativistic protons. With

increasing beam energy of an experiment, FSI effects are thought to become domi-

nated with the momentum loss of relativistic hadrons. Then a different population

of the M2
X[π−] distribution tails is expected, with the right tail growing in size and

the left tail dissolving.

9.3.3 Isolating FSI of various final hadrons

Now the second fundamental difference between the two considered missing quantities

can be highlighted. It is remarkable that the quantity PX , being calculated using the

four-momenta of all registered final hadrons, incorporates information on FSI of each

hadron type (p, π+, and π−). Whereas the quantity M2
X[π−] absorbs only information

on the proton and π+ interactions as the information on the π− interactions turns

out to be missing together with its four-momentum as the latter is not used in the

calculation of M2
X[π−]. This point should be taken into account when investigating

the distributions shown in Figs. 9.2–9.7.

This remarkable feature offers the opportunity of isolating FSI contributions from

various pairs of final hadrons considering the missing masses related to the corre-

sponding third hadron. This opportunity is exploited in Fig. 9.8, which presents the

distributions of the missing quantities M2
X[π−] (first row), M2

X[π+] (second row), and

M2
X[p′] (third row), with the first one defined in Eq. (9.1) and the others defined analo-

gously. The relative spread of events with FSI in five 100-MeV-wide bins in W is again

demonstrated by the mismatch between the experimental (black) and the simulated

(blue) histograms. The distributions are plotted for events from the fully exclusive

topology and normalized in a way that the maxima of the main peaks are equal to one.
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They are however zoomed in on the range [0, 0.25] on the y-axis to better visualize

the mismatch. Note also that the distributions from the first and second rows have

the same limits on the x-axis, while for the third row the limits are chosen so that the

distribution widths and relative positions are visually similar to those of the former.
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Figure 9.8: Distributions of the quantities M2
X[π−] (first row), M2

X[π+] (second row), and

M2
X[p′] (third row) defined in (or analogously to) Eq. (9.1). The relative spread of events with

FSI in five 100-MeV-wide bins in W is demonstrated by the mismatch between the experi-
mental (black) and the simulated (blue) histograms. The distributions are plotted for events
from the fully exclusive topology and normalized in a way that the peak maxima are equal to
one. They are however zoomed in on the range [0, 0.25] on the y-axis to better visualize the
mismatch. The shown statistics corresponds to the unzoomed experimental distributions.

The distributions from Fig. 9.8 illustrate the cumulative contribution from FSI

for the π+ and proton (first row), π− and proton (second row), and π+ and π− (third

row). They share several global distinctive features. Specifically, for all distributions

the left-side tail does not show any W dependence staying on a constant substantial

level throughout the whole W range, being though a bit more prominent in the first

bin. The tail at the right side, in turn, is absent for low W and gradually increases

as W grows. This is thought to be driven by the following reasons.
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First, the left-side tail was proven to contain a large portion of events, in which

non-relativistic protons lose their momentum through FSI. Meanwhile, the majority

of registered protons in this experiment is non-relativistic, which ensures the stable

saturation of the left-side tail throughout the whole W range (for distributions from

the first and second rows). At the same time, the right-side tail was proven to

contain a large portion of events, in which relativistic hadrons (which are mostly

pions) lose their momentum through FSI. This portion, in turn, grows with W ,

which leads to gradual emergence of the right-side tail.

The slight prominence of the left-side tail and the complete absence of the tail at

the right in the first W bin is then due to (i) the abundance of the low-momentum

hadrons near the threshold, (ii) the deficiency of the high-momentum hadrons there,

and (iii) the most prominent asymmetry of the Fermi smearing in this region.

Once the main similarities of the distributions from Fig. 9.8 are addressed, one can

discuss their differences and other related features. Thus, the right-side tail, although

keeping nearly the same structure for all distribution types, demonstrates different

intensity manifestation, which is the smallest for M2
X[π+] (second row), greater for

M2
X[π−] (first row), and the largest for M2

X[p′] (third row). This allows for the following

conclusion: in the considered event sample the cumulative amount of relativistic π−

and protons that lose their momentum in FSI is smaller than that of π+ and protons,

which in turn is smaller than the corresponding amount of π+ and π−. Note that

this conclusion is very likely to be dependent on the experimental conditions.

The next feature is related to the left-side tail, which although keeping generally

the same W dependence and intensity manifestation for all distributions, demon-

strates some structural variations. Thus, for the first two rows, the left-side tail is

long and its structure is flat, while for the third row the tail is shorter (relative to

the main peak) and has a steeper shape. This observation allows for the following

interesting conclusion.
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The point is that distributions from the first and second rows include the contri-

butions from the proton FSI as well as from FSI of one type of pion, whereas the

distributions from the third row isolate the FSI contribution from both pion types.

Therefore, for the first two rows, the left-side tail is dominated with events, in which

non-relativistic protons lose the momentum. Meanwhile, for the third row, where such

events are not present, the left side-tail is populated with events, in which (i) relativis-

tic pions gain their momentum and (ii) non-relativistic pions lose their momentum.

Both these event types do not happen very often, so the M2
X[p′] distributions offer a

great opportunity to isolate them. One should also keep in mind that some part of

the events in the left tail is tossed there from the right side by the Fermi smearing.

Note that the distributions from the first and second rows contain the aforemen-

tioned two types of rarer FSI events as well, but only for one type of pion, which

means around a half of them. Their manifestation then turns out to be masked by

events with the momentum loss of non-relativistic protons, which is the dominant

type of FSI events in the left-side tail.

Additionally, from the structure of the left-side tails of distributions in Fig. 9.8,

one can suggest that events with proton FSI are subject to a larger spread along the

x-axis than events with pion FSI. This observation is confirmed by Ref. [41] as it

demonstrates that, when the same variation in the momentum magnitude for pions

and protons is considered, the distortions in the M2
X[π−] distributions caused by the

proton FSI are larger (i.e. their structure is flatter and the spread along the x-axis

is of a larger extent) than those for the case of the pion FSI.
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9.4 FSI in topologies with a missing hadron

As follows from the findings revealed above, the set of missing quantities M2
X[i] (where

i corresponds to the missing hadron) offers great opportunities for studying kinematic

manifestations of FSI effects because each M2
X[i] is capable of isolating the FSI contri-

butions from the corresponding pair of registered hadrons. However, this advantage

is mostly related to the fully exclusive topology, where all three available quantities

M2
X[i] are auxiliary with respect to the primary quantity M2

X[0] that incorporates in-

formation of all registered final hadrons and hence is typically used to isolate the

reaction channel. Meanwhile, for topologies with one unregistered hadron, the corre-

sponding quantity M2
X[i], being the only one available, has to be used for the channel

identification. Under these conditions, the aforementioned ability of M2
X[i] to isolate

FSI contributions from the pair of registered hadrons results in some complications,

as described below.

In general, when dealing with topologies with one unregistered hadron, the four-

momentum of this hadron is typically reconstructed as missing using the four-

momenta of registered particles and then the exclusivity cut on the corresponding

distribution of M2
X[i] is performed for isolating the channel. The success of this con-

ventional method is based on the fact that particles produced in one reaction are

not independent as they share the same reaction kinematics, which imposes some

reaction-specific constraints on their four-momenta. As a result, the particle four-

momenta entangle, making the information on one particle to be incorporated into

the kinematics of the others.

This method, however, works smoothly only for quasi-free events, while for events

with FSI it, in fact, gives an incorrect output because (as was already mentioned)

once participating in FSI, hadrons do not further keep the kinematics of the initial

reaction and formally can no longer be attributed to this reaction.
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To be more specific, the following three possibilities can be distinguished for events

from the topologies with an unregistered hadron (assuming that only one final hadron

in an event interacts with the neutron).

1. All final hadrons in an event avoided FSI with the neutron. Then this event is a

true quasi-free event and the four-momentum of the unregistered hadron can be

successfully reconstructed as missing by means of the conventional procedure.

2. The unregistered hadron avoided FSI, while one of the registered hadrons in-

teracted in the final state, changing in this way its four-momentum and hence

losing its kinematic affiliation to the initial reaction. This does not allow the

proper reconstruction of the missing hadron four-momentum, causing the event

to contribute to the FSI-background in the distributions of M2
X[i].

3. The unregistered hadron experienced FSI with the neutron and the registered

hadrons avoided them. In this case, the missing four-momentum of the unreg-

istered hadron corresponds to its four-momentum before FSI. Such an event is

then falsely treated as quasi-free.

The given disposition reveals some important issues. First, the hadron four-

momentum turns out to be the only one source of information on FSI (with the

spectator nucleon) this hadron may undergo. If the hadron is not registered, the

information on its interaction turns out to be lost beyond reconstruction as the other

particles are not aware of this happening.

