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1. Introduction

There are many theoretical approaches to hadron structure:
- Lattice QCD

- DSE and BS equations

- Light-front QCD

- AdS/QCD

- Relativistic and nonrelativistic quark models

Our approach is to fit parameters of light-front quark configurations to
the elastic nucleon form factors extracted from recent data on polarized
electron scattering and use these to calculate the transition form factors
at large Q* up to 12 GeV-.



In the context of projected extensive studies of baryons with J¥ =
1/2%,3/2%,5/2%, etc, there is an interest in calculation of electrocoup-
lings of baryons at large Q-.

Rough estimates can be made on a basis of light-front quark models. It
implies construction of a good basis of quark configurations at the light
front possessing the definite value of angular momentum and satisfying
Pauli exclusion principle.

The calculation of the Roper resonance electrocouplings will be considered
here as example.



Light-front quark wave functions were successfully used by many authors
for description nucleon form factors and transition amplitudes

1) before polarized electron data: F.Schlumpf, PRI 47, 4114; S.Capstick
and B.D.Keister, PRD 51, 3598; [.G.Aznauryan, PLB 316, 391; F.Cardarelli
et al, PLB 371, 7

2) as well as after these (with taken into account new high-quality data):
S.Capstick et al, J.Phys.Conf. 69, 012016; I.G.Aznauryan and V.D.Burkert,
PRC 85, 055202; G.Ramalho and K.Tsushima, PRD 81,074020;
V.E.Lyubovitskij et o/, PRD 89, 054033.

Now this work is being continued in the context of the considerably
extended experimental program on study of . NN"* couplings at large
Q3.



In our recent work (PRD 89, 054033) we have generalized our late results
on the Roper resonance electroproduction at Q° < 4GeV*® (PRD 84,
014004) by going to more high Q@ up to 12 GeV-.

It has taken to rewrite our old non-relativistic model in terms of quark
configurations at the light front. We reason that our experience in model
description of the Roper resonance electroproduction would be useful for
modeling the transition amplitudes for other resonances.

In the case of the Roper resonance the main problem is that its inner
structure cannot be adequately described in terms of only constituent
quark degrees of freedom, and thus other (more soft) degrees of freedom
should be taken into consideration along with the quark core.

It is evident that at high Q? the contribution of such soft components
to the transition form factors is quickly dying out with rising of the
momentum transfer, and only the contribution of the quark core survives.



2. The Roper resonance. N + ~v* — N* transition at low Q? <1-2 GeV”

Recall, the description of the Roper resonance with the |sp?[3]x L=0
configuration, i.e. as the radial two-h.o.-quanta (25) excitation, fails to
explain the observed mass My ~1440MeV and the decay width.

Moreover, in the full interval 0 < Q? <4.5 GeV? only the data at Q% >1-
2GeV? correlate well with the quark model predictions, while at low Q-
the transverse amplitude A;,; are in rather poor agreement with the
data. For example,
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Adapted from G. Ramalho, K.Tsushima, Ph.R. D81, 074020 (2010).
Dashed: MAID fit, solid: Gross model.



This is not surprising, since in the quark model the spin-isospin structure
of the Roper is identical to the nucleon one, and thus the coordinate parts
of N and R should be orthogonal.

The transverse helicity amplitude A,/> ~ (R, —I—%Ij“eLJr”N, —1) is given
by the spin-flip transition. If the quark spin part of both N and R is
factorized from the coordinate part in the full w.f., the orthogonality of
the coordinate parts of R and NV |{R|N}x = 0| brings the value of A/,
to zero at the 'real photon’ point Q2 =0.

It requires to take into account non-local contributions to the quark
current operator. Another problem in the quark approach to the transition
form factors is how to evaluate the contribution of the meson cloud.

Both problems can be resolved in the framework of an extended version
of the quark approach by taken into account the vacuum gq pairs and the
meson-nucleon loops, but the most important for us would be to show
that contributions of such extended components to the transition form
factors are quickly dying out at large Q-.



Possible solutions of the low-Q? problems

1) Generalization of CQM: 2} N-+o molecule:
CQM 3 Fy+VMD The resonance pole 1365-195 MeV
is rather close to the N-+|o threshold
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We considered the Roper resonance R = N, »+(1440) as a mixed state
of the radially excited quark configuration 3q* — sp?[3]x(L = 0) and
the “hadron molecule” (a loosely bound state of nucleon and o meson)
(N&)mat = |N 4+ o)

R = cosf |3¢") 4 sinf |[N + o)

and used a nonzero quark radius of the vector (V = p,...) meson by-.
Then, at low Q?, a non-local vgg vertex could be derived on the basis of
the VMD model and of the 3F, gg pair creation model:

Qz X

T*

Note that this implies the standard values of the adjusted parameters
of the quark model (e.g. the size parameter of the nucleon quark core

by = 0.48 fm) and only the ratios of size parameters by /by =0.9 and
br /by =0.944 were fitted to the data.



