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Much Excitement About Nothing?

adapted freely from William Shakespeare

Observation of the hadron mass spectrum as well as of elastic and transition

form factors can be used to study the long-range behavior of QCD'’s interaction.

Properties of excited hadron states are more sensitive to the long-range behavior

of the strong interaction than those of ground states.



Quantum Chrornodynamics

QCD is the gauge theory that describes strong interactions.

Description of interactions between quarks and gluons which
form hadrons we observe in Nature.

The formation of hadronic bound states via constituents is
an inherently nonperturbative problem.

It involves precise knowledge of the infrared (long distance)
regime of QCD and the dynamical generation of a constituent
quark mass.
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The key to complexity in QCD lies the gluon field strength tensor.
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The key to complexity in QCD lies the gluon field strength tensor.

G, = 0,G: — 9,6 G it e

It generates self-interactions with far-reaching consequences

for hadron phenomenology.

This complexity also affects the bare quark-gluon vertex in a nonperturbative manner!
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Nonperturbative Continuum fools for QCD

Classical Mechanics Quantum Field Theory

\ | /
Principle of Least Action
— : T
5Slg) _ : 5S[(x)]\ _
g ! : < 50(x) >‘O

\‘ Equations of Motion (EoM)
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Euler-Lagrange Equation

Dyson-Schwinger Equations

courtesy of Sishue Qin



QCD’s Dyson-Schwinger Equations

Fa-.

The propagator can be obtained from QCD’s gap equation: the Dyson-Schwinger equation (DSE)
for the dressed-fermion self-energy, which involves the set of infinitely many coupled equations:

S~ p) = Zy(iv-p+m"™)+Z(p) = iy -pA(p®) + B(p®)
A 4 a
X(p) = 21/ (37;)14 gQDW(p—q)%wS(Q)FZ(q,p)

with the running mass function M (p?) = B(p?)/A(p?).
~each satisfies

”s_/ T
D,, : dressed-gluon propagator < // it's own DSE
I%gq,p) : dressed quark-gluon vertex €~
Zy quark wave function renormalization constant
2 e quark-gluon vertex renormalization constant
g=p—k

ST P)lp2=cz = @y p+m(C)
where ( is the renormalization point. [ @] ="
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with the running mass function M (p2)‘\//
~each satisfies

‘_,_/ iy
D,, : dressed-gluon propagator <€ // it's own DSE
I'%(q,p) :  dressed quark-gluon vertex e
e quark wave function renormalization constant
2 e quark-gluon vertex renormalization constant
g=p—k

ST P)lp2=cz = @y p+m(C)
where ( is the renormalization point. [ @] ="
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Motivation: Connection with Real World

How does one incorporate the dressed-quark mass function M(p?)
In study of mesons and baryons? Behavior of M(p?) is essentially
a quantum field theoretical effect.

In guantum field theory a meson(nucleon) appears as a pole in

the four(six)-point quark Green functions amplitude.

Residue is proportional to meson’s Bethe-Salpeter or nucleon’s
Faddeev amplitude.

Poincaré covariant Bethe-Salpeter/Faddeev equation sum all
possible exchanges and interactions that can take place between
dressed-quarks (Q2 » M?2).
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Meson and Baryon Structure and Confinement Properties







Bethe-Salpeter Equations for QCD Bound States |

S
[ [
} i K
S

L ——

0(Bp) = [ K(Pp ) Sk~ 5)T(PR) S(k+ §)

T
Nl o4
S

Z2 2 )\a )\a
Rainbow-Ladder truncation: K{ Pk == 2 Q2(q ) ( 5 ’yu> TMV(Q) (7’%)
q
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Bethe-Salpeter Equations for QCD Bound States |

e — — _________—J
S
T I Tough part: how to model nonpertubative QCD
} _ e interaction beyond rainbow-ladder truncation?
S
D — —————————
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Bethe-Salpeter Equations for QCD Bound States |

e —-—————M
S
T I Tough part: how to model nonpertubative QCD
} _ e interaction beyond rainbow-ladder truncation?
S
T — —

General solution for Poincaré Lp (p, P) = 5 [iHDEPn (p, P)+~-PFp (p,P)

invariant ground- and

excited-state amplitudes +v-p(p-P)Gp,(p, P) + 0upu Py Hp, (p, P)}
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Gluon Propagator
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q° [GeV’]

Use effective interaction which reproduces Lattice QCD and DSE results for gluon-
dressing function: infrared massive fixed point; ultraviolet massless propagator.
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Use effective interaction which reproduces Lattice QCD and DSE results for gluon-
dressing function: infrared massive fixed point; ultraviolet massless propagator.