The next important thing to mention is that in reactions off bound nucleons,

topologies with a missing hadron are revealed to suffer from miscounting of both

quasi-free events and events with FSI as their separation is inaccurate. Specifically,

the amount of quasi-free events is systematically overestimated because events of the

third type are considered to be quasi-free, whereas they are actually events with

FSI. Although the overestimation is not expected to be dramatic, this issue should
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be carefully considered as it may have an impact on the interpretation of the final

results of a data analysis.

With that said, one can pay closer attention to the π−-missing topology of this

particular analysis9. Figure 9.9 shows the distributions of the missing quantity M2
X[π−]

plotted for this topology. The relative spread of events with FSI in five 100-MeV-wide

bins in W is demonstrated by the mismatch between the experimental (black) and the

simulated (blue) histograms. The distributions are normalized in a way that the peak

maxima are equal to one and then zoomed in on the range [0, 0.25] on the y-axis, to

better visualize the mismatch and for consistency with the distributions in Fig. 9.8.
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Figure 9.9: Distributions of the missing quantity M2
X[π−] plotted for the π−-missing topol-

ogy. The relative spread of events with FSI in five 100-MeV-wide bins in W is demonstrated
by the mismatch between the experimental (black) and the simulated (blue) histograms.
The distributions are normalized in a way that the peak maxima are equal to one and
then zoomed in on the range [0, 0.25] on the y-axis, to better visualize the mismatch. The
presented statistics corresponds to the unzoomed experimental distributions.

The distributions in Fig. 9.9 reflect the contributions from FSI of the proton and

π+ and do not include the information on the π− interactions, being analogous in

that sense to the distributions in the first row of Fig. 9.8 related to the fully exclusive

topology. This analogy advantages their comparison.

As seen in Fig. 9.9, for W . 1.5 GeV no significant mismatch between the exper-

imental (black) and the simulated (blue) distributions is present. The explanation

of this effect, which is not observed in the first row of Fig. 9.8, lies in the kinematic

differences between the two topologies.

9 Note that the π−-missing topology is the main analysis topology, the fully exclusive topology is
a complementary one, while the two other topologies are not used. See more details in Sect. 3.5.
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The point is that the π−-missing topology contains mostly events with negative

pions of low momentum as they escape through the forward acceptance hole. Mean-

while, the fully exclusive topology includes events, in which the π− momentum varies

from moderate to high as they manage to be registered. Consequently, in the fully

exclusive topology, the momenta of the proton and the π+ are on average lower than

in the π−-missing topology. This situation turns out to influence the relative spread

of FSI affected events.

First, the dominant contribution to the left-side tail of the M2
X[π−] distribution

was shown to be formed by FSI events, in which non-relativistic protons lose their

momentum. Meanwhile, the π− topology happens to lack this kind of events as their

major part belongs to the fully exclusive topology.

Another consequence is related to the fact that the probability to interact in the

final state depends on the relative velocity of the interacting hadrons, i.e. for slower

traveling hadrons the chance to interact is higher than for rapid hadrons. As a result,

the two topologies turn out to have different distributions of the interaction proba-

bility among the final hadrons due to the difference in their momenta. Specifically,

negative pions attributed to the π−-missing topology have higher probability to inter-

act than those attributed to the fully exclusive topology. Meanwhile, for protons and

positive pions the situation is the opposite, i.e. their chances to interact are higher

for the fully exclusive topology.

Therefore, if compared with the π−-missing topology, the fully exclusive one con-

tains larger number of events with alterations in the proton and π+ four-momenta

caused by FSI, which results in more disturbances seen in the M2
X[π−] distributions

as these four-momenta are used to calculate this missing quantity.

At the same time, the π−-missing topology accumulates more events with the π−

FSI than the fully exclusive topology. However, the quantity M2
X[π−] does not reflect

the information on the π− interactions as its four-momentum is excluded from the
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calculation of this quantity. This, in turn, promotes the presence of falsely defined

quasi-free events in the M2
X[π−] distributions, and their amount correlates with the

aforementioned probability of the π− interactions. This effect causes the distributions

of the π−-missing topology to acquire fewer distortions than their fully exclusive

analogues, with the maximum difference achieved near the threshold.

The combination of these effects explains the good match between the experimen-

tal and simulated distributions of M2
X[π−] observed in the π−-missing topology for

W . 1.5 GeV, which is not achieved in the fully exclusive topology.

A further comparison of distributions in Figs. 9.8 and 9.9 also reveals that the

left-side tail of the M2
X[π−] distributions in the π−-missing topology differs from its

analogue from the fully exclusive topology both in intensity and in W dependence.

Specifically, being completely absent near the threshold, it shows a constant, but

rather mild growth with W , staying on a still very moderate level even in the last

W bin. Meanwhile, the right-side tails for both cases are very alike, though for the

π−-missing topology it shows more intensive growth with W .

The understanding again lies in the fact that the π−-missing topology lacks low

momentum protons and π+, having instead an excess of high-momentum hadrons of

these types, with all the consequences addressed above. This causes the lack of FSI

events with the momentum loss for non-relativistic hadrons and the corresponding

abundance of events with the momentum loss for relativistic hadrons, which in turn

results in the suppression of the left-side tail and some affluence of the tail at the right.

It is also important to pay closer attention to the issue with the falsely defined

quasi-free events that contribute to the M2
X[π−] distributions of the π−-missing topol-

ogy. As was already stated above, in this topology many unregistered π− experience

FSI due to their very low momentum, leaving the registered protons and π+ of the cor-

responding event to remain quasi-free. This effect is very pronounced near the thresh-

old and is mitigated with growingW as proven by the gradually emerging disturbances
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in the M2
X[π−] distributions in Fig. 9.9, which indicate more registered hadrons expe-

riencing FSI and hence more quasi-free unregistered π−. As a result, the amount of

falsely defined quasi-free events is maximal near the reaction threshold and declines

for higher W . Although such a miscounting itself is inevitable for any topology with a

missing hadron in reactions off bound nucleons, the amount of the miscounted events,

and its spread along W is to a high degree determined by experimental conditions.

9.5 Resonance formation in pion-neutron FSI

So far the main attention of this investigation has concentrated on the momentum al-

terations that final hadrons undergo via FSI as a universal criterion for distinguishing

events with FSI from regular quasi-free events, without any particular focus on the in-

teraction mechanism itself. Meanwhile, the strong interaction, which drives FSI, offers

a very broad spectrum of these mechanisms. Although this study mostly concentrates

on kinematic effects and hence does not claim any attempt of a full description of

any particular mechanism, it is interesting to dig into one more promising direction

in order to fully exploit the opportunities provided by this experimental dataset for

a better understanding of FSI.

First, it is worthwhile to recall that in the analyzed reaction, FSI are dominated

by elastic scattering of final hadrons off spectator neutrons, i.e. by interactions, in

which (i) the quantum numbers of the participating hadrons do not change and (ii)

no new particles are produced. Inelastic mechanisms, which do not satisfy these two

criteria, are meanwhile less pronounced.

This particular Section examines the process, in which a final hadron (h) couples

with the spectator neutron (n), producing nucleon resonances (R) in the intermediate

state. This can be represented as hn→ R→∑
i h
′
i, where h′i are the resonance decay

products, which are registered by the detector afterwards. In this situation very inter-
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esting things may happen, i.e. depending on the resonance decay mode, the registered

hadrons may differ from those that form the resonance, both in their type and/or

amount. Such processes then can contribute to both elastic and inelastic FSI parts.

To dig into this issue, advantages offered by the fully exclusive topology can again

be of use. Specifically, with the four-momenta of all final hadrons available, one

can reconstruct the four-momentum of the spectator neutron as missing. Although

such reconstruction is inaccurate for events with FSI and also suffers from the Fermi

smearing, the resulting four-momentum still suits the purpose of this examination.

Specifically, the following set of the invariant masses can be calculated,

Mn′π− =
√

(P µ
n′ + P µ

π−)2,

Mn′π+ =
√

(P µ
n′ + P µ

π+)2, and

Mn′p′ =
√

(P µ
n′ + P µ

p′)
2,

(9.2)

where P µ
n′ is the four-momentum of the spectator neutron calculated as missing

under the target-at-rest assumption, while P µ
π− , P µ

π+ , and P µ
p′ are the four-momenta

of the final hadrons registered by the detector.

Figure 9.10 shows the distributions of the invariant masses Mn′π− (first row),

Mn′π+ (second row), andMn′p′ (third row) from Eqs. (9.2) plotted for the experimental

data (black histograms) and the regular Monte-Carlo simulation (blue histograms).

The dashed green histograms are auxiliary as they correspond to the same simu-

lation, but with the cross section weights ignored, which means that phase-space

distributions are assumed for all kinematic variables instead of the regular realistic

distributions [24, 39]. These green histograms are intended to visualize the impact of

the assumptions for the cross section shape implemented into the event generator [24].
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In general, invariant mass distributions are very helpful in checking for the

presence of an unstable particle, whose decay causes the emission of particles

involved in the invariant mass calculation. If this is the case, then the invariant mass

distributions acquire a peak at the position of the mass of this unstable particle.