Then we found that at the value of cos@ =0.7 - 0.8 this model correlates
well with the recent CLAS data. (I.T.Obukhovsky et o/, PRD 84, 014004)
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It should be noted that in the case of the light-front quark wave functions
the spin-flip amplitude A; /> does not vanish at Q* —0, since the Melosh
rotation of quark spins in initial and final baryons prevents factorization
of the spin part of w.f..
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3. High Q? . Nucleon ground state at the light front.

At high Q? >3-4 Gev’ the contribution of soft components of the
baryon (the meson cloud, “molecular” admixtures, etc.) to transition
form factors falls off by comparison with the “quark core” contribution.
Hence, only the quark contribution should be considered.

However, the form factors defined by a simple Gaussian form of the quark
wave function with the size parameter b=0.5-0.6 fm is quickly dying out
at Q% = 3-4 GeV->.

A possible alternative to the Gaussian wave function are:

- a superposition of many Gaussians (as in the previous slide);

- a pole-like w.f.,

- a model with the running quark mass (as in the work of LG.Aznauryan
and V.D.Burkert, PRC 85, 055202), following the QCD predictions; etc.

We have chosen a pole-like form of the w.f.



Pole-like form of the nucleon ground state wave function ®gg
M
(14 Mg/3%)
s M?*4+E? +nM3+Ki
ng(1—-¢&) n(l—mn)

was firstly fitted to the elastic nucleon form factors by Schlumpf (PRD47,
4114) with v =3.5 and @ ~~2M.

Pos(&,m ko, K1)

Here k, K — the relative moments in pairs “1-2” and “(12)-3" respectively,
the light-front variables are =1 = €n, 2 =(1—&)n, x3=1—mn,
and M, is the mass of the free 3g system
(M is the constituent quark mass).



Such form is as yet unjustified, but it is pertinent to note that the
pole-like form of the gq w.f. of the pion
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C.D. Roberts, arXiv:1509.02925 (there are also eval. k =1 - 2)

was reconstructed starting from the projection of the pion’s Bethe-Salpeter
wave function onto the light front (L.Chang et o/, PRL110, 132001).

The pole-like w.f. ®os(€,17,k1,K 1) looks like a generalization of this
expression to the 3q system, where each diquark subsystem has the same
color charge as the antiquark, i.e. the color structure of each g — (qq)
pair is a counterpart of the g — g color wave function of the meson.



Starting from the “4” component of quark current on the light front
IO+ =& (Ify i [0 x qulf2),

(without quark form factors, but with the anomalous quark magnetic
moment i, Le. f1 =1, fo = 3,),

we have fitted the free parameters of the pole-like w.f. 35 to the modern
data on nucleon form factors ( we only preserved the characteristic values
of the basic parameters, find by Schlumpf: v ~=3.5 and 3 =2M) and with
the constant value of the constituent (dressed) quark mass M.

We used the data on elastic nucleon form factors within a full measured
range 0< Q? <32 GeV*? including the electron polarization data on the
ratio Gg/Gar at Q? < 6-8 GeV-.



With the values v =3.51, M =0.251 GeV, s, —=-0.0028, », =0.0224,
3. =0.579(0.59) GeV, G =0.5(0.48) GeV
we have obtained a not 20 bad description of the data.

We also compared the obtained fit with the results of another relativistic
approach, in which an effective light-front wave function was derived from
the matching of soft-wall AdS/QCD and light-front QCD.

Th. Gutsche, V.E. Lyubovitskij, I. Schmidt, A. Vega, PRD 89, 054033



Tabmna 1: Electromagnetic properties of nueleons in LF quark models (the results for Var2 are
given in parenthesises in the second column)

Quantity LFQM AdS/QCD Data

fp (in n.m.) | 2.820 ( 2.820) 2.793 2.793

pn (in nm.) | -1.920 (-1.920) -1.913 -1.913

iy, (innm.) [ 3.720 (-1.920) 3.673 1.673

pg (in n.m.) | -1.020 (-1.020) -1.033 -2.033
i (fm) (.871 ((.872) (0.78% (.8921 + 0.0073

fris® (fm?) | -0.014 (-0.022) -0.108 -0.1161 + 0.0022
o (fm) 0.883 (0.872) 0.757 0.777 £ 0.013 £ 0.010
72 (fm) | 0.898 (0.893) 0.773 0.862+2.009
ri (fm) 0.867 (0.866) (.754 0.85089 £ (.0107
r4 (fm) 0.855 ((.846) (.638 0.7507 £ 0.0004
ra, (fm) 0.875 (0.832) (0. 745 (.7288 £ (.0151
s, (fm) 0.938 (0.949) (.815 1.0582 + (.0434
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Flavor decomposition: F}* = 2F] + F', F® =2F" + F;.