Qin, Chang, Liu, Roberts and Wilson 2011

Bnee. 2 2
'x:",.w:,:,.:~~f;:s-,=;t;.§3,w g( s) — 87; De~5/ w? + 81" Ym ]:(5)
W

In |7+ (1+ 5/N3cp)]
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The Bethe-Salpeter equation is an eigenvalue problem:
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The Bethe-Salpeter equation is an eigenvalue problem:

The kernel K(P?) has a complete set of real eigenvectors ¢; with eigenvalues
(P2 which are ordered as Mg(F2) > A8 > (P 0 (T

MP?)|®) = K(P?)|@)  esmie- |O) = 3 ;)

=1
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The Bethe-Salpeter equation is an eigenvalue problem:

K(P7p7 k) Xpn(k,P)

) : Bethe-Salpeter wave function

The kernel K(P?) has a complete set of real eigenvectors ¢; with eigenvalues

(P2 which are ordered as Mg(F2) > A8 > (P 0 (T

MP?) @) = K(P?)|D)  mwseselie- | D)

i ) me AB{

[ dn) "= A ag o) = A K"TH(P?)|®)

oo

Zzai|¢i>

=1

a0 | do) + z (i—o)a \ ¢i>}
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Eigenvalue spectrum is not limited to the ground state.

Excited states with smaller eigenvalues can be determined

with the same iterative methods.

Usage of Gram-Schmidt orthogonalization process:

Modern and more efficient approach is the implicitly restarted
Arnoldi method (IRAM).

Based on the stabilized Gram-Schmidt orthogonalization in the

Krylov subspace obtained by iteration:

5, = (0,50 130 150, K10)

The Arnoldi method generalizes the Gram-Schmidt process by
computing the eigenvalues of the orthogonal projection of K

onto the Krylov subspace = yields smaller eigenvalues.
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Chebyshev expansion of st excited state: Ep, (p, P) = Z Ep! (p, P) Up,(cos0)
T—0

Lp,(p, P) = 75| ilpEp,(p, P)+ - P Fp,(p, P)
%_7.p(p-PUG¥%QLFU4—UWJMPLEﬁ%Q%}H]

Lowest Chebyshev moment E}, (p*, P?)
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Qin, Chang, Liu, RoberfsrandAWiIson 2011 |

G(s) = ﬁDe‘s/‘”2 + 87 F(s)
w In |7+ (14 5/A3co) |
E. Rojas, B. ElI-Bennich & J.P.B.C. de Melo (2014)
Model 1 [GeV] Model 2 [GeV] Reference

My 0.138 0.153 0.139 [36]

Ir 0.139 0.189 0.1304 [36]

Mx(1300) 0.990 1.414 1.30 £ 0.10 [36]

feazony ~ —1.1x1073 ~8.3 %107

mg 0.493 0.541 0.493 [36]

fx 0.164 0.214 0.156 [36]

MK (1460 1.158 1.580 1.460 [36] 0 _

fK(i%o)) ~0.018 ~0.017 P, (W) =0, n=1

M5 1.287 1.702

fss -0.0214 -0.0216

My (15) 3.065 3.210 2.984 [36]

Jn.15) 0.389 0.464 0.395 [37]

My (25) 3.402 3.784 3.639 [36]

J2s) 0.089 0.105

The two models correspond to different parametrizations of the gluon-dressing
function neither model reproduces equally well ground and excited states.