Therefore, if an unstable particle was formed during FSI, then it should be seen as

an agglomeration of events with FSI in the corresponding invariant mass distribution,

which again can be visually spotted as a mismatch between the experiment and

the simulation. Keeping that in mind, one can now examine the invariant mass

distributions shown in Fig. 9.10. Note that in Fig. 9.10 all histograms are normalized

in a way that their peak maxima are equal to one.

1.1 1.2 1.3 1.4
 (GeV)-πNM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  2182

1.3 GeV < W < 1.4 GeV

1.1 1.2 1.3 1.4 1.5
 (GeV)-πNM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  14635

1.4 GeV < W < 1.5 GeV

1.1 1.2 1.3 1.4 1.5 1.6
 (GeV)-πNM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  32476

1.5 GeV < W < 1.6 GeV

1.2 1.4 1.6
 (GeV)-πNM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  48635

1.6 GeV < W < 1.7 GeV

1.2 1.4 1.6 1.8
 (GeV)-πNM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  53106

1.7 GeV < W < 1.8 GeV

1.1 1.2 1.3 1.4
 (GeV)+πNM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  2182

1.3 GeV < W < 1.4 GeV

1.1 1.2 1.3 1.4 1.5
 (GeV)+πNM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  14635

1.4 GeV < W < 1.5 GeV

1.1 1.2 1.3 1.4 1.5 1.6
 (GeV)+πNM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  32476

1.5 GeV < W < 1.6 GeV

1.2 1.4 1.6
 (GeV)+πNM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  48635

1.6 GeV < W < 1.7 GeV

1.2 1.4 1.6 1.8
 (GeV)+πNM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  53106

1.7 GeV < W < 1.8 GeV

1.9 2 2.1 2.2
 (GeV)NPM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  2182

1.3 GeV < W < 1.4 GeV

1.9 2 2.1 2.2
 (GeV)NPM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  14635

1.4 GeV < W < 1.5 GeV

1.9 2 2.1 2.2 2.3
 (GeV)NPM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  32476

1.5 GeV < W < 1.6 GeV

2 2.2 2.4
 (GeV)NPM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  48635

1.6 GeV < W < 1.7 GeV

2 2.2 2.4
 (GeV)NPM

0

0.2

0.4

0.6

0.8

1

co
un

ts

Entries  53106

1.7 GeV < W < 1.8 GeV

Figure 9.10: Distributions of the invariant masses Mn′π− (first row), Mn′π+ (second row),
and Mn′p′ (third row) from Eqs. (9.2) plotted for experimental data (black histograms)
and regular Monte-Carlo simulation (blue histograms). The dashed green histograms are
auxiliary as they correspond to the same simulation, but with the cross section weights
ignored, which means that phase-space distributions of all kinematic variables are used
instead of the regular realistic distributions [24, 39]. The mismatch between the data and
the simulation is indicative of the agglomeration of events with FSI. All histograms are
normalized in a way that the peak maxima are equal to one. The presented statistics
corresponds to the experimental data.
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The final proton and the spectator neutron are not expected to couple to each

other with the formation of an unstable particle in the intermediate state as both of

them are baryons. This conclusion is confirmed by the invariant mass distributions

shown in the third row of Fig. 9.10, where the experimental and the simulated

histograms agree with each other, both replicating the shape typical for the case of

the phase-space distribution of all kinematic variables.

The situation is however different for the invariant masses Mn′π− and Mn′π+ as

the neutron can willingly couple to either π− or π+ forming a nucleon resonance,

and the resonance mass is then determined by the cumulative energy of the coupled

pair. Thus, for low W , the formation of the ∆ resonances is only possible, while for

higher W other resonances with larger masses will compete for the formation.

The visual spotting of the ∆ resonances in the distributions of the invariant

masses comes meanwhile with some difficulties. They originate from the fact that ∆

resonances peak around ∼1.2 GeV, and the phase-space invariant mass distribution

behaves similarly at low W . Therefore, as long as the width of the invariant mass

distribution is comparable with the width of the ∆ resonance (which is around

120 MeV), it is difficult to visually distinguish between resonant and non-resonant

events as they form the same invariant mass structure. This effect is seen in the

first and second rows of Fig. 9.10, where the experiment matches the simulation for

W . 1.6 GeV, although the formation of ∆ resonances is highly expected.

For higher W however the situation simplifies as the spread of the invariant mass

distribution is now sufficient for observing the structures with lower width. Thus, for

W &1.6 GeV the observed mismatch between the data and the simulation reveals

the agglomeration of events with FSI at invariant mass values &1.4 GeV, which

correspond to the masses of the resonances from the second resonance region. The

contribution from the ∆ resonance is, however, still hard to judge due to the overall

normalization of the distributions.
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Thus, the invariant mass distributions in Fig. 9.10 may serve as evidence that

both π− and π+ do couple to the spectator neutron in the final state with the

formation of several resonances, including those from the second resonance region.

And moreover, the chance for the neutron and π− pair to originate from the decay

of the resonances from the second resonance region is much higher than that for

the neutron and π+ pair as confirmed by the much larger mismatch observed in the

Mn′π− distributions (first row) comparing with the Mn′π+ distributions (second row).

These findings allow for several interesting processes to be traced. First, for the

neutron to pion coupling with the formation of ∆ resonances, the following options are

available. If the neutron couples to the π−, then the ∆−(1232) resonance is formed,

which then decays with the emission of the same hadron pair that was involved in its

formation (the original momenta are however not kept). Meanwhile, if the neutron

couples to the π+, then the ∆+ resonance is formed, which has two decay options,

i.e. either to the nπ+ or pπ0 final states. In the former case, the emitted hadrons

are of the same type as the initial, with the different momentum though. However,

in the latter case, both emitted hadrons differ from those in the FSI initial state.

The situation complicates further if the formation of the resonances of the second

resonance region is considered. In this case, the decaying resonance may emit mesons

different than pions (such as ρ, σ, etc.) or even baryons different than nucleons (such

as Λ, Σ). The latter is however not expected to happen in this experiment due to its

low beam energy, which does not allow for the formation of the resonances with this

decay mode as they have too large masses.

Additionally, the resonances of the second resonance region can produce more

than two decay products, and the decay to the Nππ final state is the most probable

mode of this kind. In this case the resonance decay products differ from the hadrons

involved in its formation not only in their type but also in amount.
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Besides this, one more impact of FSI on the reaction final state becomes evident,

when considering the resonances of the second resonance region decaying to the

Nππ final state. In this case, several options for the types of the nucleon and the

pions in the FSI final state are in general possible with the following two processes

being the most remarkable, i.e. nπ− → R → nπ−π0 and nπ+ → R → nπ+π0, where

R corresponds to a resonance. Although in these processes the neutron and pion

maintain their types throughout the resonance formation and decay, their momenta

are now affected beyond the level of individual alterations, i.e. their total momentum

is not conserved as it leaks out via the π0 emission.

Thus, one can conclude that the neutron-pion coupling with the resonance for-

mation, which takes place during FSI, in general resolves in the following options10,

• the types of the particles involved in FSI are kept, their momenta alter but the

total momentum of the interacting pair is conserved,

• the types of the particles involved in FSI are kept, their momenta alter, but the

cumulative momentum leaks via the emission of an additional particle, and

• the types of the particles involved in FSI are not kept.

The first option then corresponds to elastic interactions, while the second and the

third belong to inelastic. It is also essential that manifestations of these options in

analyses of experimental data off bound nucleons have some specificities, which are

briefly addressed below.

Specifically, events that correspond to the first option turn out to be kinematically

identical to those events, in which pions change their momenta through non-resonant

rescattering off the spectator nucleon as in both cases pions experience either momen-

tum gain or loss. Therefore, events of both kinds share the same kinematic behavior,

which was discussed above.

10 Note that all these options are also relevant for interactions of the final hadrons with each other.
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If the process with the momentum leak occurs (the second option), then the

chances are high that the corresponding π− or π+, if registered, would still be at-

tributed to the original channel during the data analysis, especially taking into ac-

count the very poor efficiency of the π0 registration in CLAS. In that case, such

an event can not be distinguished from FSI events with the momentum alter-

ations that conserve the total momentum of the interacting pair, like in the process

nπ− → ∆− → nπ− or in a simple momentum exchange, which are events of the first

type. This is because the neutron (which is withal not registered) is extrinsic with

respect to the original exclusive channel (which happens off protons) and hence is not

included in its kinematics. Therefore, from the point of view of the original reaction,

events with the momentum leak are FSI events with the pion momentum loss and

hence comply with the patterns derived above for such kind of events.