Data: G.D. Cates et ol, PRL 106, 252003
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4. High Q*. Quark configurations and Melosh transformations.

Before passing to the Roper at high Q° some comment is well-timed:

A good basis of relativistic quark configurations possessing definite values
of angular momentum and satisfying the Pauli exclusion principle is
needed now for model calculation (evaluation) electrocouplings of baryon
resonances with J¥ = 1/2%, 3/2%, 5/2%, etc.

As our experience shows such basis can be constructed starting from
the nonrelativistic shell-model configurations by changing the harmonic
oscilator wave functions for the light-front analogous w.f. (Gaussian or
pole-like) dependent on the relativistic relative moments k, K and expressed
by the light-front invariants &,n, Mg, M.

The problem is only one of coupling spin and orbital moments.
However, if the Bethe-Salpeter or DSE wave function are known, they
can be readily projected onto the light front.




But in common case, when there are no such wave functions, one should
start from the canonical states |pi;s;ui)e in the abstract Hilbert space,
where are formally defined Lorentz boosts U (A(p, «— p;)) = exp{iK -fnx},
e.g. by the rule

Ipissitti)e — U(NP:<—pi)) |piisittide

=Y [Pissitl)e D (RIA®— P} AP} — pi) A(p: <))
I Wig nervmiati oT

Here p; = A(p; +— p;)p: is the rotationless Lorentz transformation, =
{M,0} is the 4-momentum of particle in its rest frame, eX = (E 4
|P|) /M, is the boost parameter (7 is the direction), and K is three
generators of boost in the Hilbert space (they are only known for free
particles).



The canonical spin state is defined by the rotationless Lorentz boost
pissipi)e = U(A(pi<Pi)) | Pis sipts)

while the light-front spin state is defined by another type of Lorentz
transformation, which leads to the same momentum p;, but would be
represented as a two-step process:

[(pi <P:) = A(Pi — Poo) A (Poo <P;), Where p. is the quark momentum
at the infinite momentum frame.
\pissipts) f = U(l(pi <P:)) | Pis sipts)

The full manifold of I’s forms a subgroup of the Lorentz (Poincare) group.
It is a kinematic subgroup for the light-front dynamics — an analog of
the rotational subgroup for the instant form of dynamics.



As a result, canonical and front states are related by a specific rotation

|Pis Sitti)e = Z pis sipi)s Dpr (RIAMPi—piA(pi — Poo) M(Poo <Pi)])
H, Maliah rolation

which is known as the Melosh transformation. For the quark (s; = 1/2)
one can write:

1 : M —|_ iz —|— lﬁ: * E:‘ X _‘f
D;,_#_ (One)i= P .,[ d Pil)
i# V(M + piz)? + pi,

The Lorentz transformation I(p} < p;) does not rotate the front states
|pis sipts) g — U(UP; i) |pis sitti) = [P Sitta) 5

that is very convenient to use in moving reference frames.



- g —

But the front states are not convenient to use in construction of rotationally

covariant states. Such states can be only constructed in terms of canonical
states.

To construct the rotationally covariant basis for 3q configurations
| P,J(LS)M) with definite values of total (JM), orbital (L) and spin
(.S} angular moments in the proper rest frame (1?-’2 {My, 0}) one should

e start from the canonical quark states |pipt1)e|pPaitz)c|P3tis)es
® introduce the relative moments and

® project this canonical state onto the rotationally covariant J(LS)M
states by the methods developed for the relativistic Hilbert space on
the basis of the standart angular momentum theory.



.

Such states should possess the definite permutation symmetry (i.e.
the definite Yang scheme [f°], and the Yamanouchi symbol <)} in the
canonical spin space (s). For example, in the simplest case of L = 0
(J = S) the spin state is

o . I i ¢ _ 1
| P, S(S12) M) = E(EPHEHE|S12PE1)(_512ﬁ12§ﬂ3|5M)|P1H1}E|Pzﬁz}e|1?3#3}e
m

where the Clebsch-Gordon coefficients provide the definite value of [ f°] y<
dependent on the values of S and S;;. But on the light front this state
will be modified by Melosh transformation
T 1. A . 1 L .
| P, S(S12) M) = Z(EPHEHE |S12441) (_512H12§H3|5M) Z B s (61) |[P1p1) 5
K I

Xy D}, . (82) |p2pz)s 3 D}, . (03)|pspus)s
[ My
61 # 65 # 03, and thus in the front spin space there will be other values
of [f]syl different from the initial value of [f°].y°.