> Must go beyond rainbow-ladder truncation in DSE and BSE !
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Open-Charm Mesons

® So far, we have first results for the heavy-light systems: D mesons

Model Experiment [63]
mp  2.115 1.869
fp 0.204 0.2067 + 0.0085 £ 0.0025
mp. 2.130 1.968
fo.  0.249 0.260 =+ 0.004
E. Rojas, B. El-Bennich & J.P.B.C. de Melo (2014)

However, masses too large and mass difference too small.

® This was expected, strong mass asymmetry doesn’t allow for simple
quark-gluon vertex and rainbow-ladder truncation.
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Covariant Fadeev Equation

Courtesy of G. Eichmann

R.T. Cahill, C.D. Roberts, J. Praschifka (1989)
M. Oettel, L. von Smekal, R. Alkofer (2001)
G. Eichmann, R. Alkofer, A. Krassnigg, D. Nicmorus (2010)
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Covariant Fadeev Equation

— - e
Quark exchange
ensures Pauli statistics Quark
Pq D A~
< q\\ r
a e v b
Vo = = < L= =
= \ 2 Fb P
Pd Pd
R.T. Cahill, C.D. Roberts, J. Praschifka (1989) Diquark (non point-like)

M. Oettel, L. von Smekal, R. Alkofer (2001)
G. Eichmann, R. Alkofer, A. Krassnigg, D. Nicmorus (2010)

Linear homogeneous matrix equation yields Poincaré covariant Faddeev amplitude
(wave function) that describes relative motion of quark-diquark within nucleon.



Diquark-Quark Description

-~ IIII > — e - _VN’ N

Tractable Faddeev equation is based on the observation that an interaction
which describes color-singlet mesons also generates

non point-like quark-quark (diquark) correlations in the SU(3): 33 =36
color anti-triplet channel. 2 :

Tl

Diquark correlations are a dynamical consequence of strong-coupling in
QCD: scalar & axial-vector diquarks.

The same mechanism that produces an almost massless pion from two
dynamically-massive quarks (DCSB) forces a strong correlation between
two quarks in color anti-triplet channels within a baryon.

Diquark correlations employed in Faddeev equation are not point-like.
Typically, ro. ~ rp & ri, ~ rp (actually 10% larger).

They have soft form factors.
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Nucleon Electromagnetic Form Factors

P P,
W[

)

‘I{
axxal bectx\s\cal{\

Composite nucleon must interact with
photon via nontrivial current constrained
by Ward-Takahashi identities!

e

J(PLP) = iea(P) A,(q P)u(P),
ied(P') (7#F1(Q2)+ ! O Qqu(Qz)) u(P)

GE(@) = Fi(Q®) - 2 F(@), Gu(@) = R(Q) + Fa@?).
bin = i = G(0), pp = 1+ p = G2, (0)

Figure 2. Vertex which ensures a conserved current for on-shell nucleons described by the
Faddeev amplitudes, ¥; , described in Sect.[2]and Faddeev Equation. The single
line represents S(p), the dressed-quark propagator, Sec.[A.2.1] and the double line, the diquark
propagator, Sec.[A.2.3} I is the diquark Bethe-Salpeter amplitude, Sec.[A.2.2} and the remaining
vertices are described inthc top-left image is Diagram 1; the top-right, Diagram 2;
and so on, with the bottom-right image, Diagram 6.
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Nucleon Electromagnetic Form Factors

P,
Composite nucleon must interact with
photon via nontrivial current constrained
by Ward-Takahashi identities! B
Ju(P',P) = ieu(P') Au(g, P)u(P),

1
ieu(P") (7#F1 Q%) + AL Qv Fz(Qz)) u(P)
P,

Figure 2. Vertex which ensures a conserved current fof on-shell nucleons described by the
Faddeev amplitudes, ¥; ;, described in Sect.2]and [Appeddix A:| Faddeev Equation. The single
line represents S(p), the dressed-quark propagator, Sec.[4.2.1] and the double line, the diquark
propagator, Sec.[A.2.3} I is the diquark Bethe-Salpeter athplitude, Sec.[A.2.2} and the remaining
vertices are described inthe top-left image §s Diagram 1; the top-right, Diagram 2;
and so on, with the bottom-right image, Diagram 6.