Meanwhile, the third scenario leads to the modification of the final state of the

original reaction due to FSI, which causes the registered particles to be attributed to

a wrong exclusive channel with the consequence of miscounting events selected for a

particular reaction. This problem can be however resolved to a very high degree on

the level of the exclusivity cut on a missing mass distribution that is typically used for

the channel identification. The majority of falsely defined events will not survive this

cut because such events will fail to contribute to the main missing mass peak, as they

do not keep the kinematics inherent for the channel that is subject to the selection.

At this point, the examination being conducted seems to exploit to a very high de-

gree the opportunities offered by this experimental dataset for a better understanding

of FSI effects, which occur in the reaction of the double-pion production off protons in

deuterium. Therefore, considering the objectives set to this chapter being fulfilled, one

can conclude the whole discussion of FSI effects, which accompanies the main analysis.
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Chapter 10

Results and conclusion

This study experimentally explores the process of charged double-pion electroproduc-

tion off protons bound in deuterium nuclei. The exploration became possible owing

to the experiment of electron scattering off a deuterium target conducted in Hall B

at Jefferson Lab with the CLAS detector [4]. The data collected in this experiment

incorporates information on a broad range of physical phenomena that represent im-

portant blocks in our understanding of nuclear and particle interactions. Some of

these phenomena are inherent in reactions off free protons as well, whereas others are

unique for reactions off bound nucleons.

In order to exploit to a higher degree opportunities offered by this deuteron target

experiment, this study extends beyond the scope of observable extraction and repre-

sents an attempt at a broader and more detailed exploration of the features observed

during the analysis. To facilitate understanding and interpretation of these features,

the study [22, 23], which analyzed the same exclusive reaction off free protons under

the same experimental conditions, was used as a reference point.

As the main result of this study, the integral and single-differential cross sections of

the reaction γvp(n) → p′(n′)π+π− in the kinematic region of the invariant mass W

from 1.3 GeV to 1.825 GeV and photon virtuality Q2 from 0.4 GeV2 to 1 GeV2

have been obtained. The cross sections were extracted in the quasi-free regime,

which means that the admixture of events with FSI was kinematically reduced to

the achievable minimum.
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Figure 10.1: W dependences of the extracted integral cross sections in various bins in
Q2. The pink shadowed area for each point is the total cross section uncertainty, which
is the uncertainty δtot

stat,mod (see Sect. 7.4) summed in quadrature with the total systematic

uncertainty (see Sect. 7.3). The error bars that correspond to the δtot
stat,mod uncertainty only,

are smaller than the symbol size.
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Figure 10.2: Q2 dependences of the extracted integral cross sections in various bins in
W . The pink shadowed area for each point is the total cross section uncertainty, which is
the uncertainty δtot

stat,mod (see Sect. 7.4) summed in quadrature with the total systematic

uncertainty (see Sect. 7.3). The error bars correspond to the δtot
stat,mod uncertainty only and

for most of the points are smaller than the symbol size.
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Figure 10.3: Single-differential cross sections for W = 1.5375 GeV and Q2 = 0.625 GeV2.
The cross sections are shown with the uncertainty δtot

stat,mod represented by the error bars

(see Sect. 7.4). The relative integral systematic uncertainty εsys for this (W , Q2) point is
specified in the plot title. The definition of the average asymmetry factor specified above
each α distribution, is given in App. D.
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Figure 10.1 shows the W dependences of the extracted integral cross sections in

various bins in Q2, while Figure 10.2 shows their Q2 dependences in various bins in W .

The pink shadowed area for each point is the total cross section uncertainty, which is

the uncertainty δtot
stat,mod (see Sect. 7.4) summed in quadrature with the total system-

atic uncertainty (see Sect. 7.3). The error bars correspond to the δtot
stat,mod uncertainty

only and for most of the points are smaller than the symbol size.

For each integral cross section point, the set of nine single-differential cross sections

has been obtained. As an example, Figure 10.3 shows the single-differential cross

sections for W = 1.5375 GeV and Q2 = 0.625 GeV2. The cross sections are reported

with the uncertainty δtot
stat,mod represented by the error bars. The value of the relative

integral systematic uncertainty εsys for this (W , Q2) point is specified in the plot

title. The full set of extracted single-differential cross sections is available in App. D

accompanied by some explanatory remarks on the presentation format.

Note that FSI-background admixture left after the exclusivity cut in the π−-

missing topology (see Sect. 3.5.2), being corrected only in an integral sense, may

potentially impact the shape of extracted single-differential distributions (mostly an-

gular). However, since this admixture is present only for events from the π−-missing

topology for W > 1.4625 GeV and stays there on the level of 3-7%, its impact is not

thought to be discernible against the total cross section uncertainty.

The cross section extraction analysis has undergone CLAS Collaboration Review

by the Hadron Spectroscopy Working Group committee and been approved.

The other outcome of this study consists in the performed kinematic examination

of FSI between the reaction final hadrons and the spectator neutron for the process

of π+π− electroproduction off protons bound in deuterium nuclei. This examination

counterbalances the main cross section extraction analysis, which was mainly focused

on quasi-free events.
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The underlying idea of this examination stems from the fact that spectator

nucleons are extrinsic to the original exclusive reaction, and therefore any interaction

with them breaks the energy-momentum conservation imposed on the reaction

particles. As a consequence, FSI with spectator nucleons introduce disturbances to

the distributions of missing quantities, which can be examined along the reaction

phase space. In this way, kinematic probing of this FSI type can be carried out.

In the performed examination, the increase in the relative amount of events with

FSI in the regions of low momentum and large polar angles was observed for all final

hadrons, to one extent or another. The dominance of proton-neutron interactions

over the pion-neutron interactions was also revealed. Besides this, in the regions with

large FSI contribution kinematically available in this experiment, FSI were found to be

dominated by the processes, in which non-relativistic protons lose their momentum.

In addition to that, pion-neutron FSI were shown to willingly evolve through

the formation of resonances in the intermediate state, including those from the

second resonance region. Due to multiple decay options available for the latter, such

processes can then contribute to both elastic and inelastic FSI parts.

Further on, FSI manifestations were found to differ strongly depending on the re-

action topology. This is because the probability to experience FSI differs for hadrons

attributed to various topologies due to their non-identical geometrical acceptance.

It is also important that in reactions off bound nucleons, topologies with a

missing hadron are revealed to suffer from miscounting of both quasi-free events and

events with FSI as their separation is inaccurate. This inaccuracy originate from the

fact that in such topologies the only quantity available for the channel identification

and isolation of quasi free events is the missing mass of the unregistered particle,

which does not reflect information on FSI of the missing hadron.

Meanwhile, the latter conclusion reveals one more potential uncertainty source

for the extracted quasi-free cross sections. Specifically, for the π−-topology, which
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is the main analysis topology, some of events with the π− FSI are falsely identified

as quasi-free. The portion of such events is thought to be maximal near the reaction

threshold and decline with growing W . Unfortunately, as true quasi-free events are

kinematically identical to those that are falsely identified, this miscounting seems to

be inevitable for any topology with a missing hadron in reactions off bound nucleons.

Another useful result of this analysis consists in exploring the effects of the

initial proton motion. These effects turned out to be intertwined with many analysis

aspects: they not only cause the smearing of some kinematic quantities, but also

lead to the blurring of the boundaries of the Q2 versus W distributions, alter the

common procedure of the Lab to CMS transformation, affect the population of

the multi-dimensional cells, and more. On top of that, they affect the extracted

quasi-free cross sections, causing the need to perform a special unfolding correction.

These issues were subjected to a careful investigation, which to a high degree relied

on the Monte Carlo simulation. The latter, meanwhile, was performed by means of

the TWOPEG-D event generator [24], which was specially developed to deal with

the effects of the initial proton motion in this study.

Finally, in addition to the direct results summarized above, it is worthwhile

to mention that this study initiated a set of related studies and developments.

Among them are the development of the TWOPEG and TWOPEG-D event

generators [24, 39], testing parameterizations of the deuteron quasi-elastic peak [47],

and exploration of peculiar features of missing mass distributions that includes an

attempt of kinematic modeling of FSI effects [41]. Besides this, Ref. [38] and Ref. [3]

were also inspired by this analysis as well.

171



Bibliography

[1] B. Krusche and S. Schadmand, “Study of nonstrange baryon resonances with
meson photoproduction,” Prog. Part. Nucl. Phys., vol. 51, pp. 399–485, 2003.

[2] I. G. Aznauryan and V. D. Burkert, “Electroexcitation of nucleon resonances,”
Prog. Part. Nucl. Phys., vol. 67, pp. 1–54, 2012.

[3] Iu. A. Skorodumina et al., “Nucleon resonances in exclusive reactions of photo-
and electroproduction of mesons,” Moscow Univ. Phys. Bull., vol. 70, no. 6,
pp. 429–447, 2015. [Vestn. Mosk. Univ.,no.6,3(2015)].