Nevertheless, the exclusion Pauli principle is not violated for the full
wave function, though the calculation technique (fraction parentage coef-
ficients, etc.} becomes more cumbersome, especially in the case of nonzero
orbital momentum L.

Light-front configuration sp”[3]xL =0

The quark wave function of the Roper resonance corresponds to the
lowest radial excitation with L = 0. We used the light-front analogue of
the radially excited quark configuration for the case a pole-like ground
state Pgs:

M2
Pag = Nas (1 —Cg ﬁzu) Pos

The parameter cp is defined by the orthogonality condition (25| Pes) =0



Transverse helicity amplitude A,,, of the Roper resonance
electroproduction at high Q- in different approaches.

,'+\+ | | | | —I—- r;nmﬂ. Cmcs
P Y — [LFOM. Pale
S0 J_,‘_'__,_ 1‘} -—-— Run. m.iAznmryan)
o /
= o B0p
o T !
' !
e T 20
a4 J:.ﬂ
i
- 20
= : = |
_ = 5% < 60|*
O (GeV k) gtz
Tuebingen and JLab groups Adapted from D.J. Wilson et al,

PRC 85, 025205



5. Summary.

e The pole-like light-front nucleon wave function provides a good descrip-
tion of the elastic form factors in a large interval 0< Q% <30 GeV?,
where the data demonstrate asymptotic behavior predicted by pQCD,
FP ~Q*and F} ~ Q%

e However, the transition form factors for the Roper resonance, calcu-
lated with the same basis of wave functions, considerably differ from
the data demostrating the more gentle slope at Q% =1-2 GeV*>

e Comparison with the results another approaches have shown that
independently of the concrete approach (holograph QCD, DSE, light
front with the running mass or with the pole-like wave function) the
results demonstrate qualitatively similar behavior, if the adjusted
parameters of the model are fitted to the data on nucleon form
factors in a full interval 0< @Q* <30 GeV-. But absolut values of
electrocouplings for different models could be different in 30% - 60%.



We consider the Roper resonance as a superposition of the radially
excited three-quark configuration |3q*) = |sp?[3]x L=0) and the hadron
molecule component N 4o

|R) = cos@|3q") + sinf|N+o)

The parameter @ is adjusted to optimize the description of the helicity
amplitude A, only.

o ives a negative contribution
The hadron loop R_O_R Eg B
Nao
G

to the mass of the Roper resonance, and the RM o coupling constant
gnveo 18 defined by the compositeness condition’

d _
Zrp=1— d—ﬁENE(F‘) |P'=mﬁ = U':

i.e. the elementary particle R has a zero weight in the hadron molecule.



We use effective Lagrangians (Dubna group: G. Efimov, M. Ivanov, V.
Lyubovitskij) for description of nonlocal RNo and NNo interactions, e.g.

M,
m+M,’

L oir () = Guna B(Z) / d'y Pr(y’) N (ztay)o(z—(1—a)y), o=

and h.o. Gaussians as Fourier transforms of @5 (y?) and ®z(y?)
T ‘1.2 r kg‘ - ] ; kz : kg,
Dy (kp) =exp(—-5) and Dr(kp) = (1-A-FH)exp(—

with the orthogonality condition [®g(%k.)®n(k2)d*k, = 0.



The electromagnetic interaction term for this nonlocal vertex

ﬁiﬂ — gﬁﬁaﬁ(mj /dy e_iEI{MH‘I’P}N(m—l—ay)cr('m —(1—e)y) + h.c.

is generated when the nonlocal Lagrangian are gauged with a gauge field
exponential e~ */(=tey:=:.F) where

u
I(y,x,P) :/ dz,A¥(z), P is the path of integration

b

S.Mandelstam, Ann.Phys. 19, 1 (1963); J.Terning, Ph.Rev. D44, 887
(1991)



The full Lagrangian of electromagnetic interaction

Lo = £B 4+ £8)

includes also the standard term

c?® — e, B(x) A(z)B(z),

B =N,

obtained by minimal substitution 8*B — (0% — e, A*)B

Only the total sum
of the first order
diagrams (including
the contact terms
c)) satisfies the
gauge invariance