Ge(Q%) = Fi(Q%) - 4M‘~’ Fz(Qz) Gu(Q%) = Fi(Q°) + F»(Q%).
pn = kn = G37(0), pp =1+ Ky = G4,(0)

i
Dressed quark propagator solutions

of QCD’s Dyson-Schwinger equations.

. 5 ; 1 Z(p*,¢%) g = momentum dependence !
S() = —iy-pov(p’, ¢ + o5’ %) = iv-pA@p? )+ B(p?,(2)  iv-p+ M(@?) | :
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Ge(Q?) = F1(Q?) — %Fz@z) , Gu(Q?) = F1(Q%) + F(Q?).
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Exposing the dressed mass function |

add anom mag mom
I N B B B B B N R B B B B PR .-r1.=0_8fm

T Puckett (2010)
Punjabi (2005)
Gayou (2002)
Qattan (2005)
SLAC global

linear fit to data
[1,1] Pade’ fit

0 2 4 6 8 10
Q° [GeVz]

FIGURE 1. Proton electric-to-magnetic form factor ratio. The dot-dashed curve is the result in
Ref.[12], whereas the solid curve is obtained by repeating that calculation with inclusion of a momentum-
dependent dressed-quark anomalous magnetic moment that is characterised by a Q% = 0 strength nem =
0.4. Data: diamonds — [27]; squares — [28]; up-triangles — [29]; circles [30]; and down-triangles [31].
Dashed curve: [1,1]-Padé fit to available JLab data; and dotted curve, a linear fit.
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Roper Quark-Core Mass |

RDSE RContact RDCCM

Ccore core

Mass | 1.73 I 1.76

DSE : Faddeev amplitude of 1st excited state with dressed quark propagators
J. Segovia, B. El-Bennich, E. Rojas, |.C. Cloét, C.D. Roberts, S.-S. Xu, H.-S. Zhong, Phys. Rev. Lett. (2015)

Contact : Faddeev amplitude of 1st excited state with contact interaction gap equation
D.J. Wilson, I. C. Cloét, L. Chang, C.D. Roberts, Phys. Rev. C (2012)

DCCM : Dynamical Coupled Channel Model
N. Suzuki, B. Julio-Diaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, Phys. Rev. Lett. (2010)

29



Roper Quark-Core Mass

e —

N. Suzuki et al., Phys.Rev.Lett. 104 (2010) 042302

» EBAC examined the dynamical EBAC
origins of the two poles G the Roper resonance
associated with the Roper
resonance

» Both of them, together with
the next higher resonance in
the P,, partial wave were

found to have the same A(1357,-76) ) e —————
S -100 | ¥ N .
originating bare state S \ p
Q
» Coupling to the meson- = [ -7
T 590 | B(1364,-105)

baryon continuum induces
multiple observed resonances=

C(1820,-248)
from the same bare state.
) 5 300 } -
> All PDG identified resonances oN o==f
consist of a core state and ' ' '
1400 1600 1800
meson-baryon components.
Re (E) (MeV)
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Chebyshev Moments

e ———— R

First three Chebyshev moments of leading S+
component of |st excited state’s Faddeev amplitude

0th Chebyshev —
0.6k lst Chebyshev
2nd Chebyshev -

0 0.5 1 1.5 2
|p| [GeV]
S S ™
|b| [eeal
0 Lee I
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Dirac and Pauli Transition Form Factors

DSE-Faddeev solution

Contact interaction

Meson Cloud Correction

0.15¢

0.4
0.2}
0.0

L _0.2/1
0.4
0.6}
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Computed spectrum of 1st radial excitations for
pseudoscalar (un)flavored mesons based on a
rainbow-ladder kernel.

The meson spectrum obtained clearly indicates

that the ladder approximation Is neither appropriate
for radial excitations of light mesons nor for
heavy-light (charmed) mesons.

Along similar lines we show that the first radial
excitation of the 3-quark nucleon core using a
quark-diquark Faddeev kernel.

The mass found for this excited nucleon agrees very
well with that of the bare unclothed quark core.