[4] B. A. Mecking et al., “The CEBAF Large Acceptance Spectrometer (CLAS),”
Nucl. Instrum. Meth., vol. A503, pp. 513–553, 2003.

[5] “CLAS physics database.” http://clas.sinp.msu.ru/cgi-bin/jlab/db.cgi.

[6] V. I. Mokeev, E. Santopinto, M. M. Giannini, and G. Ricco, “The Influence of
the nuclear medium on the baryon resonance excitation,” Int. J. Mod. Phys.,
vol. E4, pp. 607–624, 1995
[see also Refs.[1-5] there].

[7] N. Bianchi et al., “Absolute total photoabsorption cross-sections on nuclei in the
nucleon resonance region,” Phys. Lett., vol. B325, pp. 333–336, 1994.

[8] J. Ahrens, “The Total Absorption of Photons by Nuclei,” Nucl. Phys., vol. A446,
pp. 229C–239C, 1985.

[9] M. Osipenko et al., “ The deuteron structure function F2 with CLAS,” CLAS-
NOTE-2005-013, arXiv:hep-ex/0507098, 2005.

[10] M. Osipenko et al., “Measurement of the deuteron structure function F(2) in the
resonance region and evaluation of its moments,” Phys. Rev., vol. C73, p. 045205,
2006.

[11] M. Osipenko et al., “Measurement of the Nucleon Structure Function F2 in the
Nuclear Medium and Evaluation of its Moments,” Nucl. Phys., vol. A845, pp. 1–
32, 2010.

[12] M. Osipenko et al., “A Kinematically complete measurement of the proton struc-
ture function F(2) in the resonance region and evaluation of its moments,” Phys.
Rev., vol. D67, p. 092001, 2003.

172

http://clas.sinp.msu.ru/cgi-bin/jlab/db.cgi
https://misportal.jlab.org/ul/Physics/Hall-B/clas/index.cfm?note_year=2005


[13] B. Krusche, “Photoproduction of mesons from nuclei: In-medium properties of
hadrons,” Prog. Part. Nucl. Phys., vol. 55, pp. 46–70, 2005.

[14] J. V. Noble, “Modification of the nucleon’s properties in nuclear matter,” Phys.
Rev. Lett., vol. 46, pp. 412–415, 1981.

[15] M. Ripani et al., “Measurement of Two Pion Decay of Electroproduced Light
Quark Baryon States with CLAS,” CLAS-Analysis-2002-109, 2002.

[16] M. Ripani et al., “Measurement of ep → e′pπ+π− and baryon resonance analy-
sis,” Phys. Rev. Lett., vol. 91, p. 022002, 2003.

[17] G. V. Fedotov et al., “Analysis report on the ep→ e′pπ+π− reaction in the CLAS
detector with a 1.515 GeV beam for 0.2 < Q2 < 0.6 GeV2 and 1.3 < W < 1.6
GeV,” CLAS-Analysis-2007-117, 2007.

[18] G. V. Fedotov et al., “Electroproduction of pπ+π− off protons at 0.2 < Q2 <
0.6 GeV2 and 1.3 < W < 1.57 GeV with CLAS,” Phys. Rev., vol. C79, p. 015204,
2009.

[19] E. L. Isupov et al., “Measurements of ep→ e′π+π−p′ Cross Sections with CLAS
at 1.40 Gev < W < 2.0 GeV and 2.0 GeV2 < Q2 < 5.0 GeV2,” Phys. Rev.,
vol. C96, no. 2, p. 025209, 2017.

[20] E. Golovatch et al., “First results on nucleon resonance photocouplings from the
γp→ π+π−p reaction,” Phys. Lett., vol. B788, pp. 371–379, 2019.

[21] A. Trivedi and R. W. Gothe, “Measurement of New Observables from the pπ+π−

Electroproduction off the Proton,” CLAS-Analysis-2019-102, 2018.

[22] G. V. Fedotov et al., “Analysis report on the ep→ e′pπ+π− reaction in the CLAS
detector with a 2.039 GeV,” CLAS-Analysis-2017-101 (CLAS-NOTE-2018-001),
2017.

[23] G. V. Fedotov et al., “Measurements of the γvp→ p′π+π− cross section with the
CLAS detector for 0.4 GeV2 < Q2 < 1.0 GeV2 and 1.3 GeV < W < 1.825 GeV,”
Phys. Rev., vol. C98, no. 2, p. 025203, 2018.

[24] Iu. Skorodumina, G. V. Fedotov, and R. W. Gothe, “TWOPEG-D: An Extension
of TWOPEG for the Case of a Moving Proton Target,” CLAS12-NOTE-2017-
014, 2017, arXiv:1712.07712.

[25] “e1e target assembly.” https://userweb.jlab.org/~skorodum/e1e_target/

tar_e1e_web.pdf.

[26] M. Amarian et al., “The CLAS forward electromagnetic calorimeter,” Nucl. In-
strum. Meth., vol. A460, pp. 239–265, 2001.

[27] G. Adams et al., “The CLAS Cherenkov detector,” Nucl. Instrum. Meth.,
vol. A465, pp. 414–427, 2001.

173

https://www.jlab.org/Hall-B/secure/analysis/clas_analysis02/2002-109.pdf
https://www.jlab.org/Hall-B/secure/analysis/clas_analysis02/2002-109.pdf
https://misportal.jlab.org/ul/physics/hall-b/clas/viewFile.cfm/2007-117.pdf?documentId=755
https://misportal.jlab.org/ul/physics/hall-b/clas/viewFile.cfm/2007-117.pdf?documentId=755
https://misportal.jlab.org/ul/physics/hall-b/clas/viewFile.cfm/2007-117.pdf?documentId=755
https://misportal.jlab.org/ul/Physics/Hall-B/clas/viewFile.cfm/2019-102.pdf?documentId=781
https://misportal.jlab.org/ul/Physics/Hall-B/clas/viewFile.cfm/2019-102.pdf?documentId=781
https://misportal.jlab.org/ul/Physics/Hall-B/clas/viewFile.cfm/2018-001.pdf?documentId=776
https://misportal.jlab.org/ul/Physics/Hall-B/clas/viewFile.cfm/2018-001.pdf?documentId=776
https://misportal.jlab.org/mis/physics/clas12/viewFile.cfm/2017-014.pdf?documentId=50
https://misportal.jlab.org/mis/physics/clas12/viewFile.cfm/2017-014.pdf?documentId=50
https://userweb.jlab.org/~skorodum/e1e_target/tar_e1e_web.pdf
https://userweb.jlab.org/~skorodum/e1e_target/tar_e1e_web.pdf


[28] E. S. Smith et al., “The time-of-flight system for CLAS,” Nucl. Instrum. Meth.,
vol. A432, pp. 265–298, 1999.

[29] S. T. G. Mutcler and E. Smith, “CLAS TOF Scintillator Positions,” CLAS-
NOTE-1998-008, 1998.

[30] http://clasweb.jlab.org/bos/browsebos.php.

[31] S. Stepanyan, “Proposal for the Production of the DST’s to Distribute CLAS
Data,” CLAS-NOTE-99-002, 1999.

[32] I. A. Skorodumina et al., “Quasi-free cross section measurements for the π+π−

electroproduction off the proton in deuterium with CLAS and a 2.039 GeV
beam,” CLAS-Analysis-2021, 2020.

[33] K. Egiyan et al., “Determination of electron energy cut due to the CLAS EC
threshold,” CLAS-NOTE-99-007, 1999.

[34] M. Osipenko, A. Vlassov, and M. Taiuti, “Matching between the electron candi-
date track and Cherenkov counter hit,” CLAS-NOTE-2004-020, 2004.

[35] P. K. Khetarpal, NEAR THRESHOLD NEUTRAL PION ELECTRO-
PRODUCTION AT HIGH MOMENTUM TRANSFERS. Ph. D. Thesis:
https://www.jlab.org/Hall-B/general/thesis/Khetarpal thesis.pdf.

[36] M. Ungaro and K. Joo, e1-6 Electron Identification. CLAS web page:
https://userweb.jlab.org/∼ungaro/maureepage/proj/pi0/e pid/e pid.html.

[37] K. Park et al., “Kinematics Corrections for CLAS,” CLAS-Note-2003-012, 2003.

[38] Yu. Skorodumina et al., “Investigating of the exclusive reaction of π+π pair
electroproduction on a proton bound in a deuteron,” Bull. Russ. Acad. Sci.
Phys., vol. 79, no. 4, pp. 532–536, 2015. [Izv. Ross. Akad. Nauk Ser.
Fiz.79,no.4,575(2015)].

[39] Iu. Skorodumina, G. V. Fedotov, et al., “TWOPEG: An Event Generator for
Charged Double Pion Electroproduction off Proton,” CLAS12-NOTE-2017-001,
2017, arXiv:1703.08081.

[40] R. Machleidt, K. Holinde, and C. Elster, “The Bonn Meson Exchange Model for
the Nucleon Nucleon Interaction,” Phys. Rept., vol. 149, pp. 1–89, 1987.

[41] Iu. Skorodumina, G. V. Fedotov, and R. W. Gothe, “Peculiar features of missing
mass distributions in studies of exclusive reactions,” CLAS12-NOTE-2021-002,
2021.

[42] E. Byckling and K. Kajantie, Particle Kinematics. Jyvaskyla, Finland: Univer-
sity of Jyvaskyla, 1971.

174

https://www.jlab.org/Hall-B/notes/clas_notes98/note98-008.pdf
http://clasweb.jlab.org/bos/browsebos.php
https://www.jlab.org/Hall-B/notes/clas_notes99.html
https://www.jlab.org/Hall-B/notes/clas_notes99.html
...
...
...
https://www.jlab.org/Hall-B/notes/clas_notes99.html
https://www.jlab.org/Hall-B/notes/clas_notes99.html
https://www.jlab.org/Hall-B/notes/clas_notes04/2004-020.pdf
https://www.jlab.org/Hall-B/notes/clas_notes04/2004-020.pdf
https://www.jlab.org/Hall-B/general/thesis/Khetarpal_thesis.pdf
https://www.jlab.org/Hall-B/general/thesis/Khetarpal_thesis.pdf
https://userweb.jlab.org/~ungaro/maureepage/proj/pi0/e_pid/e_pid.html
https://www.jlab.org/Hall-B/notes/clas_notes03/03-012.pdf
https://misportal.jlab.org/mis/physics/clas12/viewFile.cfm/2017-001.pdf?documentId=36
https://misportal.jlab.org/mis/physics/clas12/viewFile.cfm/2017-001.pdf?documentId=36
https://misportal.jlab.org/mis/physics/clas12/viewFile.cfm/2021-002.pdf?documentId=74
https://misportal.jlab.org/mis/physics/clas12/viewFile.cfm/2021-002.pdf?documentId=74


[43] L. W. Mo and Y.-S. Tsai, “Radiative Corrections to Elastic and Inelastic ep and
µp Scattering,” Rev.Mod.Phys., vol. 41, pp. 205–235, 1969.

[44] N. Markov et al., “Single π0 Electroproduction off the Proton in the Resonance
region,” CLAS-Analysis-2014-106, 2014.

[45] B. Laforge and L. Schoeffel, “Elements of statistical methods in high-energy
physics analyses,” Nucl. Instrum. Meth., vol. A394, pp. 115–120, 1997.

[46] E. N. Golovach et al. http://depni.sinp.msu.ru/~golovach/EG/.

[47] Iu. Skorodumina, G. V. Fedotov, and R. W. Gothe, “Testing Parameteriza-
tions of the Deuteron Quasi-Elastic Peak,” CLAS12-NOTE-2019-003, 2019,
arXiv:2003.02337.

[48] P. Bosted et al. https://userweb.jlab.org/~bosted/fits.html.

[49] P. E. Bosted and M. E. Christy, “Empirical fit to inelastic electron-deuteron
and electron-neutron resonance region transverse cross-sections,” Phys. Rev.,
vol. C77, p. 065206, 2008.

[50] K. M. Hanson, J. R. Dunning, M. Goitein, T. Kirk, L. E. Price, and R. Wil-
son, “Large angle quasielastic electron-deuteron scattering,” Phys. Rev., vol. D8,
pp. 753–778, 1973.

[51] S. Rock, R. G. Arnold, P. E. Bosted, B. T. Chertok, B. A. Mecking, I. A.
Schmidt, Z. M. Szalata, R. York, and R. Zdarko, “Measurement of elastic electron
- neutron scattering and inelastic electron - deuteron scattering cross-sections at
high momentum transfer,” Phys. Rev., vol. D46, pp. 24–44, 1992.

[52] S. Rock et al., “Measurement of elastic electron - neutron scattering and inelastic
electron - deuteron scattering cross-sections at high momentum transfer,” SLAC-
PUB-5239, 1991.

[53] A. Bodek, M. E. Christy, and B. Coopersmith, “Effective Spectral Function for
Quasielastic Scattering on Nuclei,” Eur. Phys. J., vol. C74, no. 10, p. 3091, 2014.

[54] L. Durand, “Inelastic Electron-Deuteron Scattering Cross Sections at High En-
ergies. 2. Final-State Interactions and Relativistic Corrections,” Phys. Rev.,
vol. 123, pp. 1393–1422, 1961.

[55] P. E. Bosted, “An Empirical fit to the nucleon electromagnetic form-factors,”
Phys. Rev., vol. C51, pp. 409–411, 1995.

[56] Y. Tian and R. W. Gothe, “Exclusive π− Electroproduction off the Neutron in
Deuterium in the Resonance Region,” CLAS-Analysis-2021-101, 2020.

[57] Yu. M. Shirokov and N. P. Yudin, Yadernaya fizika (Nuclear Physics). Moscow:
Nauka, 1980.

175

https://misportal.jlab.org/ul/physics/hall-b/clas/viewFile.cfm/2014-106.pdf?documentId=732
https://misportal.jlab.org/ul/physics/hall-b/clas/viewFile.cfm/2014-106.pdf?documentId=732
http://depni.sinp.msu.ru/~golovach/EG/
https://misportal.jlab.org/mis/physics/clas12/viewFile.cfm/2019-003.pdf?documentId=64
https://misportal.jlab.org/mis/physics/clas12/viewFile.cfm/2019-003.pdf?documentId=64
https://userweb.jlab.org/~bosted/fits.html
https://pdfs.semanticscholar.org/3f30/276d2138725ef598a9b9ca73bd339a3722e2.pdf
https://pdfs.semanticscholar.org/3f30/276d2138725ef598a9b9ca73bd339a3722e2.pdf
https://misportal.jlab.org/ul/Physics/Hall-B/clas/analysisIndex.cfm?note_year=2021
https://misportal.jlab.org/ul/Physics/Hall-B/clas/analysisIndex.cfm?note_year=2021


[58] F. Rohrlich and J. Eisenstein, “Neutron-proton and neutron-neutron scattering
at high energies,” Phys. Rev., vol. 75, pp. 705–724, Mar 1949.

[59] R. E. Cutkosky, R. E. Hendrick, J. W. Alcock, Y. A. Chao, R. G. Lipes, J. C.
Sandusky, and R. L. Kelly, “Pion-nucleon partial-wave analysis,” Phys. Rev. D,
vol. 20, pp. 2804–2838, Dec 1979.

[60] A. M. Gasparyan, J. Haidenbauer, C. Hanhart, and J. Speth, “Pion nucleon
scattering in a meson exchange model,” Phys. Rev. C, vol. 68, p. 045207, 2003.

[61] T. P. Vrana, S. A. Dytman, and T. S. H. Lee, “Baryon resonance extraction from
pi N data using a unitary multichannel model,” Phys. Rept., vol. 328, pp. 181–
236, 2000.

176



Appendix A

Lab to CMS transformation

Here the procedure of the Lab to CMS transformation for an electroproduction ex-

periment off the proton at rest (bottom left illustration in Fig. 4.2) is described [22].

In this case the CMS axis orientation is different for each reaction event and is speci-

fied by the direction of the scattered electron. The transformation from Lab to CMS

includes the following steps1:

A. The xy-plane of the Lab system is rotated around the z-axis (given by the

incoming electron direction) to make the x-axis lying in the electron scattering

plane (see Fig. A.1). This rotation transforms the four-momentum as P ′ =

P ·R1(ϕe′), with

R1(ϕe′) =




cosϕe′ − sinϕe′ 0 0

sinϕe′ cosϕe′ 0 0

0 0 1 0

0 0 0 1



, (A.1)

where ϕe′ is the azimuthal angle of the scattered electron.

After this rotation ϕe′ = 0, while ϕγv = π with respect to the intermediate

reference frame.

1 In all derivations the energy is assumed to be the last component of the four-momentum and
the four-momentum to be a row vector.
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Figure A.1: Virtual photon and scattered electron angles θ and ϕ in the Lab frame for the
proton at rest experiment.

B. The Lab system is then rotated to align the z-axis with the virtual photon

direction. The four-momentum transformation for this rotation is given by

P ′′ = P ′ ·R2(θγv), with

R2(θγv) =




cos θγv 0 − sin θγv 0

0 1 0 0

sin θγv 0 cos θγv 0

0 0 0 1



, (A.2)

where θγv is the polar angle of the virtual photon2.

2 Using embedded ROOT functions, both rotations can be coded us-
ing the unit vectors TVector3 uz = P4 gamma.Vect().Unit() and TVec-
tor3 ux = (P4 EL.Vect().Cross(P4 ELP.Vect())).Unit(), where P4 gamma, P4 EL, and P4 ELP are
the four-momenta of the virtual photon, initial and final electrons, respectively. The axis vector
ux needs to be rotated according to ux.Rotate(3.*M PI/2,uz). Finally the rotation is defined as
rot.SetZAxis(uz,ux).Invert() and needs to be applied to the four-momentum (P4) of each particle:
P4.Transform(rot).
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C. Finally, a boost into the CM frame of the virtual photon – initial proton system

is performed. It is given by the formula P ′′′ = P ′′ ·R3(β), with

R3(β) =




1 0 0 0

0 1 0 0

0 0 γ −γβ

0 0 −γβ γ



, β =

|−→q |
Eγ +mproton

=

√
E2
γ +Q2

Eγ +mproton

, γ =
1√

1− β2
,

(A.3)

where |−→q | is the magnitude of the three-vector of the virtual photon and β the

magnitude and z-component of the three-vector3 −→β = (0, 0, β).

3 Note: if you use the ROOT function .Boost, you should change the sign of the z-component of
β-vector as .Boost(0,0,-β).
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Appendix B

The reaction phase-space

The phase-space of the reaction ep → e′p′π+π− is determined by seven kinematic

variables, i.e. W , Q2, Mh1h2 , Mh2h3 , θh1 , ϕh1 , and αh1 (see Sect. 4.3 for details). The

kinematic coverage for various variables has the following specificities.

• In the W and Q2 variables it depends on the electron beam energy and experi-

mental conditions and is fixed for a particular experiment.

• The angular variables θh1 , ϕh1, and αh1 vary in the fixed limits of [0, π], [0, 2π],

and [0, 2π], respectively.

• In the invariant masses Mh1h2 and Mh2h3 the coverage depends on W and broad-

ens as W grows.
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Figure B.1: Boundary of the Mh2h3 versus Mh1h2 distribution for several distinct values of
W specified in the plot.
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The shape of the reaction phase-space in the invariant masses is determined by

the condition B(M2
h1h2

,M2
h2h3

,W 2,m2
h2
,m2

h1
,m2

h3
) = 0, where B(x, y, z, u, v, w) is the

Byckling function [42] given by

B(x, y, z, u, v, w) =x2y + xy2 + z2u+ zu2 + v2w + vw2+

xzw + xuv + yzv + yuw − xy(z + u+ v + w)−

zu(x+ y + v + w)− vw(x+ y + z + u).

(B.1)

Figure B.1 shows the boundary of the Mh2h3 versus Mh1h2 distribution for several

values of W specified in the plot and visually demonstrates the effect of the phase-

space broadening with the increase of W .
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Appendix C

Uncertainties for indirect measurements

Some useful examples of the error propagation for indirect measurements are de-

scribed here. In these examples one assumes that a > 0, b > 0, and c > 0.

• If independent variables x1 and x2 have absolute uncertainties ∆x1 and ∆x2,

respectively, then the absolute uncertainty of the variable y = c(x1
a
− x2

b
) is

∆y = c

√(
∆x1

a

)2

+

(
∆x2

b

)2

. (C.1)

• If the variable x has an absolute uncertainty ∆x, then the absolute uncertainty

of the variable y = a
x

is

∆y =
a

x2
·∆x = y · ∆x

x
. (C.2)

• If the variable x has an absolute uncertainty ∆x, then the absolute uncertainty

of the variable y = a·x+b
c

is

∆y =
a ·∆x
c

. (C.3)

• If there is a set of measurements x1, x2, ..., xn with the arithmetic mean x, then

the absolute standard error of the arithmetic mean is

∆x =

√√√√√
n∑
i=1

(xi − x)2

n · (n− 1)
.

(C.4)
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Appendix D

Measured single-differential cross sections

This Appendix contains the full set of single-differential cross sections measured in

the current analysis. The cross sections are reported with the uncertainty δtot
stat,mod

shown by the error bars (see Sect. 7.4). The central point of the corresponding W

and Q2 bin is specified in the title of each figure together with the value of the relative

integral systematic uncertainty εsys that can be propagated as a global factor to the

corresponding single-differential cross sections (see Sect. 7.3).

Note that the invariant mass distributions are shown in the range from Mlower to

Mupper, both given by Eq. (4.4.1) with the latter calculated using the central value

of the W bin. One, therefore, should take into consideration that, for each invariant

mass, the cross section is equal to zero on both sides of the range. Also note that the

invariant mass distributions contain one bin less than specified in Tab. 4.1, since the

cross section in the last mass bins is not reported. This happens due to the special

arrangement of thhe mass bins used in the analysis, which forces the last bin to be

situated out of the specified range (see Sect. 4.4 for details).

It is also noteworthy that α angular distributions of the double-pion cross sections

should be symmetrical with respect to α = 180o, when integrated over ϕ. However,

the experimentally measured α distributions acquire some asymmetry. To judge more

quantitatively the asymmetry degree, the average asymmetry factor was estimated

for each extracted α distribution as
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asym =
1

int[n/2]

int[n/2]∑

i=1

∣∣∣∣1−
2σi

σi + σn−i

∣∣∣∣ , (D.1)

where n is the number of bins in the distribution and σi the cross section value in the

bin i.

The average asymmetry factor estimated by Eq. (D.1) is specified in the plots

above each α distribution to facilitate visual judgement of the distribution shape and

its inherent systematic inaccuracy.
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Figure D.1: Measured single-differential cross sections.
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Figure D.2: Measured single-differential cross sections.
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Figure D.3: Measured single-differential cross sections.
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Figure D.4: Measured single-differential cross sections.
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Figure D.5: Measured single-differential cross sections.
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Figure D.6: Measured single-differential cross sections.
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Figure D.7: Measured single-differential cross sections.
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Figure D.8: Measured single-differential cross sections.

191



1.1 1.2 1.3 1.4 1.5
 (GeV)p+πM

0

50

100b/
G

eV
)

µ
/d

M
 (

σd

0.3 0.4 0.5 0.6 0.7
 (GeV)-π+πM

0

20

40

60b/
G

eV
)

µ
/d

M
 (

σd

1.1 1.2 1.3 1.4 1.5
 (GeV)p-πM

0

50

100

b/
G

eV
)

µ
/d

M
 (

σd

0 50 100 150
 in c.m. (deg)

p'
θ

0

5

10

15

20b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 50 100 150
 in c.m. (deg)-πθ

0

10

20b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 50 100 150
 in c.m. (deg)+πθ

0

5

10

15

20

b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 100 200 300
 (deg)

p'
α

0

2

4

6

b/
ra

d)
µ

 (α
/dσd

asym = 2.6 %

0 100 200 300
 (deg)-πα

0

2

4

b/
ra

d)
µ

 (α
/dσd

asym = 1.2 %

0 100 200 300
 (deg)+πα

0

2

4

6

b/
ra

d)
µ

 (α
/dσd

asym = 1.5 %

 = 7.3 %sysε, W = 1.7125 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7125 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7125 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7125 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7125 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7125 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7125 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7125 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7125 GeV, 2 = 0.525 GeV2Q

1.2 1.4
 (GeV)p+πM

0

50

100b/
G

eV
)

µ
/d

M
 (

σd

0.4 0.6
 (GeV)-π+πM

0

20

40

60

b/
G

eV
)

µ
/d

M
 (

σd

1.2 1.4
 (GeV)p-πM

0

50

100

b/
G

eV
)

µ
/d

M
 (

σd

0 50 100 150
 in c.m. (deg)

p'
θ

0

5

10

15

20b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 50 100 150
 in c.m. (deg)-πθ

0

5

10

15

20

b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 50 100 150
 in c.m. (deg)+πθ

0

5

10

15b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 100 200 300
 (deg)

p'
α

0

2

4

b/
ra

d)
µ

 (α
/dσd

asym = 4.2 %

0 100 200 300
 (deg)-πα

0

2

4

6

b/
ra

d)
µ

 (α
/dσd

asym = 2.6 %

0 100 200 300
 (deg)+πα

0

2

4

6

b/
ra

d)
µ

 (α
/dσd

asym = 3.0 %

 = 7.2 %sysε, W = 1.7375 GeV, 2 = 0.525 GeV2Q  = 7.2 %sysε, W = 1.7375 GeV, 2 = 0.525 GeV2Q  = 7.2 %sysε, W = 1.7375 GeV, 2 = 0.525 GeV2Q  = 7.2 %sysε, W = 1.7375 GeV, 2 = 0.525 GeV2Q  = 7.2 %sysε, W = 1.7375 GeV, 2 = 0.525 GeV2Q  = 7.2 %sysε, W = 1.7375 GeV, 2 = 0.525 GeV2Q  = 7.2 %sysε, W = 1.7375 GeV, 2 = 0.525 GeV2Q  = 7.2 %sysε, W = 1.7375 GeV, 2 = 0.525 GeV2Q  = 7.2 %sysε, W = 1.7375 GeV, 2 = 0.525 GeV2Q

1.2 1.4 1.6
 (GeV)p+πM

0

50

100

b/
G

eV
)

µ
/d

M
 (

σd

0.4 0.6 0.8
 (GeV)-π+πM

0

20

40

60

b/
G

eV
)

µ
/d

M
 (

σd

1.2 1.4 1.6
 (GeV)p-πM

0

20

40

60

b/
G

eV
)

µ
/d

M
 (

σd

0 50 100 150
 in c.m. (deg)

p'
θ

0

5

10

15

20

b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 50 100 150
 in c.m. (deg)-πθ

0

5

10

15b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 50 100 150
 in c.m. (deg)+πθ

0

5

10

b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 100 200 300
 (deg)

p'
α

0

1

2

3

4

b/
ra

d)
µ

 (α
/dσd

asym = 2.4 %

0 100 200 300
 (deg)-πα

0

1

2

3

4

b/
ra

d)
µ

 (α
/dσd

asym = 1.7 %

0 100 200 300
 (deg)+πα

0

1

2

3

4b/
ra

d)
µ

 (α
/dσd

asym = 3.6 %

 = 7.4 %sysε, W = 1.7625 GeV, 2 = 0.525 GeV2Q  = 7.4 %sysε, W = 1.7625 GeV, 2 = 0.525 GeV2Q  = 7.4 %sysε, W = 1.7625 GeV, 2 = 0.525 GeV2Q  = 7.4 %sysε, W = 1.7625 GeV, 2 = 0.525 GeV2Q  = 7.4 %sysε, W = 1.7625 GeV, 2 = 0.525 GeV2Q  = 7.4 %sysε, W = 1.7625 GeV, 2 = 0.525 GeV2Q  = 7.4 %sysε, W = 1.7625 GeV, 2 = 0.525 GeV2Q  = 7.4 %sysε, W = 1.7625 GeV, 2 = 0.525 GeV2Q  = 7.4 %sysε, W = 1.7625 GeV, 2 = 0.525 GeV2Q

1.2 1.4 1.6
 (GeV)p+πM

0

20

40

60

80

b/
G

eV
)

µ
/d

M
 (

σd

0.4 0.6 0.8
 (GeV)-π+πM

0

20

40b/
G

eV
)

µ
/d

M
 (

σd

1.2 1.4 1.6
 (GeV)p-πM

0

20

40

60

b/
G

eV
)

µ
/d

M
 (

σd

0 50 100 150
 in c.m. (deg)

p'
θ

0

5

10

15b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 50 100 150
 in c.m. (deg)-πθ

0

5

10

15

b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 50 100 150
 in c.m. (deg)+πθ

0

5

10

15

b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 100 200 300
 (deg)

p'
α

0

1

2

3b/
ra

d)
µ

 (α
/dσd

asym = 3.2 %

0 100 200 300
 (deg)-πα

0

1

2

3

4

b/
ra

d)
µ

 (α
/dσd

asym = 4.6 %

0 100 200 300
 (deg)+πα

0

1

2

3

4

b/
ra

d)
µ

 (α
/dσd

asym = 3.6 %

 = 7.3 %sysε, W = 1.7875 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7875 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7875 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7875 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7875 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7875 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7875 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7875 GeV, 2 = 0.525 GeV2Q  = 7.3 %sysε, W = 1.7875 GeV, 2 = 0.525 GeV2Q

1.1 1.15
 (GeV)p+πM

0

10

20

30b/
G

eV
)

µ
/d

M
 (

σd

0.3 0.35
 (GeV)-π+πM

0

10

20

30

b/
G

eV
)

µ
/d

M
 (

σd

1.1 1.15
 (GeV)p-πM

0

10

20

30

40

b/
G

eV
)

µ
/d

M
 (

σd

0 50 100 150
 in c.m. (deg)

p'
θ

0

0.5

1

b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 50 100 150
 in c.m. (deg)-πθ

0

0.5

1

1.5b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 50 100 150
 in c.m. (deg)+πθ

0

0.5

1

1.5

b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 100 200 300
 (deg)

p'
α

0

0.2

0.4

0.6

b/
ra

d)
µ

 (α
/dσd

asym = 23.1 %

0 100 200 300
 (deg)-πα

0

0.1

0.2

0.3

0.4

b/
ra

d)
µ

 (α
/dσd

asym = 16.6 %

0 100 200 300
 (deg)+πα

0

0.2

0.4

0.6

b/
ra

d)
µ

 (α
/dσd

asym = 14.7 %

 = 7.8 %sysε, W = 1.3125 GeV, 2 = 0.575 GeV2Q  = 7.8 %sysε, W = 1.3125 GeV, 2 = 0.575 GeV2Q  = 7.8 %sysε, W = 1.3125 GeV, 2 = 0.575 GeV2Q  = 7.8 %sysε, W = 1.3125 GeV, 2 = 0.575 GeV2Q  = 7.8 %sysε, W = 1.3125 GeV, 2 = 0.575 GeV2Q  = 7.8 %sysε, W = 1.3125 GeV, 2 = 0.575 GeV2Q  = 7.8 %sysε, W = 1.3125 GeV, 2 = 0.575 GeV2Q  = 7.8 %sysε, W = 1.3125 GeV, 2 = 0.575 GeV2Q  = 7.8 %sysε, W = 1.3125 GeV, 2 = 0.575 GeV2Q

1.1 1.15
 (GeV)p+πM

0

20

40b/
G

eV
)

µ
/d

M
 (

σd

0.3 0.35
 (GeV)-π+πM

0

20

40b/
G

eV
)

µ
/d

M
 (

σd

1.1 1.15
 (GeV)p-πM

0

10

20

30

40

b/
G

eV
)

µ
/d

M
 (

σd

0 50 100 150
 in c.m. (deg)

p'
θ

0

1

2

3

b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 50 100 150
 in c.m. (deg)-πθ

0

1

2

3

b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 50 100 150
 in c.m. (deg)+πθ

0

1

2

3

4

b/
ra

d)
µ

) 
(

θ
/d

(-
co

s
σd

0 100 200 300
 (deg)

p'
α

0

0.5

1

b/
ra

d)
µ

 (α
/dσd

asym = 2.3 %

0 100 200 300
 (deg)-πα

0

0.2

0.4

0.6b/
ra

d)
µ

 (α
/dσd

asym = 12.3 %

0 100 200 300
 (deg)+πα

0

0.5

1b/
ra

d)
µ

 (α
/dσd

asym = 6.5 %

 = 8.0 %sysε, W = 1.3375 GeV, 2 = 0.575 GeV2Q  = 8.0 %sysε, W = 1.3375 GeV, 2 = 0.575 GeV2Q  = 8.0 %sysε, W = 1.3375 GeV, 2 = 0.575 GeV2Q  = 8.0 %sysε, W = 1.3375 GeV, 2 = 0.575 GeV2Q  = 8.0 %sysε, W = 1.3375 GeV, 2 = 0.575 GeV2Q  = 8.0 %sysε, W = 1.3375 GeV, 2 = 0.575 GeV2Q  = 8.0 %sysε, W = 1.3375 GeV, 2 = 0.575 GeV2Q  = 8.0 %sysε, W = 1.3375 GeV, 2 = 0.575 GeV2Q  = 8.0 %sysε, W = 1.3375 GeV, 2 = 0.575 GeV2Q

Figure D.9: Measured single-differential cross sections.
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Figure D.10: Measured single-differential cross sections.
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Figure D.11: Measured single-differential cross sections.
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Figure D.12: Measured single-differential cross sections.
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Figure D.13: Measured single-differential cross sections.
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Figure D.14: Measured single-differential cross sections.
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Figure D.15: Measured single-differential cross sections.
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Figure D.16: Measured single-differential cross sections.
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Figure D.17: Measured single-differential cross sections.
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Figure D.18: Measured single-differential cross sections.
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Figure D.19: Measured single-differential cross sections.
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Figure D.20: Measured single-differential cross sections.
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Figure D.21: Measured single-differential cross sections.
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Figure D.22: Measured single-differential cross sections.
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Figure D.23: Measured single-differential cross sections.
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Figure D.24: Measured single-differential cross sections.
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Figure D.25: Measured single-differential cross sections.
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Figure D.26: Measured single-differential cross sections.
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Figure D.27: Measured single-differential cross sections.
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Figure D.28: Measured single-differential cross sections.
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Figure D.29: Measured single-differential cross sections.
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Figure D.30: Measured single-differential cross sections.
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Figure D.31: Measured single-differential cross sections.
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Figure D.32: Measured single-differential cross sections.
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Figure D.33: Measured single-differential cross sections.
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Figure D.34: Measured single-differential cross sections.
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